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available at the end of the article learning. Twenty-seven participants (15 women, 12 men) were assigned to three

feedback groups and one control group, who learned a choreography in an initial pilot
study. The feedback groups received real-time comparisons of their own motions
with those of an instructor. Group A was provided with a proportionally adjusted
virtual instructor skeleton superimposed on their movements. Group B’s motions
were transparently overlaid on the instructor's video. Group C viewed the instructor’s
demonstration alongside a mirror view displayed of themselves. Group D (control)
trained using only the instructor’s video, mimicking home-based tutorial formats.
Motion tests performed without feedback revealed adaptation across all groups.
Temporal motion adaptation was highest in Group A, while spatial motion adaptation
was highest in Group B. Findings suggest that motion superimposition is a promising
approach for visualizing motion discrepancies. Each method exhibited unique
characteristics in the learning process, including different learning curves (e.g., Group
A showing adaptation in the second half of the training) and varying levels of
adaptation across different exercises and body parts (e.g., Group B experienced arm
motion adaptation in squats). While these novel real-time feedback techniques
demonstrate potential, further research is required to examine the relationships
between feedback modalities and motor learning outcomes, specifically regarding
the visualization of motion comparisons.
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Introduction

To acquire motor skills and to master sport performances in the long term, motor learning
is required. Motor learning refers to a lasting change in an individual's ability to perform
motor skills, resulting from consistent practice (Coker, 2022). This refers to learning both
temporal characteristics of a motion and spatial features in the form of body part positions
(Rauter et al., 2015). In addition to the human coach, training materials often play an
important role in motor learning. Technologies nowadays have a particularly supportive
effect (Pustisek et al., 2021; Raiola et al., 2013; Wang & Parameswaran, 2004).
Specifically, videos have been widely applied in sports for the post-training analysis of
motor performances. They were found, for instance, to support enhanced riding skills
(Kelley & Miltenberger, 2015) and foster motor learning of a front handstand to flat back
landing in gymnastics (Potdevin et al., 2018). Furthermore, videos are increasingly used
for learning motor tasks in real-time, i.e., learners perform motions while observing those
in an instructional video (Quennerstedt et al., 2016; Shen et al., 2019). The latter points to
the relevance and motivation for having conducted the present study.

Motor learning through observation with an instructor as a model (McCullagh, 1993) is
extended through video usage. Training sessions may be pre-recorded by an instructor and
executed asynchronously by learners (Llupar et al., 2022). Furthermore, Extended Reality
(XR) enables the visual representation of an avatar that acts as a virtual teacher, thereby
supporting the coach (Quennerstedt et al., 2016; Rlth & Kaspar, 2020). One application
area of video-based learning is evident in the trend toward home workouts that has been
around for several years and is now firmly established in the broad society due to the
pandemic (Kim et al., 2022; Sui et al., 2022). Video platforms such as YouTube offer
guided training, including learning and executing different motor elements, adapted to
individual time and location circumstances. Coaches can create workout videos with
different motor training goals (Sui et al., 2022).

One main component of motor learning is not being considered in video-based training,
specifically, the provision of feedback to the learner. As there is a lack of direct interaction
with the instructor, the learner does not receive any feedback on the discrepancy between
one’s own motion and that of the instructor. Thus, motor skill acquisition might be
accompanied by training errors and become more difficult (Shen et al., 2019; Sui et al.,
2022). Through feedback, learners are provided with information about their motions,
thereby supporting the learning process (Sharma et al., 2016). In terms of injury prevention,
feedback is also useful for making learners aware of incorrect motion executions that might
affect their physical health (Harris et al., 2020). Previous research has shown that a
common feedback type, called ‘knowledge of performance’ (KP), has a positive impact on

motor learning (Gentile, 1972). Feedback related to KP refers to the provision of
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information on motion precision, such as limb position and velocity (Oppici et al., 2021).
In terms of videos as an analysis tool, KP has been an integral part of delayed feedback
provision in sports (Krause, 2017; Rucci & Tomporowski, 2010). However, in addition to
delayed feedback for analyzing motor performances, feedback based on KP can also be
provided during a motion execution, i.e., in real-time (Oppici et al., 2021; Sharma et al.,
2016).

Real-time feedback is essential when learning with pre-recorded videos, e.g., via online
video platforms, as coaches are not available to provide any feedback, neither during nor
after motor performance. In contrast to face-to-face training, the video serves as the training
itself, so all motion-related information must be included. Moreover, real-time feedback
has already been shown to be beneficial for motor learning in various application domains
(Geisen & Klatt, 2021). Specifically, using XR, virtual elements can be projected into real
life training settings for visual feedback during learning (Kaplan et al., 2021). Stroke
patients improved spatial motion accuracy and gained temporal efficiency in reach-to-
grasp exercises when receiving virtual feedback. They practiced with a multi-joint arm
exoskeleton and were provided with the three-dimensional view of their motions via a
monitor (Grimm et al. 2016). XR was further used to provide virtual feedback while
programming a desk-based robot. In comparison to previous used, i.e., conventional,
learning approaches, the innovative XR method led to enhanced learning outcomes
(Alrashidi et al., 2017). The effects of real-time XR feedback on sports performance were
also investigated. During the execution of squats and Tai Chi pushes, visual feedback was
generated as color highlights on the learner's avatar. The researchers found their method to
be suitable for learning a sports motor skill (Hilsmann et al., 2018). Besides the
possibilities of using XR for motor learning, modern technologies such as motion capture
cameras offer the possibility to track human motions for motion analyses. Researchers
emphasized the applicability of such cameras in home learning contexts, particularly
referring to Microsoft Azure Kinect and its non-invasiveness and low-cost tracking (Antico
et al., 2021). Innovative methods such as XR as well as motion capture technology have
features that are advantageous for identifying and providing motion-related information in
real-time.

