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 Abstract 

Video-based training has proven useful for motor learning, particularly when 
combined with motion feedback. However, the integration of real-time feedback into 
instructional videos has not been sufficiently explored. This study aimed to develop 
and explore innovative real-time feedback methods to enhance video-based motor 
learning. Twenty-seven participants (15 women, 12 men) were assigned to three 
feedback groups and one control group, who learned a choreography in an initial pilot 
study. The feedback groups received real-time comparisons of their own motions 
with those of an instructor. Group A was provided with a proportionally adjusted 
virtual instructor skeleton superimposed on their movements. Group B’s motions 
were transparently overlaid on the instructor's video. Group C viewed the instructor’s 
demonstration alongside a mirror view displayed of themselves. Group D (control) 
trained using only the instructor’s video, mimicking home-based tutorial formats. 
Motion tests performed without feedback revealed adaptation across all groups. 
Temporal motion adaptation was highest in Group A, while spatial motion adaptation 
was highest in Group B. Findings suggest that motion superimposition is a promising 
approach for visualizing motion discrepancies. Each method exhibited unique 
characteristics in the learning process, including different learning curves (e.g., Group 
A showing adaptation in the second half of the training) and varying levels of 
adaptation across different exercises and body parts (e.g., Group B experienced arm 
motion adaptation in squats). While these novel real-time feedback techniques 
demonstrate potential, further research is required to examine the relationships 
between feedback modalities and motor learning outcomes, specifically regarding 
the visualization of motion comparisons. 
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Introduction 

To acquire motor skills and to master sport performances in the long term, motor learning 

is required. Motor learning refers to a lasting change in an individual's ability to perform 

motor skills, resulting from consistent practice (Coker, 2022). This refers to learning both 

temporal characteristics of a motion and spatial features in the form of body part positions 

(Rauter et al., 2015). In addition to the human coach, training materials often play an 

important role in motor learning. Technologies nowadays have a particularly supportive 

effect (Pustišek et al., 2021; Raiola et al., 2013; Wang & Parameswaran, 2004). 

Specifically, videos have been widely applied in sports for the post-training analysis of 

motor performances. They were found, for instance, to support enhanced riding skills 

(Kelley & Miltenberger, 2015) and foster motor learning of a front handstand to flat back 

landing in gymnastics (Potdevin et al., 2018). Furthermore, videos are increasingly used 

for learning motor tasks in real-time, i.e., learners perform motions while observing those 

in an instructional video (Quennerstedt et al., 2016; Shen et al., 2019). The latter points to 

the relevance and motivation for having conducted the present study. 

Motor learning through observation with an instructor as a model (McCullagh, 1993) is 

extended through video usage. Training sessions may be pre-recorded by an instructor and 

executed asynchronously by learners (Llupar et al., 2022). Furthermore, Extended Reality 

(XR) enables the visual representation of an avatar that acts as a virtual teacher, thereby 

supporting the coach (Quennerstedt et al., 2016; Rüth & Kaspar, 2020). One application 

area of video-based learning is evident in the trend toward home workouts that has been 

around for several years and is now firmly established in the broad society due to the 

pandemic (Kim et al., 2022; Sui et al., 2022). Video platforms such as YouTube offer 

guided training, including learning and executing different motor elements, adapted to 

individual time and location circumstances. Coaches can create workout videos with 

different motor training goals (Sui et al., 2022). 

One main component of motor learning is not being considered in video-based training, 

specifically, the provision of feedback to the learner. As there is a lack of direct interaction 

with the instructor, the learner does not receive any feedback on the discrepancy between 

one’s own motion and that of the instructor. Thus, motor skill acquisition might be 

accompanied by training errors and become more difficult (Shen et al., 2019; Sui et al., 

2022). Through feedback, learners are provided with information about their motions, 

thereby supporting the learning process (Sharma et al., 2016). In terms of injury prevention, 

feedback is also useful for making learners aware of incorrect motion executions that might 

affect their physical health (Harris et al., 2020). Previous research has shown that a 

common feedback type, called ‘knowledge of performance’ (KP), has a positive impact on 

motor learning (Gentile, 1972). Feedback related to KP refers to the provision of 
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information on motion precision, such as limb position and velocity (Oppici et al., 2021). 

In terms of videos as an analysis tool, KP has been an integral part of delayed feedback 

provision in sports (Krause, 2017; Rucci & Tomporowski, 2010). However, in addition to 

delayed feedback for analyzing motor performances, feedback based on KP can also be 

provided during a motion execution, i.e., in real-time (Oppici et al., 2021; Sharma et al., 

2016). 

Real-time feedback is essential when learning with pre-recorded videos, e.g., via online 

video platforms, as coaches are not available to provide any feedback, neither during nor 

after motor performance. In contrast to face-to-face training, the video serves as the training 

itself, so all motion-related information must be included. Moreover, real-time feedback 

has already been shown to be beneficial for motor learning in various application domains 

(Geisen & Klatt, 2021). Specifically, using XR, virtual elements can be projected into real 

life training settings for visual feedback during learning (Kaplan et al., 2021). Stroke 

patients improved spatial motion accuracy and gained temporal efficiency in reach-to-

grasp exercises when receiving virtual feedback. They practiced with a multi-joint arm 

exoskeleton and were provided with the three-dimensional view of their motions via a 

monitor (Grimm et al. 2016). XR was further used to provide virtual feedback while 

programming a desk-based robot. In comparison to previous used, i.e., conventional, 

learning approaches, the innovative XR method led to enhanced learning outcomes 

(Alrashidi et al., 2017). The effects of real-time XR feedback on sports performance were 

also investigated. During the execution of squats and Tai Chi pushes, visual feedback was 

generated as color highlights on the learner's avatar. The researchers found their method to 

be suitable for learning a sports motor skill (Hülsmann et al., 2018). Besides the 

possibilities of using XR for motor learning, modern technologies such as motion capture 

cameras offer the possibility to track human motions for motion analyses. Researchers 

emphasized the applicability of such cameras in home learning contexts, particularly 

referring to Microsoft Azure Kinect and its non-invasiveness and low-cost tracking (Antico 

et al., 2021). Innovative methods such as XR as well as motion capture technology have 

features that are advantageous for identifying and providing motion-related information in 

real-time. 

