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 Abstract 

There is increasing demand to shift from intuition- and experience-based practices 
to evidence-based education. However, extracting meaningful evidence from real-
world educational data poses significant challenges. Traditional approaches to 
evidence generation, such as randomized controlled trials and systematic reviews, 
face limitations in both the medical and educational domains due to high costs and 
ethical constraints. In response, the concept of real-world evidence has emerged as 
a promising alternative, particularly in medicine and, more recently, in education. 
Although this approach may be less robust than traditional methods, it offers the 
potential to uncover broad and practical insights from naturally occurring data. This 
study explores the use of deep learning for causal discovery in real-world 
educational data. Specifically, we apply Structural Agnostic Modeling, a method 
previously validated in biological datasets, to identify underlying causal 
relationships. In Study 1, we compare this data-driven approach to a traditional 
hypothesis-driven method. The results demonstrate that this technique can 
generate both interpretable and novel causal hypotheses, although it occasionally 
produces plausible relationships in the reverse direction. To address this limitation, 
we propose an enhanced model, SAM+, in Study 2. Our findings indicate that SAM+ 
effectively mitigates the identified shortcomings. This research contributes a new 
methodology for leveraging large-scale educational data and opens new possibilities 
for advancing evidence-based education. 

Keywords: Evidence-based education, Real-world evidence, SAM, Causal discovery, 
Causal analysis 

 

Introduction 

Evidence-based education (Davies, 1999) is expected to provide education not based on 

intuition or experience. Evidence has generally been extracted from systematic reviews or 

RCTs (Randomized Controlled Trials). Although these methods provide higher-level 

evidence, they have difficulties collecting large amounts of evidence because they are often 
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costly, unethical, or not feasible (Slade & Prinsloo, 2013). Therefore, there has been 

proposed a concept of real-world evidence in the medical field (Mahajan, 2015), and 

several attempts to apply it to the educational field as well. Real-world evidence (RWE) is 

evidence extracted from various real-world data (RWD), and even though it is less reliable 

than systematic reviews and RCTs, it is expected to be able to collect a large amount of 

evidence. 

Our previous method attempted to compare a control group with a corresponding target 

group to verify the effect of an intervention (Nakanishi, 2021). While this method had the 

advantage that the effect of the intervention could be verified without conducting 

experiments with setting target and control groups. However, it requires manually setting 

the classes to be compared, and extracting a lot of evidence was difficult. 

To address this issue, we developed a method to automatically search for classes with 

similar contextual information, such as grade level, as a control group (Takami et al., 2022). 

This is called Automated Similar Lecture Search. This can make hypotheses conceived by 

humans tested without experiment as if they had been subjected to a comparative 

experiment. However, since this method is hypothesis-driven, it is first necessary to 

formulate hypotheses for comparison and validation. However, it takes much time to 

formulate many hypotheses manually. 

If we can automatically generate hypotheses from data, we can extract more evidence. 

How can we do this? The technology that answers this question is causal discovery. As 

Kalainathan points out (Kalainathan et al., 2022), observational causal discovery, which is 

causal discovery for observational data, is attracting attention from the machine learning 

community, and it is being applied in various fields, including economics and 

bioinformatics informatics, and other fields. There are also a few examples in education. 

However, until now, these have been based on simple algorithms, and it is difficult to 

automatically search through large-scale, complex real-world educational data. We apply 

observational causal discovery to real-world educational data and attempt to automatically 

extract evidence. 

Therefore, in Study 1, we address the following two research questions. 

⚫ RQ1: What do we get from the observational causal discovery method adapted to 

real-world educational data? 

⚫ RQ2: How different are the results between hypothesis-driven and data-driven 

methods? 

For RQ1, we apply the causal discovery algorithm “SAM” to RWD. It has already 

produced good results in biological RWD. In RQ2, we will compare Automated Similar 

Lecture Search and SAM-based methods and identify what features and differences exist 

between them. 
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We find that SAM has the advantage of generating a large number of unexpected various 

causal hypotheses. However, it also has the disadvantage of generating causal hypotheses 

that are not feasible but are interpretable and feasible in the opposite direction. This 

disadvantage should be improved. Therefore, in Study 2, we propose the following research 

question. 

⚫ RQ3: Can the shortcomings of observational causal discovery be improved? 

For RQ3, we created SAM+, an improved version of SAM, which updates SAM to allow 

for the input of a priori unfeasible causal relationships. 

Through these research questions, we aim to show a new path for automatic extraction 

of more effective RWE from RWD. 

Related works 

Evidence-based education 

Definition of evidence 

In this section, we explore the diverse interpretations of what constitutes evidence. 