In conventional video-based learning methods (e.g., YouTube tutorials), feedback
provision is still an issue and has not yet been sufficiently researched and applied in
practice. This work focuses on using recent technological developments and visualization
methods to provide different options of real-time feedback during the learning process of
video-based training. An important role for real-time feedback implementation has been
attributed to discrepancy information, which is among the relevant types of extrinsic
information in motor learning (Blischke et al., 1999). Discrepancy information refers to the

deviation of the momentary motion (actual value) from a targeted motion (criterion value).
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Overall, motor learning in video-based training may be particularly enhanced by (1)
providing feedback with regard to KP (Gentile, 1972), (2) realizing such feedback
provision in real-time using modern technologies, and (3) thereby visualizing discrepancy
information (Blischke et al., 1999).

For the purpose of this work, feedback is understood as a comparison of a targeted motion
with one's own motion. This form of feedback is indirect, as learners extract performance-
related information through the comparison. We refer to real-time feedback as being
provided during the task performance/the motion execution, as opposed to, e.g., receiving
feedback after completion of the task/motion execution. Thus, learners can compare both
motion executions while actually being in motion themselves. This form of feedback is
unique because it is intrinsically tied to the learner's motion at that precise moment. For
example, at second 12 of a motion choreography, a learner bends their knees to a 45-degree
angle in preparation for a squat, while the coach simultaneously performs a squat at a 90-
degree angle. Then the real-time feedback pertains to the spatial and temporal execution
(knee joint angle position at that time) not matching the coach and thus needing adjustment
in the learning process. Both motion aspects are interconnected. Taken together, the
visualization of the comparison between the learner's actual motion and the targeted motion
serves as a direct source of indirect real-time feedback. On the one hand, we base this on
the use of the term ‘feedback’ from other researchers on similar research topics (Htlsmann
etal., 2019; Le Naour et al., 2019). On the other hand, literature on feedback in the learning
context notes the following: "[...] the objective of feedback is to move learning forward.
Feedback is information, in various forms and from various sources, that is useful for
accomplishing this goal. Feedback is effective if it supports learning and ineffective if it
does not. Feedback therefore derives its value from the learning it enables” (Brookhart,
2020, p. 63).

Four different learning methods were elaborated to take a step-by-step approach from
learning as it is known on online video platforms to learning with a previously unknown
innovative strategy with additional virtual information. Each of the tested methods adds an
additional new type of motion-relevant feedback into the video. Similar to online video
workouts, a conventional method only displayed the instructor, as when motor learning
through (video) observation with an instructor as a model (McCullagh, 1993). In the first
novel method, feedback was provided in the form of displaying both the instructor and a
mirror view of the learner side by side for direct comparison. In a further novel method,
feedback on the discrepancy between the actual (learner) and criterion (instructor) value
was more clearly visualized than with the previous methods, by transparently
superimposing the learner’s and the instructor’s motions. Previous studies have shown that
superimposing motions can be beneficial for motor learning. To learn volleyball pass skills,

the executions of an expert and the respective participant were superimposed to make the
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differences between the two executions more obvious (Barzouka et al., 2015). Participants
who used this additional tool significantly improved their pass skills in terms of technical
execution and pass skill outcome as opposed to other learning methods. In basketball jump
landing, it was found that the feedback method of visually superimposing motion
executions of an expert and a learner led to an increased percentage overlap of the learner's
motions with that of the expert (Dallinga et al., 2017). However, the described tools were
used for providing delayed feedback. In addition to superimposing motions, our final novel
method considered different body-proportions of the learner and the instructor. The
adaptation and visualization of the instructor’s proportions to the learners’ proportions was
enabled through virtual skeleton tracking. An enhanced indication of discrepancy in
motions was provided through colored highlights based on the work of Hilsmann et al.
(2018).

Summing up, we aimed to enhance video-based motor learning by combining promising
possibilities of real-time feedback provision with already successfully applied visualization
methods of discrepancy information. In the framework of an initial user pilot study, the
following research question was addressed: What are the effects of different means of
visualizing discrepancy information (enabled by innovative real-time feedback methods)
on video-based sports motor learning? The variables to be tested were temporal and spatial
motion adaptation to the instructor's motions. Consequently, motor learning of a video-
based choreography (containing dance, pilates, and yoga motions) was examined. By
evaluating descriptive and qualitative data, the impact of the different visualization forms
and the extent of discrepancy information (actual-criterion comparison) on the adaptation
to a given motion were examined. This referred to temporal and spatial deviations from the
instructor's motion before, at half time, and after motor learning. Spatial motion was
investigated by capturing positional data of elbow, shoulder, hip, and knee joints of each

learner.

Methodological design of an initial user pilot study

Participants

Thirty individuals aged 18 to 40 years were initially recruited, resulting in a total of 180
test trials (two pre-tests, two mid-tests, two post-tests per participant as described in detail
later in the article). To ensure a similar level of given age-dependent motor performance
skills, we focused on the investigation of younger adults as skillfulness in terms of motor
performance seems to be decreasing at around 40 years of age (Hollmann & Hettinger,
1990). One participant discontinued the experiment because of physical overstrain. Data
from two participants were not complete due to technical limitations during data collection.
The final sample thus comprised 27 participants (26.85 + 4.17 years old, 15 women, 12
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men), all of whom reported being physically and mentally healthy. Participants indicated
their primary sport, i.e., running (n = 2), ball sports (n = 10), gymnastics (n = 1), yoga (n =
2), racket sports (n = 3), strength training (n = 2), dancing (n = 3), cheerleading (n = 1),
and martial arts (n = 1). Two participants did not indicate a primary sport. Six participants
had a lot of experience in dance, pilates, or yoga, five had some experience, eleven had
little experience and five had no experience. Six individuals had a lot of experience with
video-based motion training, fifteen had some experience, five had little and one
participant had no experience. Approval was obtained from the institution’s ethics board.
All participants provided written informed consent.