In conventional video-based learning methods (e.g., YouTube tutorials), feedback 

provision is still an issue and has not yet been sufficiently researched and applied in 

practice. This work focuses on using recent technological developments and visualization 

methods to provide different options of real-time feedback during the learning process of 

video-based training. An important role for real-time feedback implementation has been 

attributed to discrepancy information, which is among the relevant types of extrinsic 

information in motor learning (Blischke et al., 1999). Discrepancy information refers to the 

deviation of the momentary motion (actual value) from a targeted motion (criterion value). 
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Overall, motor learning in video-based training may be particularly enhanced by (1) 

providing feedback with regard to KP (Gentile, 1972), (2) realizing such feedback 

provision in real-time using modern technologies, and (3) thereby visualizing discrepancy 

information (Blischke et al., 1999). 

For the purpose of this work, feedback is understood as a comparison of a targeted motion 

with one's own motion. This form of feedback is indirect, as learners extract performance-

related information through the comparison. We refer to real-time feedback as being 

provided during the task performance/the motion execution, as opposed to, e.g., receiving 

feedback after completion of the task/motion execution. Thus, learners can compare both 

motion executions while actually being in motion themselves. This form of feedback is 

unique because it is intrinsically tied to the learner's motion at that precise moment. For 

example, at second 12 of a motion choreography, a learner bends their knees to a 45-degree 

angle in preparation for a squat, while the coach simultaneously performs a squat at a 90-

degree angle. Then the real-time feedback pertains to the spatial and temporal execution 

(knee joint angle position at that time) not matching the coach and thus needing adjustment 

in the learning process. Both motion aspects are interconnected. Taken together, the 

visualization of the comparison between the learner's actual motion and the targeted motion 

serves as a direct source of indirect real-time feedback. On the one hand, we base this on 

the use of the term ‘feedback’ from other researchers on similar research topics (Hülsmann 

et al., 2019; Le Naour et al., 2019). On the other hand, literature on feedback in the learning 

context notes the following: "[…] the objective of feedback is to move learning forward. 

Feedback is information, in various forms and from various sources, that is useful for 

accomplishing this goal. Feedback is effective if it supports learning and ineffective if it 

does not. Feedback therefore derives its value from the learning it enables" (Brookhart, 

2020, p. 63).  

Four different learning methods were elaborated to take a step-by-step approach from 

learning as it is known on online video platforms to learning with a previously unknown 

innovative strategy with additional virtual information. Each of the tested methods adds an 

additional new type of motion-relevant feedback into the video. Similar to online video 

workouts, a conventional method only displayed the instructor, as when motor learning 

through (video) observation with an instructor as a model (McCullagh, 1993). In the first 

novel method, feedback was provided in the form of displaying both the instructor and a 

mirror view of the learner side by side for direct comparison. In a further novel method, 

feedback on the discrepancy between the actual (learner) and criterion (instructor) value 

was more clearly visualized than with the previous methods, by transparently 

superimposing the learner’s and the instructor’s motions. Previous studies have shown that 

superimposing motions can be beneficial for motor learning. To learn volleyball pass skills, 

the executions of an expert and the respective participant were superimposed to make the 
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differences between the two executions more obvious (Barzouka et al., 2015). Participants 

who used this additional tool significantly improved their pass skills in terms of technical 

execution and pass skill outcome as opposed to other learning methods. In basketball jump 

landing, it was found that the feedback method of visually superimposing motion 

executions of an expert and a learner led to an increased percentage overlap of the learner's 

motions with that of the expert (Dallinga et al., 2017). However, the described tools were 

used for providing delayed feedback. In addition to superimposing motions, our final novel 

method considered different body-proportions of the learner and the instructor. The 

adaptation and visualization of the instructor’s proportions to the learners’ proportions was 

enabled through virtual skeleton tracking. An enhanced indication of discrepancy in 

motions was provided through colored highlights based on the work of Hülsmann et al. 

(2018). 

Summing up, we aimed to enhance video-based motor learning by combining promising 

possibilities of real-time feedback provision with already successfully applied visualization 

methods of discrepancy information. In the framework of an initial user pilot study, the 

following research question was addressed: What are the effects of different means of 

visualizing discrepancy information (enabled by innovative real-time feedback methods) 

on video-based sports motor learning? The variables to be tested were temporal and spatial 

motion adaptation to the instructor's motions. Consequently, motor learning of a video-

based choreography (containing dance, pilates, and yoga motions) was examined. By 

evaluating descriptive and qualitative data, the impact of the different visualization forms 

and the extent of discrepancy information (actual-criterion comparison) on the adaptation 

to a given motion were examined. This referred to temporal and spatial deviations from the 

instructor's motion before, at half time, and after motor learning. Spatial motion was 

investigated by capturing positional data of elbow, shoulder, hip, and knee joints of each 

learner. 

Methodological design of an initial user pilot study 

Participants 

Thirty individuals aged 18 to 40 years were initially recruited, resulting in a total of 180 

test trials (two pre-tests, two mid-tests, two post-tests per participant as described in detail 

later in the article). To ensure a similar level of given age-dependent motor performance 

skills, we focused on the investigation of younger adults as skillfulness in terms of motor 

performance seems to be decreasing at around 40 years of age (Hollmann & Hettinger, 

1990). One participant discontinued the experiment because of physical overstrain. Data 

from two participants were not complete due to technical limitations during data collection. 

The final sample thus comprised 27 participants (26.85 ± 4.17 years old, 15 women, 12 
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men), all of whom reported being physically and mentally healthy. Participants indicated 

their primary sport, i.e., running (n = 2), ball sports (n = 10), gymnastics (n = 1), yoga (n = 

2), racket sports (n = 3), strength training (n = 2), dancing (n = 3), cheerleading (n = 1), 

and martial arts (n = 1). Two participants did not indicate a primary sport. Six participants 

had a lot of experience in dance, pilates, or yoga, five had some experience, eleven had 

little experience and five had no experience. Six individuals had a lot of experience with 

video-based motion training, fifteen had some experience, five had little and one 

participant had no experience. Approval was obtained from the institution’s ethics board. 