Generally, Randomized Controlled Trials (RCTs) are regarded as the most reliable form of 

evidence (Greenhalgh, 2004). However, there is also a perspective that values the opinions 

and experiences of experts as valid evidence (Buysse & Wesley, 2006). As defined by 

Sackett (Sackett et al., 1996), evidence-based medicine integrates clinical expertise with 

systematic research. This definition, subject to debate since the 1990s, has yet to reach a 

consensus. 

Research-based evidence often takes precedence, but its evaluation can change with new 

studies, highlighting the limitations of RCTs. Consequently, it is said that a major challenge 

moving forward is to avoid adherence to a specific type of evidence and instead combine 

different sources of evidence to test which framework is most effective (Rycroft-Malone 

et al., 2004). 

Despite the various interpretations and conflicts of opinion, there is a consensus that 

evidence, regardless of how it is interpreted, must be independently observed and verified 

(Davies & Nutley, 2000). In essence, evidence should be based on data obtained through 

observation and experimentation, and it must involve the validation of hypotheses and 

systematic compilation of research findings. 

Evidence hierarchy 

The evidence hierarchy is a core principle of evidence-based practice that has been used in 

a variety of forms since 1979, beginning with the “Canadian Task Force” periodic health 

examination studies (Evans, 2003). The exact form and rank of these hierarchical research  
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Table 1 Classification of levels of evidence 

Levels of evidence Classification 

I Systematic review/meta-analysis 
II One or more randomized controlled trials (RCTs) 
III Non-randomized controlled trial 
IV Quasi-experimental study 
V Descriptive study 

 

 

designs have not been determined, and a variety of approaches have been taken. In this 

study, we refer to a five-level classification in health care (Cook et al., 1995) and Table 1 

shows the classification. 

Level I evidence refers to results from systematic reviews and meta-analyses, while  

Level II evidence refers to results from randomized controlled trials. Level I and II are the 

subject of conventional discussions of general evidence (McMillan & Schumacher, 2010). 

The reason is that RCTs are considered to minimize the risk of confounding and provide 

the most reliable evidence when evaluating the effect of an intervention (Evans, 2003). 

However, in this study, we will not conduct an RCTs, but will include Level III, IV, and V 

nonrandomized controlled trials, cohort studies, and case studies. Although the evidence 

for these is lower than for systematic reviews and RCTs, if properly designed, they could 

approach RCT levels (Burns & Grove, 2010; Sherman et al., 2016). In addition, if enough 

cohort studies are accumulated, they could lead to systematic reviews and improve the 

overall level of evidence. 

Evidence in education 

In line with the trend towards evidence-based medicine, there is now a demand for 

evidence-based education (Davies, 1999) in the field of education too. 

In the realm of evidence-based education, systems that handle high-quality research such 

as systematic reviews and RCTs include the What Works Clearinghouse (WWC) operated 

by the U.S. Department of Education. This platform serves as an educational research 

database, summarizing and providing evidence from studies that meet certain criteria, 

including conducting RCTs. Another example is the Education Endowment Foundation 

(EEF), supported by the UK’s Department of Education. Established in 2011 as an 

independent charity, the EEF assists teachers and school leaders by providing resources 

based on evidence designed to improve practices and foster learning. 

Both systems summarize evidence with strong causal relationships and compile them into 

databases. However, they do not handle lower level evidence, limiting the scope of 

evidence that can be collected. Moreover, these systems primarily focus on sharing 

evidence, and the registration of evidence is done manually, presenting a challenge. 
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Real-World Evidence in education 

What is Real-World Evidence 

Real-World Evidence (RWE) refers to clinical evidence derived from the analysis of  

Real-World Data (RWD), which can be generated through various research designs. RWD 

encompasses medical information obtained from sources beyond the clinical research 

environment, such as Electronic Health Records (EHRs), disease registries, personal 

devices, and medical applications (Sherman et al., 2016). RWE has the potential to mimic 

methodologies like Randomized Controlled Trials (RCTs), observational studies, 

pragmatic trials, and large simple trials, given the right conditions and data. Moreover, it 

is hoped to yield insights from innovative research designs and analyses. 

The advantages of RWE include its ability to be collected at a much lower cost compared 

to RCTs and the use of vast samples that allow for statistical generalization (de Lusignan 

et al., 2015). However, challenges include uncertainties in methodology and evaluation 

techniques, and the inherent disorder and incompleteness of RWD, necessitating 

sophisticated statistical methods for accurate insights. 

While the use of RWE in the medical field has been increasing (Oyinlola et al., 2016), its 

research in the field of education has been limited. With the growing use of ICT in 

educational settings, an increase in available educational data is anticipated. The 

application of this data to generate RWE could lead to its transformation into big data, 

enabling the collection of substantial evidence in education. This, in turn, could facilitate 

the application of evidence in educational settings, driving the realization of evidence-

based education and contributing to the improvement of educational quality. 