Participants were divided into four groups that differed in terms of the training method
and were balanced according to participants’ primary sport to avoid confounding effects of
previous sports-related experience. The groups had a similar distribution of experience
levels in dance, pilates, or yoga (averaging between some and little experience in each
group) and video-based motor training (averaging some experience in each group). Group
A (n =6), Group B (n =8) and Group C (n = 7) were considered as feedback groups and
received different visual information on KP. Group D (n = 6) served as a control group and
was provided with a conventional teaching method. The number of subjects in each group
resulted from distributing the 30 subjects as evenly as possible among four groups;
however, as mentioned, data from three participants are not included in the present work
due to incompleteness.

Materials and design

During the study, participants stood in front of a curved screen (440 cm x 230 cm), with a
distance of 335 cm to the screen, and on top of a safety mat (Fig. 1). The starting point for
performing the choreography was marked with an X on the floor mat. The respective videos
to the groups were presented via a projector on the screen. Motion capture was conducted
using two Microsoft Azure Kinect DK cameras, each operating at 30 frames per second
(fps) with a resolution of 3840 x 2160 pixels and an estimated system latency of 150-200
milliseconds (according to official online Azure Kinect DK documentation). One camera
was positioned in front of the participant and the other to the right side of the mat, enabling
both frontal and lateral motion tracking. This setup allowed participants (except those in
the control group) to view themselves from both perspectives, improving motion
representation and reducing self-occlusion. Additionally, we drew on previous findings on
the use of Kinect cameras for motion capture research and the suggestion of its useful
transfer to home-learning contexts (Antico etal., 2021). To support the innovative feedback
methods implemented in this study, 3D human pose estimation was performed using the
Azure Kinect Sensor Development Kit (SDK, Shotton et al., 2011).
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Fig. 1
Test set-up
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The participant stands on a safety mat, positioned on an X-mark facing the screen. Video material
is projected onto the screen by a projector placed diagonally behind the participant. Motion
recording is conducted using two Azure Kinect cameras; one positioned low in front of the screen
(to avoid blocking the video view) and the other placed to the side. All distances between the
participant and equipment are indicated in centimeters.

The motion sequence was choreographed and recorded by an instructor beforehand, using
the same two camera views as for data collection. The instructor (25 years old and female)
had 20 years of experience as a dancer and was a certified fitness instructor with 12 years
of experience of teaching various sports classes at the time of data collection. The one-
minute choreography consisted of 25 dance, pilates and yoga exercises, either performed
once or a few times in a row before the next exercise followed. In between the exercises,
additional motions, e.g., a side step, were incorporated to help moving from one exercise
to the next and maintain the motion flow of the choreography. The exercises were given
names that contained body parts being involved, e.g., “arms up”, had a similarity to objects,
e.g., “airplane”, or were associated with figures, e.g., “pirate”. Next to the respective videos
for each group, all participants were shown an information window that listed the names
of the exercises one below the other. All exercises were additionally marked with a white
dot next to the name and a bright bar moved at the appropriate velocity of the choreography
(60 beats per minute) over the names and the dots. Accompanied by a metronome, this
provided an indication of the rhythm, i.e., the time point of performing the exercise.
Pictures of the instructor performing the exercises were shown as further support next to

the exercise names in the information window.
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For superimposition of motions as means of feedback for the most innovative learning
method in our study, the following procedure was performed: The instructor’s skeleton was
extracted using a recording of the two cameras and the 3D human pose estimation provided
by the Azure Kinect SDK (Shotton et al., 2011). During training, the learner’s motion was
then extracted in real-time using the same software and compared against the skeleton’s
motion. The body-proportions of the instructors’ skeleton were adapted to those of the
respective participant by means of automatic recognition through the cameras. The
techniques and software utilized in our study for real-time visual feedback and automatic
skeleton adjustments have been developed in C++, leveraging the Microsoft Kinect Azure
Software Development Kit (SDK), and OpenCV library functions. In particular, the data
processing was conducted using Azure Kinect SDK, enabling seamless integration and
real-time data handling. OpenCV functions were used to process the camera input and
display the visualizations. A two-step process was implemented to automatically adjust the
instructor's skeleton to match the participant's body proportions. First, the Euclidean
coordinates of the instructor's joint positions were converted into radial coordinates. This
was achieved by expressing the angle of each limb relative to its parent limb, which allowed
for a more dynamic comparison between the instructor's and the participant's body
proportions. Following this, the instructor's skeleton was reconstructed using these radial
coordinates based on the limb lengths of the student. This method enabled automatic
recognition and adjustment of the instructor's skeleton to match the participant's physique,
contributing to a reliable and confident fitting process.

Upon successfully adapting the instructor's skeleton to the student's body proportions,
the rescaled instructor model was meticulously positioned in the virtual 3D scene, ensuring
precise alignment of the pelvis locations between the two entities. This alignment laid the
foundation for an efficient comparison phase. The evaluation error, a measure of our
technique's efficiency, was then calculated as the Euclidean distance between the
reconstructed student and the adjusted instructor skeleton. This step allowed us to quantify
the discrepancy between the actual objective and predicted skeletal alignments, providing
valuable insights into the effectiveness of our method and highlighting potential areas for

future enhancement.