All participants provided written informed consent. 

Participants were divided into four groups that differed in terms of the training method 

and were balanced according to participants’ primary sport to avoid confounding effects of 

previous sports-related experience. The groups had a similar distribution of experience 

levels in dance, pilates, or yoga (averaging between some and little experience in each 

group) and video-based motor training (averaging some experience in each group). Group 

A (n = 6), Group B (n = 8) and Group C (n = 7) were considered as feedback groups and 

received different visual information on KP. Group D (n = 6) served as a control group and 

was provided with a conventional teaching method. The number of subjects in each group 

resulted from distributing the 30 subjects as evenly as possible among four groups; 

however, as mentioned, data from three participants are not included in the present work 

due to incompleteness. 

Materials and design 

During the study, participants stood in front of a curved screen (440 cm x 230 cm), with a 

distance of 335 cm to the screen, and on top of a safety mat (Fig. 1). The starting point for 

performing the choreography was marked with an X on the floor mat. The respective videos 

to the groups were presented via a projector on the screen. Motion capture was conducted 

using two Microsoft Azure Kinect DK cameras, each operating at 30 frames per second 

(fps) with a resolution of 3840 x 2160 pixels and an estimated system latency of 150-200 

milliseconds (according to official online Azure Kinect DK documentation). One camera 

was positioned in front of the participant and the other to the right side of the mat, enabling 

both frontal and lateral motion tracking. This setup allowed participants (except those in 

the control group) to view themselves from both perspectives, improving motion 

representation and reducing self-occlusion. Additionally, we drew on previous findings on 

the use of Kinect cameras for motion capture research and the suggestion of its useful 

transfer to home-learning contexts (Antico et al., 2021). To support the innovative feedback 

methods implemented in this study, 3D human pose estimation was performed using the 

Azure Kinect Sensor Development Kit (SDK, Shotton et al., 2011). 
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Fig. 1  

Test set-up 

 

The participant stands on a safety mat, positioned on an X-mark facing the screen. Video material 
is projected onto the screen by a projector placed diagonally behind the participant. Motion 
recording is conducted using two Azure Kinect cameras; one positioned low in front of the screen 
(to avoid blocking the video view) and the other placed to the side. All distances between the 
participant and equipment are indicated in centimeters. 

 

The motion sequence was choreographed and recorded by an instructor beforehand, using 

the same two camera views as for data collection. The instructor (25 years old and female) 

had 20 years of experience as a dancer and was a certified fitness instructor with 12 years 

of experience of teaching various sports classes at the time of data collection. The one-

minute choreography consisted of 25 dance, pilates and yoga exercises, either performed 

once or a few times in a row before the next exercise followed. In between the exercises, 

additional motions, e.g., a side step, were incorporated to help moving from one exercise 

to the next and maintain the motion flow of the choreography. The exercises were given 

names that contained body parts being involved, e.g., “arms up”, had a similarity to objects, 

e.g., “airplane”, or were associated with figures, e.g., “pirate”. Next to the respective videos 

for each group, all participants were shown an information window that listed the names 

of the exercises one below the other. All exercises were additionally marked with a white 

dot next to the name and a bright bar moved at the appropriate velocity of the choreography 

(60 beats per minute) over the names and the dots. Accompanied by a metronome, this 

provided an indication of the rhythm, i.e., the time point of performing the exercise. 

Pictures of the instructor performing the exercises were shown as further support next to 

the exercise names in the information window. 
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For superimposition of motions as means of feedback for the most innovative learning 

method in our study, the following procedure was performed: The instructor’s skeleton was 

extracted using a recording of the two cameras and the 3D human pose estimation provided 

by the Azure Kinect SDK (Shotton et al., 2011). During training, the learner’s motion was 

then extracted in real-time using the same software and compared against the skeleton’s 

motion. The body-proportions of the instructors’ skeleton were adapted to those of the 

respective participant by means of automatic recognition through the cameras. The 

techniques and software utilized in our study for real-time visual feedback and automatic 

skeleton adjustments have been developed in C++, leveraging the Microsoft Kinect Azure 

Software Development Kit (SDK), and OpenCV library functions. In particular, the data 

processing was conducted using Azure Kinect SDK, enabling seamless integration and 

real-time data handling. OpenCV functions were used to process the camera input and 

display the visualizations. A two-step process was implemented to automatically adjust the 

instructor's skeleton to match the participant's body proportions. First, the Euclidean 

coordinates of the instructor's joint positions were converted into radial coordinates. This 

was achieved by expressing the angle of each limb relative to its parent limb, which allowed 

for a more dynamic comparison between the instructor's and the participant's body 

proportions. Following this, the instructor's skeleton was reconstructed using these radial 

coordinates based on the limb lengths of the student. This method enabled automatic 

recognition and adjustment of the instructor's skeleton to match the participant's physique, 

contributing to a reliable and confident fitting process. 

Upon successfully adapting the instructor's skeleton to the student's body proportions, 

the rescaled instructor model was meticulously positioned in the virtual 3D scene, ensuring 

precise alignment of the pelvis locations between the two entities. This alignment laid the 

foundation for an efficient comparison phase. The evaluation error, a measure of our 

technique's efficiency, was then calculated as the Euclidean distance between the 

reconstructed student and the adjusted instructor skeleton. This step allowed us to quantify 

the discrepancy between the actual objective and predicted skeletal alignments, providing 

valuable insights into the effectiveness of our method and highlighting potential areas for 

future enhancement. 