Real-World Evidence in education 

One system that handles real-world educational evidence is the Learning Evidence and 

Analytics Framework (LEAF) (Figure 1), proposed by Ogata and others. LEAF is a 

Learning Analytics (LA) platform designed to support the processes of data collection, 

analysis, planning interventions, monitoring, and reflection, with the goal of discovering 

and accumulating real-world educational evidence from learning log data. Kuromiya 

(Kuromiya, 2023) proposed and integrated LEAF into a platform that manually extracts 

and accumulates evidence of effective learning and teaching methods using data stored in 

LEAF. Nakanishi (Nakanishi, 2021) utilized this platform to improve teaching practices 

and demonstrated its effectiveness. However, as Nakanishi points out, the manual 

extraction of evidence makes it challenging to continually gather evidence on a routine 

basis. Therefore, the authors proposed a method to automatically find control groups for 

certain interventions (Takami et al., 2022), but the creation of hypotheses still requires  
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Table 2 Position of this research 

 RCT RWE 
extracted by manual 

RWE 
extracted automatically 

 WWC/EEF Kuromiya/Nakanishi This Research 
Easiness of collection Low Middle High 
Evidence level High Low Low but can be promoted to High 

 

 

human input, highlighting the ongoing challenge of automation. Therefore the problem that 

this research aims to solve can be positioned as shown in Table 2. 

Causal discovery in education 

Causal discovery 

How can we automatically generate hypotheses? The technology that answers this question 

is called causal discovery. 

Causal discovery is a task that calculates the presence or absence of causal relationships 

and their directionality from data. It searches for causal relationships between variables in 

the data. For example, if there are three variables in the data - learning time, sleep time and 

grades - it can identify whether there is a causal relationship between all three variables, 

and if so, which direction the causal relationship is in (Figure 2). 

There are four broad approaches to causal discovery. 

 

 

Fig. 1 LEAF system 
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The first approach is a constraint-based method. This is a method for discovering causal 

graphs that utilizes conditional independence tests. The basic algorithm for this method is 

PC (Peter-Clark), and an extended algorithm is FCI (Fast Causal Inference). FCI can 

consider the existence of hidden variables based on observed data. This approach is simple 

and powerful, but it is often not possible to specify which direction it is. 

The second approach is a score-based method. A score such as BIC or AIC is set, and the 

graph is evaluated based on the score to search for the optimal causal graph. The basic 

algorithm is GES. It adds and deletes edges to achieve the best score. GOLEM also uses 

gradient-based optimization to search for the causal graph with the best score. This 

approach can identify the direction of causality, but it tends to suffer from the curse of 

dimensionality when there are many variables. 

The third approach is a hybrid of the two approaches above. It narrows down the possible 

causal graphs based on constraints, and then selects the optimal model based on scores. 

The fourth approach is a method that uses asymmetry or traces of causality. This is a 

method for identifying causal graphs that uses asymmetry and traces of causality based on 

the process of generating observational data. LiNGAM assumes that the data follows a 

linear model and uses non-Gaussian noise to determine the direction of causality. SAM 

constructs causal graphs using conditional independence and distribution asymmetry, and 

in particular uses neural networks to estimate the distribution of each variable. It is also 

powerful for non-linear models and high-dimensional data, and can handle complex causal 

relationships. We will explain the details later. 

Causal discovery in education 

As Kitto et al. (2023) point out, the history of causal discovery for educational data began 

before the field of LA. In 2009, Brokenshire used FCI to conduct causal discovery on the 

theme of SRL (Brokenshire & Kumar, 2009). He compared the causal models output by 

theoretical causal models and causal discovery. However, at the time, it did not become a 

mainstream approach. This was due to the difficulty of data collection and implementation. 

Five years later, in 2014, Fancsali uses PC and FCI to conduct causal discovery on non-

 

Fig. 2 Image of causal discovery 
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cognitive behaviors and phenomena that affect student learning outcomes (Fancsali, 2014). 

Nine years later, in 2023, Ouaadi and Ibourk use PC, GES, LiNGAM and GOLEM to 

conduct causal discovery on tasks that identify the characteristics of students with low 

grades (Ouaadi & Ibourk, 2023). Also in the same year, Smith used PC and GES to perform 

causal discovery on student performance data and identified the factors that affect 

performance (Smith, 2023). 

In summary, the causal discovery algorithms that have been used for educational data so 

far have not been able to apply algorithms that can handle both complex structures and 

hidden variables. Real-world educational data is complex and involves many hidden 

variables. Therefore, we propose the use of the algorithm, SAM. 

Structural Agnostic Modeling (SAM) 

SAM (Kalainathan et al., 2022) utilizes a type of deep learning called Generative 

Adversarial Network (GAN). GAN is known for its ability to generate fake objects that are 

close to the real thing by having two networks, Generator and Discriminator, compete. 