Procedure

Participants completed a single one-hour session. First, a demographics questionnaire
was administered and the level of experience in dance, pilates, or yoga as well as with
video-based motor training (e.g., YouTube tutorials) was acquired. Two experience-based
questions were answered on a four-point scale with 1 = “a lot of experience”, 2 = “some
experience”, 3 = “little experience”, and 4 = “no experience”. In terms of experience with

dance, pilates, or yoga, 1 referred to ‘regular training and competitions’, 2 to ‘occasional
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participation in classes’, 3 to ‘at least one of the sports already tried’, and 4 to ‘none of the

sports practiced so far’. With respect to experience with video-based motor training, 1 was

related to ‘regular training’, 2 to ‘occasional training’, 3 to ‘already tried’, and 4 to ‘not yet
exercised’. Participants completed thirteen training trials to learn a motion choreography
and six trials of a motion execution test in the following order:

- one observation training trial for familiarization, i.e., participants solely observed the
motion sequence,

- two training trials for familiarization, i.e., participants practiced the motion sequence
for the first time by following the instructor in the respective video and imitating the
movements simultaneously,

- two pre-test trials, i.e., participants were provided with the information window and
the sound of the metronome and were supposed to perform the motion sequence
without the help of the respective video,

- five training trials, i.e., participants practiced the motion sequence by following the
instructor in the respective video and imitating the movements simultaneously,

- two mid-test trials, i.e., participants were provided with the information window and
the sound of the metronome and were supposed to perform the motion sequence,
without the help of the respective video,

- five training trials, i.e., participants practiced the motion sequence by following the
instructor in the respective video and imitating the movements simultaneously,

- two post-test trials, i.e., participants were provided with the information window and
the sound of the metronome and were supposed to perform the motion sequence,
without the help of the respective video.

The number of training and test trials was verified in advance by means of preliminary
tests. It was found that after more than one hour including several practical executions of
the motion sequence, physical fatigue occurs in participants. In order to ensure that the
post-test results would not be affected by fatigue, the number of training and test trials and
the associated duration of the study per subject was determined accordingly.

After training and testing, participants filled in the System Usability Scale (SUS; Brooke,
1996) and answered further questions pertained specifically to the experimental setup. The
procedure, data analysis and results of the SUS and further questions are provided in the

supplementary material.

Motor learning intervention

Group A received real-time feedback in which the instructor’s motion was virtually
superimposed and body-proportionally adjusted to the participant’s livestream in the form
of a skeleton (Fig. 2). Deviations in the participant’s motion (actual value) and the

skeleton’s motion (criterion value) could be identified by participants through
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superimposition of the two motions as well as yellow dots that visualized the level of
deviation, i.e., the dots became larger the more the motions deviated from each other.

Fig. 2
Group A teaching method

The instructor’s motion skeleton is body-proportionally adjusted and virtually superimposed on
the participant’s self-view (both the front view and the side view). Deviations from the instructor’s
motions are highlighted by yellow dots.

Group B received real-time visual feedback in the form of superimposing the
participant’s livestream on the instructor’s videos, both of which were made transparent to

make the motions visible (Fig. 3).
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Fig. 3

Group B teaching method

The livestream of the participant’s self-view (both the front view and the side view) is virtually
superimposed on the instructor’s video, both are slightly transparent.

Group C was provided with the instructors’ videos and the participant’s livestream next
to each other. Participants were able to compare the motions in real-time by looking at the
instructor’s videos on the right-hand side of the screen and the livestream on the left-hand
side of the screen.

Group D received only the instructor’s videos and did not see themselves. This was
comparable to conducting a home workout using an online video platform via a laptop or
TV screen with no feedback.

The step-by-step approach is correspondingly reflected in the increasing amount of
information from Group D with its most conventional, familiar training environment (no
information on one’s own motion) to Group A with the most modern training environment
that includes previously unknown visual feedback (several virtual additions as real-time
information).

Motion execution test

During pre-, mid-, and post-test, participants were presented with only the information
window and the accompanying metronome sound. This information was given in order to
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prevent the motor learning process with its main goal of temporal and spatial motion
precision from being compromised by insufficient memory of the choreography. Using
Microsoft Azure Kinect, participants’ motions were recorded from the front and side view

for data collection.

Data analysis

Annotation procedure

Twenty-five distinct poses were determined within the choreography corresponding to
the 25 exercises (Fig. 4) for analyzing participants’ temporal and spatial motion deviations
from the instructors’ motions, i.e., the difference between the actual and criterion value.
Participants’ executions of these poses were identified and annotated manually by two
raters independently. Via a frame-by-frame analysis of the video recordings of participants’
motions, annotators determined the first frame that showed the participant at the maximum
range of motion for the respective exercise, e.g., at the lowest depth of a squat. Six test
trials (two pre-, two mid-, and two post-tests) were analyzed this way for each participant.
Due to technical issues in one case, data was missing for one of the two pre-, mid-, and
post-tests. In this case, only the data from the completed trial was used for the analysis.
The raters together analyzed 354 videos, hence making decisions on 354*25 poses,
resulting in 8850 decisions in total. Deviations between annotators’ ratings across all
participants and all trials amounted to an average of 202 ms of temporal deviation and 3.43
degrees of spatial deviation, thus defining the error margin of our combined recording and
annotation method. For data analysis the average values (temporal and spatial motion) of
the two annotators’ ratings were used. Whenever one annotator marked a pose as missing,
the value determined by the other annotator was used for data analysis. In case both
annotators marked a pose as missing, that pose was not considered for data analysis.
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Fig. 4

Twenty—five poses conducted by the instructor
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Each photo shows the expert while conducting one exercise, i.e., one pose, of the choreography.