Procedure 

Participants completed a single one-hour session. First, a demographics questionnaire 

was administered and the level of experience in dance, pilates, or yoga as well as with 

video-based motor training (e.g., YouTube tutorials) was acquired. Two experience-based 

questions were answered on a four-point scale with 1 = “a lot of experience”, 2 = “some 

experience”, 3 = “little experience”, and 4 = “no experience”. In terms of experience with 

dance, pilates, or yoga, 1 referred to ‘regular training and competitions’, 2 to ‘occasional 
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participation in classes’, 3 to ‘at least one of the sports already tried’, and 4 to ‘none of the 

sports practiced so far’. With respect to experience with video-based motor training, 1 was 

related to ‘regular training’, 2 to ‘occasional training’, 3 to ‘already tried’, and 4 to ‘not yet 

exercised’. Participants completed thirteen training trials to learn a motion choreography 

and six trials of a motion execution test in the following order: 

- one observation training trial for familiarization, i.e., participants solely observed the 

motion sequence, 

- two training trials for familiarization, i.e., participants practiced the motion sequence 

for the first time by following the instructor in the respective video and imitating the 

movements simultaneously, 

- two pre-test trials, i.e., participants were provided with the information window and 

the sound of the metronome and were supposed to perform the motion sequence 

without the help of the respective video, 

- five training trials, i.e., participants practiced the motion sequence by following the 

instructor in the respective video and imitating the movements simultaneously, 

- two mid-test trials, i.e., participants were provided with the information window and 

the sound of the metronome and were supposed to perform the motion sequence, 

without the help of the respective video, 

- five training trials, i.e., participants practiced the motion sequence by following the 

instructor in the respective video and imitating the movements simultaneously, 

- two post-test trials, i.e., participants were provided with the information window and 

the sound of the metronome and were supposed to perform the motion sequence, 

without the help of the respective video. 

The number of training and test trials was verified in advance by means of preliminary 

tests. It was found that after more than one hour including several practical executions of 

the motion sequence, physical fatigue occurs in participants. In order to ensure that the 

post-test results would not be affected by fatigue, the number of training and test trials and 

the associated duration of the study per subject was determined accordingly. 

After training and testing, participants filled in the System Usability Scale (SUS; Brooke, 

1996) and answered further questions pertained specifically to the experimental setup. The 

procedure, data analysis and results of the SUS and further questions are provided in the 

supplementary material. 

Motor learning intervention 

Group A received real-time feedback in which the instructor’s motion was virtually 

superimposed and body-proportionally adjusted to the participant’s livestream in the form 

of a skeleton (Fig. 2). Deviations in the participant’s motion (actual value) and the 

skeleton’s motion (criterion value) could be identified by participants through 
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superimposition of the two motions as well as yellow dots that visualized the level of 

deviation, i.e., the dots became larger the more the motions deviated from each other. 

 

Fig. 2 

Group A teaching method 

 

The instructor’s motion skeleton is body-proportionally adjusted and virtually superimposed on 
the participant’s self-view (both the front view and the side view). Deviations from the instructor’s 
motions are highlighted by yellow dots. 

 

Group B received real-time visual feedback in the form of superimposing the 

participant’s livestream on the instructor’s videos, both of which were made transparent to 

make the motions visible (Fig. 3). 
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Fig. 3 

Group B teaching method 

 

The livestream of the participant’s self-view (both the front view and the side view) is virtually 
superimposed on the instructor’s video, both are slightly transparent. 

 

Group C was provided with the instructors’ videos and the participant’s livestream next 

to each other. Participants were able to compare the motions in real-time by looking at the 

instructor’s videos on the right-hand side of the screen and the livestream on the left-hand 

side of the screen. 

Group D received only the instructor’s videos and did not see themselves. This was 

comparable to conducting a home workout using an online video platform via a laptop or 

TV screen with no feedback. 

The step-by-step approach is correspondingly reflected in the increasing amount of 

information from Group D with its most conventional, familiar training environment (no 

information on one’s own motion) to Group A with the most modern training environment 

that includes previously unknown visual feedback (several virtual additions as real-time 

information). 

Motion execution test 

During pre-, mid-, and post-test, participants were presented with only the information 

window and the accompanying metronome sound. This information was given in order to 
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prevent the motor learning process with its main goal of temporal and spatial motion 

precision from being compromised by insufficient memory of the choreography. Using 

Microsoft Azure Kinect, participants’ motions were recorded from the front and side view 

for data collection. 

Data analysis 

Annotation procedure 

Twenty-five distinct poses were determined within the choreography corresponding to 

the 25 exercises (Fig. 4) for analyzing participants’ temporal and spatial motion deviations 

from the instructors’ motions, i.e., the difference between the actual and criterion value. 

Participants’ executions of these poses were identified and annotated manually by two 

raters independently. Via a frame-by-frame analysis of the video recordings of participants’ 

motions, annotators determined the first frame that showed the participant at the maximum 

range of motion for the respective exercise, e.g., at the lowest depth of a squat. Six test 

trials (two pre-, two mid-, and two post-tests) were analyzed this way for each participant. 

Due to technical issues in one case, data was missing for one of the two pre-, mid-, and 

post-tests. In this case, only the data from the completed trial was used for the analysis. 

The raters together analyzed 354 videos, hence making decisions on 354*25 poses, 

resulting in 8850 decisions in total. Deviations between annotators’ ratings across all 

participants and all trials amounted to an average of 202 ms of temporal deviation and 3.43 

degrees of spatial deviation, thus defining the error margin of our combined recording and 

annotation method. For data analysis the average values (temporal and spatial motion) of 

the two annotators’ ratings were used. Whenever one annotator marked a pose as missing, 

the value determined by the other annotator was used for data analysis. In case both 

annotators marked a pose as missing, that pose was not considered for data analysis. 
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Fig. 4 

Twenty-five poses conducted by the instructor 

 

Each photo shows the expert while conducting one exercise, i.e., one pose, of the choreography. 

Descriptive analysis and visualization 

To determine whether participants learned the motion choreography, that is, to determine 

whether they adapted their motions to the instructors’ motions, and to take a closer look at 

the motor learning process of the groups, we focused on the temporal motion parameter, 

i.e., deviations in ms (in the following referred to as TempDev) and spatial motion 

parameter, i.e., deviations in angular degrees (in the following referred to as SpatDev). 