Descriptive analysis and visualization

To determine whether participants learned the motion choreography, that is, to determine
whether they adapted their motions to the instructors’ motions, and to take a closer look at
the motor learning process of the groups, we focused on the temporal motion parameter,
i.e., deviations in ms (in the following referred to as TempDev) and spatial motion
parameter, i.e., deviations in angular degrees (in the following referred to as SpatDev).
SpatDev referred to the averaged angle in a subject’s elbow, shoulder, hip, and knee joints.
These body joints were deemed by the instructor to be most critical to the performance of
the exercises. With respect to the two trials for each pre-, mid-, and post-test, an average
score was calculated for each participant. To enable direct comparisons that omitted the
difference in body proportions of the instructor and the subjects, the 3D motion
representations of the subjects were matched to the segment lengths of the instructor’s 3D
motion representation, extracting all of the learner’s joint angles and applying them to a
skeleton of the instructor’s proportions. Thus, we were able to analyze the data
descriptively and to generate 3D illustrations and graphs representing the results.

For an overall analysis, we averaged each TempDev and SpatDev across all poses and
participants for each group and test. To better depict the progress of motion adaptation of
each group from pre-, to mid-, to post-test, graphs were generated for both motion
parameters. For a more detailed insight into the results of SpatDev (where, in contrast to
TempDev, a visualization of the results seems particularly useful), a special visualization
method was applied. Thus, as with the training methods of Groups A and B, the method of

direct comparison in the form of motion superimposition was used for presenting the results.
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In this comparison method, unlike for the general evaluation, SpatDev refers to the
Euclidean distance (in mm) between the instructor’s and the learner’s segment-length-
matched skeleton. Using Figure 4 as a basis, the average SpatDev of all subjects in a group
was visibly superimposed on the instructor’s position for the respective pose. For better
visibility of the differences between the subjects’ and the instructor’s pose, two respective
skeletal images were added to each photo. This method was applied to all 25 photos of
each test and group (supplementary material, Fig. 1-4). The result of one pose and group is
demonstrated in the descriptive results section. This exemplary pose was also used to
visualize the course of SpatDev (mm) from pre- to mid- to post-test in even greater detail
in the form of 3D skeletal representations. Thus, a visualization of the pose was generated
for comparison between the instructor, the average of all subjects in each group, and each
individual subject in a group, again separately for each of the three tests and separately for
each group. This should introduce precise forms of visualization for analysis and allow for
result interpretations.

Given the exploratory nature of this initial user pilot study and the relatively small sample
size used to test the real-time feedback approaches for the first time, we intentionally
refrained from conducting inferential statistical analyses. The primary aim of this study
was not to draw generalizable conclusions, but to evaluate the feasibility and practical
potential of these innovative methods for video-based motor learning. As such, the reported
changes in temporal and spatial motion execution are based solely on descriptive data and
are intended to generate initial insights. These preliminary findings provide a foundation
for future research with larger samples and formal hypothesis testing.

Descriptive results

All groups improved their temporal motion precision from pre- to post-test. Group A had
a temporal motion adaptation of 874.7 ms from pre-test (1674 + 1455.7 ms) to post-test
(799.3 £ 742.7 ms). Group B showed an adaptation in TempDev of 738 ms from pre-test
(1542 £ 1457.7 ms) to post-test (804 + 958 ms). Group C adapted with 223.6 ms from pre-
test (1104.3 £ 1028.3 ms) to post-test (880.7 £ 1099.7 ms), and Group D was 255.3 ms
temporally closer to the instructor’s motion from pre-test (987 + 918 ms) to post-test (731.7
+ 582.7 ms). Figure 5 shows that Group A underwent its greatest temporal motion
adaptation starting at mid-test. Group B improved its temporal motion performance from
pre- to mid-test, then decreased its adaptation again in post-test. Group C showed a slightly
increased TempDev in mid-test compared to pre-test and decreased its deviation in post-
test. Group D showed a decrease in TempDev from pre- to mid-test and a very slight

increase from mid- to post-test.
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Fig. 5

Deviations in temporal motion execution from the instructor
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Data are plotted separately for each test and averaged across all exercises/poses and all
participants per group.

All groups made progress in spatial motion execution (SpatDev averaged across all
included joints), whereas Group A showed a spatial motion adaptation of 1.83° from pre-
test (15.43 = 16.18°) to post-test (13.6 £ 14.54°). Group B adapted its spatial motion by
3.45° from pre-test (17.82 + 18.49°) to post-test (14.37 + 15.49°). SpatDev for Group C
resulted in an adaptation of 1.98° from pre-test (15.44 + 16.13°) to post-test (13.46 + 14.53°)
and Group D adapted its spatial motion by 2.97° from pre-test (15.25 + 15.44°) to post-test
(12.28 + 12.38°). As illustrated in Figure 6, Group A increased its SpatDev in mid-test,
then adapting spatial motion to the instructor’s motion in post-test. The progress of Group
B was similar to TempDev, namely an adaptation to the instructor’s spatial motion occurred
in the first half of the training, followed by an increase in post-test. Group C decreased its
SpatDev from pre- to mid-test and this average deviation remained consistent. SpatDev for
Group D was similar to the progress of the same group in terms of TempDeyv, i.e., a decrease
from pre- to mid-test and a slight increase from mid- to post-test.
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Fig. 6

Deviations in spatial motion execution from the instructor
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Data are plotted separately for each test and averaged across all exercises/poses and all
participants per group.

With respect to the visualization method for data analysis, Figure 7 demonstrates one of
the 25 poses, i.e., a variation of a squat exercise, here exemplified for Group A. The course
of the motions from pre- to mid- to post-test as well as the average performance of this
group (red, orange and green skeleton, respectively) compared to the spatial motion
execution of the instructor (real person and blue skeleton) can be seen. The superimposition
of the skeletons added to the photo allow direct visible comparison. The lower SpatDeyv is,
the more the respective colored skeleton overlaps with the blue skeleton and the photo.
Thus, the average result from Figure 6 for Group A can be recognized for this pose, i.e., an
increase in the deviation from pre- to mid-test at first (arms, trunk, and legs of the subjects’
skeleton deviate from the instructor), followed by an adaptation of the spatial motion
execution to the motion of the instructor in post-test (especially arms and trunk are spatially
close to the instructor’s motion). Based on the results of all 25 images of each test and
group (supplementary material), differences in spatial motor learning can be found between
the tests (red, orange, and green skeleton), between the exercises (numbered 1-25) and
between the body parts involved (visible within each image) within groups as well as

between groups.
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Fig. 7 Skeletal representations of spatial motion executions of one pose

Pre-test Mid-test Post-test

The left figure refers to the visualization of pre-test results, the middle figure is related to mid-
test results, and the right figure represents post-test results. All images refer to the same exercise
within Group A. The instructor’s optimized motion is depicted by the blue skeleton that is the
same for all tests. The average of all subjects in each group is shown by the red, orange, and green
skeleton, respectively, depending on the test.

Regarding the development of 3D skeletal representations for data analysis, Figure 8
illustrates the same pose as shown in Figure 7, but with additional visual information and
results from all groups. There is less insight into the position of the trunk, resulting from
the selection of one particular perspective in 3D. Several outliers can be found in the initial
status before the respective training sessions (pre-test) in all groups, thus revealing
deviations in all joint angle positions investigated. The course of SpatDev of Group A as
described before can be seen by focusing on the deviations between the instructor (blue
skeleton) and the average of all subjects per group (red skeleton). In addition, Figure 8
shows that for a few individual subjects (grey skeletons) in Group A, SpatDev refers to
deviations of the arm motion from the instructor of up to about 90 degrees in both pre- and
mid-test. In post-test, the average subjects’ and the instructors’ arm position are almost
completely superimposed, with a few individuals who deviate slightly from the average
values. Deviations of the individual subjects of Group A are noticeable in the knee joint,
more frequently in mid- than in pre-test and more frequently in pre- than in post-test. These
visualizations are also reflected by the indicated average deviation values in mm. In Group
B, average subject performance shows a gradual convergence of arm position to the
instructor from pre- to mid- to post-test, accompanied by outliers in all tests. Adjustments
towards mid-test are initially evident in the leg position, especially in the right knee joint,
again deviating greater in post-test, visible through the average values and outliers. For

Group C, Figure 8 shows a greater average deviation of the subjects’ shoulder joint towards
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mid-test, especially in the right shoulder, which decreases again in post-test. An adjustment
of the knee joint is visible in mid-test, again deviating greater in post-test. Outliers can be
found in all tests. Group D shows few differences between tests. Motion directions of the
individual joints are adhered to in the squat exercise. An increased deviation from the
instructor can be seen in the shoulder joint in all tests, with a tendency towards a steeper

arm position.

Fig. 8
3D skeletal representations of spatial motion executions of one pose

m—— Instructor
Pre-test = Average subjects per group

=== Individual subject

The upper figure refers to the visualization of pre-test results, the middle figure is related to mid-
test results, and the bottom figure represents post-test results. All images refer to the same
exercise across all groups. The instructor’s optimized motion is depicted by the blue skeleton that
is the same for all groups and tests. The average of all subjects in each group is shown by the red
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skeletons, and each individual subject in a group is represented by a grey skeleton. The numbers
refer to SpatDev (mm), i.e., the deviations of the red skeleton from the blue skeleton, averaged
across the joints of the elbows, shoulders, hip, and knees, of all participants in a group.

Discussion

The present work dealt with the development and exploration of innovative real-time
feedback methods for video-based motor learning. We made use of existing methods of
providing feedback on discrepancy information (Blischke et al., 1999) after a motor
performance (Barzouka et al., 2015; Dallinga et al., 2017) and adjusted these for use in
real-time, resulting in novel real-time feedback methods. Specifically, we integrated the
following factors found to be relevant for motor learning, namely providing feedback on
KP, realizing this feedback in real-time using modern technologies, and thereby visualizing
discrepancy information for actual-criterion motion comparison. In the framework of an
initial user pilot study, we investigated three groups each conducting a training method that
differed in regard to the amount and type of visual information, and a control group.
Descriptive findings showed that all groups achieved temporal and spatial motion
adaptation to the instructors’ motions after training. Temporal motion adaptation was
greatest in Group A (followed by Group B) and spatial motion adaptation was greatest in
Group B. Thus, a direct actual and criterion comparison via visual superimposition of
motions might be beneficial for video-based motor learning. Based on the results, this
method could not only serve as a sports training approach for delayed feedback (Barzouka
et al., 2015; Dallinga et al., 2017), but might also be used to provide motor feedback in
real-time. Our study has shown positive effects of applying the innovative feedback
methods on motor learning of this specific sample and the selection of motion tasks.
Extended research is needed for specifying the potential for sport-specific application cases.
Motor learning in Group A mainly started in the second half of training. While only minor
temporal motion adaptation and increased spatial motion deviation from the instructor
occurred in the first half of training, both were greatly adapted in the remaining time of
training. Based on Cognitive Load Theory (CLT; Sweller, 2011) studies, this effect might
be related to the amount of new visual information that had to be processed during training,
i.e., virtual skeleton and additional highlights. Indeed, when learning, the human cognitive
architecture has limited capacity to process novel information at any given time (Sweller,
2011). Studies on learning environments with virtual elements have shown that such
innovative methods can be associated with information overload during learning tasks
(Buchner et al., 2021). Since our specifically developed method was tested for the first time
in this particular setting, no specific evidence for a certain amount of information was
available. The fact that participants made motor learning progress after a certain training
time suggests that they first had to become familiar with the innovative method in order to

benefit from it. Further research considering familiarization is needed to confirm this



Geisen et al. Research and Practice in Technology Enhanced Learning (2026) 21:38 Page 20 of 31

assumption. In addition, future studies may benefit from the inclusion of cognitive load
assessments, allowing for more precise insights into the cognitive demands placed on
participants during the processing of the new visual information in the training methods.
As shown by the data visualization method, major deviations in the squat exercise were
primarily related to shoulder joint positions. Accordingly, the impact of this novel method
on different body parts and joints might be worth exploring. For this purpose, the method
should also be further developed especially with regard to depth information. For instance,
solutions should be found for displaying the yellow highlights for exercises in which, from
the camera perspective, one body part covers another.