SpatDev referred to the averaged angle in a subject’s elbow, shoulder, hip, and knee joints. 

These body joints were deemed by the instructor to be most critical to the performance of 

the exercises. With respect to the two trials for each pre-, mid-, and post-test, an average 

score was calculated for each participant. To enable direct comparisons that omitted the 

difference in body proportions of the instructor and the subjects, the 3D motion 

representations of the subjects were matched to the segment lengths of the instructor’s 3D 

motion representation, extracting all of the learner’s joint angles and applying them to a 

skeleton of the instructor’s proportions. Thus, we were able to analyze the data 

descriptively and to generate 3D illustrations and graphs representing the results. 

For an overall analysis, we averaged each TempDev and SpatDev across all poses and 

participants for each group and test. To better depict the progress of motion adaptation of 

each group from pre-, to mid-, to post-test, graphs were generated for both motion 

parameters. For a more detailed insight into the results of SpatDev (where, in contrast to 

TempDev, a visualization of the results seems particularly useful), a special visualization 

method was applied. Thus, as with the training methods of Groups A and B, the method of 

direct comparison in the form of motion superimposition was used for presenting the results. 
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In this comparison method, unlike for the general evaluation, SpatDev refers to the 

Euclidean distance (in mm) between the instructor’s and the learner’s segment-length-

matched skeleton. Using Figure 4 as a basis, the average SpatDev of all subjects in a group 

was visibly superimposed on the instructor’s position for the respective pose. For better 

visibility of the differences between the subjects’ and the instructor’s pose, two respective 

skeletal images were added to each photo. This method was applied to all 25 photos of 

each test and group (supplementary material, Fig. 1-4). The result of one pose and group is 

demonstrated in the descriptive results section. This exemplary pose was also used to 

visualize the course of SpatDev (mm) from pre- to mid- to post-test in even greater detail 

in the form of 3D skeletal representations. Thus, a visualization of the pose was generated 

for comparison between the instructor, the average of all subjects in each group, and each 

individual subject in a group, again separately for each of the three tests and separately for 

each group. This should introduce precise forms of visualization for analysis and allow for 

result interpretations. 

Given the exploratory nature of this initial user pilot study and the relatively small sample 

size used to test the real-time feedback approaches for the first time, we intentionally 

refrained from conducting inferential statistical analyses. The primary aim of this study 

was not to draw generalizable conclusions, but to evaluate the feasibility and practical 

potential of these innovative methods for video-based motor learning. As such, the reported 

changes in temporal and spatial motion execution are based solely on descriptive data and 

are intended to generate initial insights. These preliminary findings provide a foundation 

for future research with larger samples and formal hypothesis testing. 

Descriptive results 

All groups improved their temporal motion precision from pre- to post-test. Group A had 

a temporal motion adaptation of 874.7 ms from pre-test (1674 ± 1455.7 ms) to post-test 

(799.3 ± 742.7 ms). Group B showed an adaptation in TempDev of 738 ms from pre-test 

(1542 ± 1457.7 ms) to post-test (804 ± 958 ms). Group C adapted with 223.6 ms from pre-

test (1104.3 ± 1028.3 ms) to post-test (880.7 ± 1099.7 ms), and Group D was 255.3 ms 

temporally closer to the instructor’s motion from pre-test (987 ± 918 ms) to post-test (731.7 

± 582.7 ms). Figure 5 shows that Group A underwent its greatest temporal motion 

adaptation starting at mid-test. Group B improved its temporal motion performance from 

pre- to mid-test, then decreased its adaptation again in post-test. Group C showed a slightly 

increased TempDev in mid-test compared to pre-test and decreased its deviation in post-

test. Group D showed a decrease in TempDev from pre- to mid-test and a very slight 

increase from mid- to post-test. 
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Fig. 5 

Deviations in temporal motion execution from the instructor 

 

Data are plotted separately for each test and averaged across all exercises/poses and all 
participants per group. 

 

All groups made progress in spatial motion execution (SpatDev averaged across all 

included joints), whereas Group A showed a spatial motion adaptation of 1.83° from pre-

test (15.43 ± 16.18°) to post-test (13.6 ± 14.54°). Group B adapted its spatial motion by 

3.45° from pre-test (17.82 ± 18.49°) to post-test (14.37 ± 15.49°). SpatDev for Group C 

resulted in an adaptation of 1.98° from pre-test (15.44 ± 16.13°) to post-test (13.46 ± 14.53°) 

and Group D adapted its spatial motion by 2.97° from pre-test (15.25 ± 15.44°) to post-test 

(12.28 ± 12.38°). As illustrated in Figure 6, Group A increased its SpatDev in mid-test, 

then adapting spatial motion to the instructor’s motion in post-test. The progress of Group 

B was similar to TempDev, namely an adaptation to the instructor’s spatial motion occurred 

in the first half of the training, followed by an increase in post-test. Group C decreased its 

SpatDev from pre- to mid-test and this average deviation remained consistent. SpatDev for 

Group D was similar to the progress of the same group in terms of TempDev, i.e., a decrease 

from pre- to mid-test and a slight increase from mid- to post-test. 
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Fig. 6 

Deviations in spatial motion execution from the instructor 

 

Data are plotted separately for each test and averaged across all exercises/poses and all 
participants per group. 

 

With respect to the visualization method for data analysis, Figure 7 demonstrates one of 

the 25 poses, i.e., a variation of a squat exercise, here exemplified for Group A. The course 

of the motions from pre- to mid- to post-test as well as the average performance of this 

group (red, orange and green skeleton, respectively) compared to the spatial motion 

execution of the instructor (real person and blue skeleton) can be seen. The superimposition 

of the skeletons added to the photo allow direct visible comparison. The lower SpatDev is, 

the more the respective colored skeleton overlaps with the blue skeleton and the photo. 