Group B greatly adapted to the instructor in both temporal and spatial motion execution
from the beginning of the training until half of the training, followed by a slightly increased
deviation for the rest of the training. Thus, superimposition of one’s own motion on the
instructor’s motion (real person) might be beneficial for motor learning. One explanation
for the increased deviation from the criterion motion halfway through training could be
that motor learning was accompanied by exercise-induced fatigue after previously
achieving great learning gains. Indeed, fatigue can occur during prolonged or intense motor
exercise leading to a decline in sports performance (Jing et al., 2018). Further research on
this phenomenon in the context of our motor learning task is needed, for example, by
including self-reported fatigue scales in future studies.

Group C adapted spatial motion to the instructor in the first half of training and temporal
motion in the second half of training, i.e., the two motion-related features were not adapted
simultaneously. Thus, different features relevant to the successful performance of the
choreography might have been learned sequentially (Krakauer et al., 2019). However, a
correlation of this phenomenon with the type of feedback provided in the group (livestream
and instructor’s videos displayed side by side) is not apparent and warrants further
investigations. Also, five participants reported focusing visually mainly on the instructor
during training, i.e., similar to the training method in Group D. In contrast, only two
participants indicated that they paid equal attention to both the instructor and the self-view.
Therefore, the attentional focus in this feedback method should be studied more closely to
examine the actual usefulness of the livestream. Regarding spatial motor learning, the
overall results for this group cannot be considered for each individual exercise. In contrast
to the overall improvement by half of the training, Figure 8 shows that the deviation from
the instructor (in mm) increased in the first half of training and then decreased until the end
of training. Consequently, the benefits of learning spatial motor precision using such a
feedback method could vary depending on the motor task and its complexity.

Group D experienced a similar motor learning process as Group B, i.e., temporal and
spatial motion adaptation in the first half of training, followed by a slightly increased

deviation from the instructor in the second half of training. Accordingly, learning progress
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took place since the beginning of training, which was then interrupted, possibly by fatigue,
from half of the training onwards. As with Group B, this assumption of a decline in
performance after fatigue (Jing et al., 2018) needs to be verified by empirical validation for
ultimate conclusions. Given that Group D, as the control group without receiving feedback,
nevertheless showed improvement may be explained by the fact that it was an active control
group that, like the other groups, repeated the choreography multiple times during training.
It therefore seems plausible that this group also improved at least slightly. In this context,
improvement refers to a partial adaptation of the participants’ motions to those of the
instructor, compared to the beginning of the training when the exercises were entirely
unfamiliar. While Group B and D showed a similar course in motor learning, Group B
achieved a noticeably greater adaptation in terms of temporal motion precision and a
slightly greater adaptation in terms of spatial motion precision in the first half of training.
It could be assumed that the additional transparent superimposition of one’s own motion
(Group B) might have an advantage over seeing only the instructor (Group D) during motor
learning. This could also be confirmed specifically for the spatial motion execution of the
squat exercise. Group D implemented the basic idea of the motion task, but as far as the
shoulder joint motion is concerned, its average spatial precision was poorer than that of
Group B (as well as that of all other groups). Consequently, the provision of real-time
feedback in the other groups as well as motion superimposition may have been of particular
benefit in the performance of this exercise.

According to the SUS results (supplementary material), Group A achieved the highest
score, followed by Group B. This might indicate that superimposing motions for real-time
feedback proves to be efficient, effective, and satisfactory (Brooke, 2013), thus being
feasible for video-based learning. Moreover, the addition of virtual elements into the real
training scenario (training videos) might be considered for the development of new
feedback methods. As can be summarized from previous literature, exercising with virtual
avatars in the role of a coach, doppelganger of the self, or as a training stimulus triggered
motivation and enjoyment in learners (Geisen et al., 2023; Geisen & Klatt, 2022; Geisen
& Kilatt, 2021). Referring to the virtual skeleton (variant of an avatar) shown in the training
of Group A, the high SUS score might be an indicator for the advantages of such an
innovative method, specifically concerning psychological factors in motor learning.

Overall, individual group-specific factors for the learning process can be identified based
on the descriptive results of the user pilot study rather than clear differences in the motor
learning process between the feedback methods and the control condition. Based on
previous research findings, we approached some conclusions about the results in
connection with the characteristics of the respective training method. It can be assumed
that each training method may have its advantages and disadvantages for motor learning.

In summary, video-based sports motor learning can be enhanced by real-time feedback,
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which is in line with previous findings on motor learning settings in other application fields
like medicine (Geisen & Klatt, 2021). Motion superimposition can be considered as a
useful strategy to visualize discrepancy information that according to Blischke et al. (1999)
can be highly relevant for motor learning. Previous studies have already found this to be
the case with regard to time-delayed feedback. The novelty of our study relates to the focus
on real-time feedback in combination with different visualization methods, which is
essential especially for video-based sports motor learning. Appropriate methods have been
lacking so far. Particular merits of each method tested in our study, and thus the potentially
different relevancies for specific training purposes, ought to be further explored.

The present work explored video-based motor learning in multiple sequential motion
executions, i.e., a one-minute motion choreography with 25 exercises, which inherently
implies a high degree of variability. This procedure resulted in a large amount of data from
a rather smaller sample size per group. Our visualization methods for data analysis indicate
that the benefits of a particular training method on spatial motor learning may differ with
respect to the exercise and the body parts involved. Future studies should focus on single,
possibly sport-specific motion executions and increase the sample size in order to even
better isolate the efficacy of the innovative training methods. Moreover, our user study was
conducted in a laboratory setting, which allowed for initial standardized pilot testing of the
innovative training methods. This setup may not reflect all real-world conditions, such as
using smaller screens for home-based workouts. Future research should aim for even more
ecologically valid environments, including field studies that integrate varied screen setups,
e.g., laptops, tablets, or smaller curved monitors, instead of a big curved screen and a
projector.

Beyond their use in learning dance, pilates, and yoga motions, the innovative training
methods could be applied across a wide range of additional contexts. For instance, they
could be employed in physiotherapy contexts to support patients in independently
recognizing and correcting motion deviations during exercises. Public datasets such as
TheraPose, which includes 123 physiotherapy exercises, e.g., for shoulder mobility, knee
extensions, or balance training (Yalic et al., 2024), could serve as reference material for
the innovative video-based feedback in home or clinical settings. In ball sports like soccer,
such real-time feedback integrated into video-based learning could be valuable for refining
certain motion techniques, for instance, when practicing kicking or goalkeeping in front of
a large screen simulator (e.g., Jia et al., 2024). Personalized avatars could be incorporated
into the simulation, allowing the learner’s motions to be superimposed with a model avatar
demonstrating the targeted execution. Yet, the high speed of motion executions such as a
soccer kick may constitute a cognitive challenge for sufficient visual perception, especially
when learners are expected to identify deviations between their motion and the targeted

motion in real-time (CLT; Sweller, 2011). In such cases, slow-motion training may be even
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more effective, enabling the learner to visually perceive the actual-criterion value
comparison at reduced speed. Slow-motion practice is an established technique that can
help learners gradually approximate complex targeted motions (Moon, 2022). Future work
should investigate more systematically which domains can benefit from the application of
the innovative real-time feedback methods and what adaptations may be necessary
depending on the task characteristics and application context.

At last, the visualization methods developed specifically for this study represent
innovative ways of analyzing data. Adapted from the novel feedback methods, visual
motion superimposition is not only intended to support motor learning, but also to serve as
optimized visualization of results. This can be important for science, as the human mind is
strongly vision oriented, making the development of suitable data visualization methods
an essential need (Aparicio & Costa, 2014). While this data visualization of the 25 poses
(referring to the 25 exercises) in the present pilot study was based on manually annotated
pose estimations, future research could benefit from automated tracking methods. For
example, the use of artificial intelligence (Al) may enhance both the efficiency and
objectivity of the analysis and visualization process.

Conclusion

The current study demonstrated how real-time feedback can be effectively integrated into
video-based motor learning, offering potential for enhancing both temporal and spatial
motion precision. However, further research is needed to systematically investigate
different visualization techniques and the degree of discrepancy information between
criterion and actual motion. The innovative methods developed in this work have broad
application potential and warrant further exploration, particularly in the context of
performance optimization and injury prevention. Video-based motor learning, especially
in sports-related contexts such as YouTube tutorials (Sui et al., 2022), represents a growing
field that would greatly benefit from continued research.

Appendix

Visualization of the results of all groups, tests and exercises (user pilot study)

Figures 1 to 4 present the results of all 25 images of each test and group. Differences in
spatial motor learning can be found between the tests (red, orange, and green skeleton),
between the exercises (numbered 1-25) and between the body parts involved (visible within

each image) within groups as well as between groups.
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Fig. 1
Group A
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Fig. 2
Group B
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Fig. 3
Group C
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Fig. 4
Group D
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SUS and further questionnaire (procedure, analysis and results)

Participants filled out the System Usability Scale (SUS; Brooke, 1996); a questionnaire
used to assess the usability of systems in terms of efficiency, effectiveness, and satisfaction
(Brooke, 2013). SUS consists of 10 items scored on a 5-point Likert scale (1 = “strongly
disagree”; 5 = “strongly agree”). The German version of SUS (Rummel & Ruegenhagen,
2013) was used in the present study. Further questions pertained specifically to the
experimental setup: ‘During the examination, did you predominantly pay attention to only
one of the two video views (front and side view)? If so, which of the two views did you
pay more attention to?, and ‘During the study, did you mainly pay attention to either
yourself or the instructor? If yes, who did you pay more attention to?’. The question ‘Did
you pay attention to the instructions (information window) during the examination?’ had
the answer options “never”, “rarely”, “sometimes”, “often” or “always”.

Responses on SUS were calculated according to the procedure suggested by Brooke
(1996). In this way, a SUS score of each subject could be determined, which in turn, by
averaging, allowed the determination of a score for each group. The further questionnaire
responses were analyzed manually.

Group A had the highest SUS score with 82.5 + 9.2 in a range of possible 0-100 scores,
followed by Group B with an 80.6 + 8.8 score. Group D had a score of 80.4 + 14, and
Group C had a 72.1 £ 14.3 score. All but two participants (1xB, 1xC) predominantly paid
attention to only one of the two video views and in all but two of those cases (2xC) they
focused mainly on the front view. Furthermore, while only two participants (1xB, 1xD)
indicated that they paid more attention to themselves during the study, eighteen participants
paid more attention to the instructor (5xA, 4xB, 5xC, 4xD). The remaining seven
participants (1xA, 3xB, 2xC, 1xD) indicated that they did not pay more attention to either
themselves or the instructor. Finally, none of the participants indicated that they “never”
paid attention to the instructions (information window) during the examination. Three
participants (1xA, 1xB, 1xC) paid attention to the instructions only “rarely”, seven (4xA,
2xB, 1xC) said they “sometimes” paid attention, thirteen participants (5xB, 3xC, 5xD)

“often” and four participants (1xA, 2xC, 1xD) “always” paid attention to the instructions.
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