Thus, the average result from Figure 6 for Group A can be recognized for this pose, i.e., an 

increase in the deviation from pre- to mid-test at first (arms, trunk, and legs of the subjects’ 

skeleton deviate from the instructor), followed by an adaptation of the spatial motion 

execution to the motion of the instructor in post-test (especially arms and trunk are spatially 

close to the instructor’s motion). Based on the results of all 25 images of each test and 

group (supplementary material), differences in spatial motor learning can be found between 

the tests (red, orange, and green skeleton), between the exercises (numbered 1-25) and 

between the body parts involved (visible within each image) within groups as well as 

between groups. 
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Fig. 7 Skeletal representations of spatial motion executions of one pose 

 

The left figure refers to the visualization of pre-test results, the middle figure is related to mid-
test results, and the right figure represents post-test results. All images refer to the same exercise 
within Group A. The instructor’s optimized motion is depicted by the blue skeleton that is the 
same for all tests. The average of all subjects in each group is shown by the red, orange, and green 
skeleton, respectively, depending on the test. 

 

Regarding the development of 3D skeletal representations for data analysis, Figure 8 

illustrates the same pose as shown in Figure 7, but with additional visual information and 

results from all groups. There is less insight into the position of the trunk, resulting from 

the selection of one particular perspective in 3D. Several outliers can be found in the initial 

status before the respective training sessions (pre-test) in all groups, thus revealing 

deviations in all joint angle positions investigated. The course of SpatDev of Group A as 

described before can be seen by focusing on the deviations between the instructor (blue 

skeleton) and the average of all subjects per group (red skeleton). In addition, Figure 8 

shows that for a few individual subjects (grey skeletons) in Group A, SpatDev refers to 

deviations of the arm motion from the instructor of up to about 90 degrees in both pre- and 

mid-test. In post-test, the average subjects’ and the instructors’ arm position are almost 

completely superimposed, with a few individuals who deviate slightly from the average 

values. Deviations of the individual subjects of Group A are noticeable in the knee joint, 

more frequently in mid- than in pre-test and more frequently in pre- than in post-test. These 

visualizations are also reflected by the indicated average deviation values in mm. In Group 

B, average subject performance shows a gradual convergence of arm position to the 

instructor from pre- to mid- to post-test, accompanied by outliers in all tests. Adjustments 

towards mid-test are initially evident in the leg position, especially in the right knee joint, 

again deviating greater in post-test, visible through the average values and outliers. For 

Group C, Figure 8 shows a greater average deviation of the subjects’ shoulder joint towards 
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mid-test, especially in the right shoulder, which decreases again in post-test. An adjustment 

of the knee joint is visible in mid-test, again deviating greater in post-test. Outliers can be 

found in all tests. Group D shows few differences between tests. Motion directions of the 

individual joints are adhered to in the squat exercise. An increased deviation from the 

instructor can be seen in the shoulder joint in all tests, with a tendency towards a steeper 

arm position. 

 

Fig. 8 

3D skeletal representations of spatial motion executions of one pose 

 

The upper figure refers to the visualization of pre-test results, the middle figure is related to mid-
test results, and the bottom figure represents post-test results. All images refer to the same 
exercise across all groups. The instructor’s optimized motion is depicted by the blue skeleton that 
is the same for all groups and tests. The average of all subjects in each group is shown by the red 
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skeletons, and each individual subject in a group is represented by a grey skeleton. The numbers 
refer to SpatDev (mm), i.e., the deviations of the red skeleton from the blue skeleton, averaged 
across the joints of the elbows, shoulders, hip, and knees, of all participants in a group. 

Discussion 

The present work dealt with the development and exploration of innovative real-time 

feedback methods for video-based motor learning. We made use of existing methods of 

providing feedback on discrepancy information (Blischke et al., 1999) after a motor 

performance (Barzouka et al., 2015; Dallinga et al., 2017) and adjusted these for use in 

real-time, resulting in novel real-time feedback methods. Specifically, we integrated the 

following factors found to be relevant for motor learning, namely providing feedback on 

KP, realizing this feedback in real-time using modern technologies, and thereby visualizing 

discrepancy information for actual-criterion motion comparison. In the framework of an 

initial user pilot study, we investigated three groups each conducting a training method that 

differed in regard to the amount and type of visual information, and a control group. 

Descriptive findings showed that all groups achieved temporal and spatial motion 

adaptation to the instructors’ motions after training. Temporal motion adaptation was 

greatest in Group A (followed by Group B) and spatial motion adaptation was greatest in 

Group B. Thus, a direct actual and criterion comparison via visual superimposition of 

motions might be beneficial for video-based motor learning. Based on the results, this 

method could not only serve as a sports training approach for delayed feedback (Barzouka 

et al., 2015; Dallinga et al., 2017), but might also be used to provide motor feedback in 

real-time. Our study has shown positive effects of applying the innovative feedback 

methods on motor learning of this specific sample and the selection of motion tasks. 

Extended research is needed for specifying the potential for sport-specific application cases. 

Motor learning in Group A mainly started in the second half of training. While only minor 

temporal motion adaptation and increased spatial motion deviation from the instructor 

occurred in the first half of training, both were greatly adapted in the remaining time of 

training. Based on Cognitive Load Theory (CLT; Sweller, 2011) studies, this effect might 

be related to the amount of new visual information that had to be processed during training, 

i.e., virtual skeleton and additional highlights. Indeed, when learning, the human cognitive 

architecture has limited capacity to process novel information at any given time (Sweller, 

2011). Studies on learning environments with virtual elements have shown that such 

innovative methods can be associated with information overload during learning tasks 

(Buchner et al., 2021). Since our specifically developed method was tested for the first time 

in this particular setting, no specific evidence for a certain amount of information was 

available. The fact that participants made motor learning progress after a certain training 

time suggests that they first had to become familiar with the innovative method in order to 

benefit from it. Further research considering familiarization is needed to confirm this 
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assumption. In addition, future studies may benefit from the inclusion of cognitive load 

assessments, allowing for more precise insights into the cognitive demands placed on 

participants during the processing of the new visual information in the training methods. 

As shown by the data visualization method, major deviations in the squat exercise were 

primarily related to shoulder joint positions. Accordingly, the impact of this novel method 

on different body parts and joints might be worth exploring. For this purpose, the method 

should also be further developed especially with regard to depth information. For instance, 

solutions should be found for displaying the yellow highlights for exercises in which, from 

the camera perspective, one body part covers another. 

Group B greatly adapted to the instructor in both temporal and spatial motion execution 

from the beginning of the training until half of the training, followed by a slightly increased 

deviation for the rest of the training. Thus, superimposition of one’s own motion on the 

instructor’s motion (real person) might be beneficial for motor learning. One explanation 

for the increased deviation from the criterion motion halfway through training could be 

that motor learning was accompanied by exercise-induced fatigue after previously 

achieving great learning gains. Indeed, fatigue can occur during prolonged or intense motor 

exercise leading to a decline in sports performance (Jing et al., 2018). Further research on 

this phenomenon in the context of our motor learning task is needed, for example, by 

including self-reported fatigue scales in future studies. 

Group C adapted spatial motion to the instructor in the first half of training and temporal 

motion in the second half of training, i.e., the two motion-related features were not adapted 

simultaneously. Thus, different features relevant to the successful performance of the 

choreography might have been learned sequentially (Krakauer et al., 2019). However, a 

correlation of this phenomenon with the type of feedback provided in the group (livestream 

and instructor’s videos displayed side by side) is not apparent and warrants further 

investigations. Also, five participants reported focusing visually mainly on the instructor 

during training, i.e., similar to the training method in Group D. In contrast, only two 

participants indicated that they paid equal attention to both the instructor and the self-view. 

Therefore, the attentional focus in this feedback method should be studied more closely to 

examine the actual usefulness of the livestream. Regarding spatial motor learning, the 

overall results for this group cannot be considered for each individual exercise. In contrast 

to the overall improvement by half of the training, Figure 8 shows that the deviation from 

the instructor (in mm) increased in the first half of training and then decreased until the end 

of training. Consequently, the benefits of learning spatial motor precision using such a 

feedback method could vary depending on the motor task and its complexity. 

Group D experienced a similar motor learning process as Group B, i.e., temporal and 

spatial motion adaptation in the first half of training, followed by a slightly increased 

deviation from the instructor in the second half of training. Accordingly, learning progress 
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took place since the beginning of training, which was then interrupted, possibly by fatigue, 

from half of the training onwards. As with Group B, this assumption of a decline in 

performance after fatigue (Jing et al., 2018) needs to be verified by empirical validation for 

ultimate conclusions. Given that Group D, as the control group without receiving feedback, 

nevertheless showed improvement may be explained by the fact that it was an active control 

group that, like the other groups, repeated the choreography multiple times during training. 

It therefore seems plausible that this group also improved at least slightly. In this context, 

improvement refers to a partial adaptation of the participants’ motions to those of the 

instructor, compared to the beginning of the training when the exercises were entirely 

unfamiliar. While Group B and D showed a similar course in motor learning, Group B 

achieved a noticeably greater adaptation in terms of temporal motion precision and a 

slightly greater adaptation in terms of spatial motion precision in the first half of training. 

It could be assumed that the additional transparent superimposition of one’s own motion 

(Group B) might have an advantage over seeing only the instructor (Group D) during motor 

learning. This could also be confirmed specifically for the spatial motion execution of the 

squat exercise. Group D implemented the basic idea of the motion task, but as far as the 

shoulder joint motion is concerned, its average spatial precision was poorer than that of 

Group B (as well as that of all other groups). Consequently, the provision of real-time 

feedback in the other groups as well as motion superimposition may have been of particular 

benefit in the performance of this exercise.  

According to the SUS results (supplementary material), Group A achieved the highest 

score, followed by Group B. This might indicate that superimposing motions for real-time 

feedback proves to be efficient, effective, and satisfactory (Brooke, 2013), thus being 

feasible for video-based learning. Moreover, the addition of virtual elements into the real 

training scenario (training videos) might be considered for the development of new 

feedback methods. As can be summarized from previous literature, exercising with virtual 

avatars in the role of a coach, doppelganger of the self, or as a training stimulus triggered 

motivation and enjoyment in learners (Geisen et al., 2023; Geisen & Klatt, 2022; Geisen 

& Klatt, 2021). Referring to the virtual skeleton (variant of an avatar) shown in the training 

of Group A, the high SUS score might be an indicator for the advantages of such an 

innovative method, specifically concerning psychological factors in motor learning. 

Overall, individual group-specific factors for the learning process can be identified based 

on the descriptive results of the user pilot study rather than clear differences in the motor 

learning process between the feedback methods and the control condition. Based on 

previous research findings, we approached some conclusions about the results in 

connection with the characteristics of the respective training method. It can be assumed 

that each training method may have its advantages and disadvantages for motor learning. 

In summary, video-based sports motor learning can be enhanced by real-time feedback, 
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which is in line with previous findings on motor learning settings in other application fields 

like medicine (Geisen & Klatt, 2021). Motion superimposition can be considered as a 

useful strategy to visualize discrepancy information that according to Blischke et al. (1999) 

can be highly relevant for motor learning. Previous studies have already found this to be 

the case with regard to time-delayed feedback. The novelty of our study relates to the focus 

on real-time feedback in combination with different visualization methods, which is 

essential especially for video-based sports motor learning. Appropriate methods have been 

lacking so far. Particular merits of each method tested in our study, and thus the potentially 

different relevancies for specific training purposes, ought to be further explored. 

The present work explored video-based motor learning in multiple sequential motion 

executions, i.e., a one-minute motion choreography with 25 exercises, which inherently 

implies a high degree of variability. This procedure resulted in a large amount of data from 

a rather smaller sample size per group. Our visualization methods for data analysis indicate 

that the benefits of a particular training method on spatial motor learning may differ with 

respect to the exercise and the body parts involved. Future studies should focus on single, 

possibly sport-specific motion executions and increase the sample size in order to even 

better isolate the efficacy of the innovative training methods. Moreover, our user study was 

conducted in a laboratory setting, which allowed for initial standardized pilot testing of the 

innovative training methods. This setup may not reflect all real-world conditions, such as 

using smaller screens for home-based workouts. Future research should aim for even more 

ecologically valid environments, including field studies that integrate varied screen setups, 

e.g., laptops, tablets, or smaller curved monitors, instead of a big curved screen and a 

projector.  

Beyond their use in learning dance, pilates, and yoga motions, the innovative training 

methods could be applied across a wide range of additional contexts. For instance, they 

could be employed in physiotherapy contexts to support patients in independently 

recognizing and correcting motion deviations during exercises. Public datasets such as 

TheraPose, which includes 123 physiotherapy exercises, e.g., for shoulder mobility, knee 

extensions, or balance training (Yalic et al., 2024), could serve as reference material for 

the innovative video-based feedback in home or clinical settings. In ball sports like soccer, 

such real-time feedback integrated into video-based learning could be valuable for refining 

certain motion techniques, for instance, when practicing kicking or goalkeeping in front of 

a large screen simulator (e.g., Jia et al., 2024). Personalized avatars could be incorporated 

into the simulation, allowing the learner’s motions to be superimposed with a model avatar 

demonstrating the targeted execution. Yet, the high speed of motion executions such as a 

soccer kick may constitute a cognitive challenge for sufficient visual perception, especially 

when learners are expected to identify deviations between their motion and the targeted 

motion in real-time (CLT; Sweller, 2011). In such cases, slow-motion training may be even 
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more effective, enabling the learner to visually perceive the actual-criterion value 

comparison at reduced speed. Slow-motion practice is an established technique that can 

help learners gradually approximate complex targeted motions (Moon, 2022). Future work 

should investigate more systematically which domains can benefit from the application of 

the innovative real-time feedback methods and what adaptations may be necessary 

depending on the task characteristics and application context. 

At last, the visualization methods developed specifically for this study represent 

innovative ways of analyzing data. Adapted from the novel feedback methods, visual 

motion superimposition is not only intended to support motor learning, but also to serve as 

optimized visualization of results. This can be important for science, as the human mind is 

strongly vision oriented, making the development of suitable data visualization methods 

an essential need (Aparicio & Costa, 2014). While this data visualization of the 25 poses 

(referring to the 25 exercises) in the present pilot study was based on manually annotated 

pose estimations, future research could benefit from automated tracking methods. For 

example, the use of artificial intelligence (AI) may enhance both the efficiency and 

objectivity of the analysis and visualization process. 

Conclusion 

The current study demonstrated how real-time feedback can be effectively integrated into 

video-based motor learning, offering potential for enhancing both temporal and spatial 

motion precision. However, further research is needed to systematically investigate 

different visualization techniques and the degree of discrepancy information between 

criterion and actual motion. The innovative methods developed in this work have broad 

application potential and warrant further exploration, particularly in the context of 

performance optimization and injury prevention. Video-based motor learning, especially 

in sports-related contexts such as YouTube tutorials (Sui et al., 2022), represents a growing 

field that would greatly benefit from continued research. 

Appendix 

Visualization of the results of all groups, tests and exercises (user pilot study) 

Figures 1 to 4 present the results of all 25 images of each test and group. Differences in 

spatial motor learning can be found between the tests (red, orange, and green skeleton), 

between the exercises (numbered 1-25) and between the body parts involved (visible within 

each image) within groups as well as between groups. 
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Fig. 1 

Group A 
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Fig. 2 

Group B 
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Fig. 3 

Group C 
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Fig. 4 

Group D 
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SUS and further questionnaire (procedure, analysis and results) 

Participants filled out the System Usability Scale (SUS; Brooke, 1996); a questionnaire 

used to assess the usability of systems in terms of efficiency, effectiveness, and satisfaction 

(Brooke, 2013). SUS consists of 10 items scored on a 5-point Likert scale (1 = “strongly 

disagree”; 5 = “strongly agree”). The German version of SUS (Rummel & Ruegenhagen, 

2013) was used in the present study. Further questions pertained specifically to the 

experimental setup: ‘During the examination, did you predominantly pay attention to only 

one of the two video views (front and side view)? If so, which of the two views did you 

pay more attention to?, and ‘During the study, did you mainly pay attention to either 

yourself or the instructor? If yes, who did you pay more attention to?’. The question ‘Did 

you pay attention to the instructions (information window) during the examination?’ had 

the answer options “never”, “rarely”, “sometimes”, “often” or “always”. 

Responses on SUS were calculated according to the procedure suggested by Brooke 

(1996). In this way, a SUS score of each subject could be determined, which in turn, by 

averaging, allowed the determination of a score for each group. The further questionnaire 

responses were analyzed manually. 

Group A had the highest SUS score with 82.5 ± 9.2 in a range of possible 0-100 scores, 

followed by Group B with an 80.6 ± 8.8 score. Group D had a score of 80.4 ± 14, and 

Group C had a 72.1 ± 14.3 score. All but two participants (1xB, 1xC) predominantly paid 

attention to only one of the two video views and in all but two of those cases (2xC) they 

focused mainly on the front view. Furthermore, while only two participants (1xB, 1xD) 

indicated that they paid more attention to themselves during the study, eighteen participants 

paid more attention to the instructor (5xA, 4xB, 5xC, 4xD). The remaining seven 

participants (1xA, 3xB, 2xC, 1xD) indicated that they did not pay more attention to either 

themselves or the instructor. Finally, none of the participants indicated that they “never” 

paid attention to the instructions (information window) during the examination. Three 

participants (1xA, 1xB, 1xC) paid attention to the instructions only “rarely”, seven (4xA, 

2xB, 1xC) said they “sometimes” paid attention, thirteen participants (5xB, 3xC, 5xD) 

“often” and four participants (1xA, 2xC, 1xD) “always” paid attention to the instructions. 
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