SAM is applying this GAN concept to causal analysis, which is used to find causal 

relationships among real-world educational data (Figure 3). The SAM Generator focuses 

on one of the n variables, sets the other n-1 variables to true data, and generates the 

specified variable from those variables according to the input noise. The Discriminator 

determines whether ‘one variable is generated data and the other n-1 variables are true data’ 

or ‘all n variables are true data’. This is repeated n times with different target variables 

(actually, matrix operations are performed). In doing so, the method of generating each 

variable is stored in a matrix called Structural Gates. This shows the causal graph  

(Figure 4). 

 

 

Fig. 3 Algorithm of Structural Agnostic Modeling (SAM)  

(Adopted from Kalainathan et al. (2022)) 
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Specifically, SAM quantifies the likelihood of causal relationships between each 

indicator and examines whether the causal relationships. SAM uses deep learning to enable 

it to learn complex non-linear relationships and multi-dimensional causal structures. It also 

uses adversarial learning to achieve highly accurate causal discovery. It is also possible to 

handle hidden variables, as it introduces unobserved variables as noise terms and calculates 

the difference between the probability distributions of the generated data and the observed 

data to minimize the difference. The hyperparameters are the same as those placed in the 

original paper. The differences between SAM and other algorithms are shown in Table 3. 

 

Table 3 Position of SAM 

Feature/Algorithm PC FCI GES LiNGAM GOLEM SAM 

Approach Constraint-
based 

Constraint-
based 

Score-
based 

Uses non-
Gaussian 

Score-
based 

Uses traces of 
causality 

Applicable Data Linear & 
Non-linear 

Linear & 
Non-linear, 
Hidden 
Variables 

Mainly 
linear 

Mainly 
linear, non-
Gaussian 
distribution 

Linear & 
Non-linear, 
mainly 
continuous 
data 

Linear & Non-
linear, Non-
Gaussian 
distribution, 
Complex 
structures 

Handling Complex 
Structures 

Low Low Low Medium High High (utilizes 
deep learning) 

Handling Hidden 
Variables 

Not possible Possible Not 
possible 

Not possible Not 
possible 

Possible 
(considers 
latent 
variables) 

Model 
Interpretability 

High High High Medium Medium Medium 

Computational 
Efficiency 

High Medium High Low Medium Low (requires 
substantial 
computational 
resources) 

 

Fig. 4 Overview of SAM 
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Method 

In this paper, we address three primary research questions (RQs) aimed at exploring the 

effectiveness of observational causal discovery methods in the context of real-world 

educational data. 

Data collection 

LEAF, which stands for Learning Evidence Analytics Framework (Ogata et al., 2018), is 

an innovative technology design framework that supports evidence-based education. This 

framework is particularly notable for its comprehensive approach to collecting and utilizing 

educational data to enhance learning experiences and outcomes. Here are some key aspects 

of LEAF: 

LEAF consists of several integral components. BookRoll is a digital textbook platform 

that allows the collection of detailed reading logs. It captures data such as time spent on 

each page, annotations made by students, and more. Log Palette is a system for visualizing 

and analyzing learning logs. It provides educators and researchers with tools to understand 

student learning behaviors and patterns. Learning Record Store (LRS) is responsible for 

storing and managing learning records in a standardized format, facilitating easy access 

and analysis of educational data. 

LEAF has been implemented in various educational settings, demonstrating its versatility 

and effectiveness. Several schools have been using LEAF for about five years, 

accumulating rich datasets that are invaluable for research and development in educational 

technology. One of the strengths of LEAF is its applicability across a wide range of subjects. 

This versatility ensures that it can be integrated into various curricula, enhancing the 

learning experience in different academic fields. The data collected through LEAF is not 

only beneficial for improving educational practices but also serves as a rich resource for 

educational data analysis contests. These contests encourage the exploration and 

development of new methods and techniques in data science, specifically tailored to 

education. Schools using LEAF for an extended period have accumulated several years of 

real-world data. This data provides a deep insight into long-term educational trends and 

student learning behaviors, offering a valuable resource for educators and researchers to 

refine and develop more effective educational strategies. 

In summary, LEAF is a multifaceted framework that integrates various technologies to 

gather and analyze educational data. Its implementation in diverse subjects and schools, 

along with its role in facilitating educational data analysis contests, highlights its potential 

in shaping future educational practices and policies. 

In Japan, one tablet or another device per student has been distributed with the GIGA 

School project. Within this project, a Learning Analytics platform named LEAF system 
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has been used, and log data has been collected and accumulated. Based on this background, 

this paper utilized the log data from the LEAF system. 

Datasets 

The used datasets are shown in Table 4. In order to see the effects in a wide range of areas 

in education, we will prepare three real-world educational datasets for junior high school, 

high school and university. 

Dataset from a junior high school (Dataset X) 

As Dataset X, we analyze the logs of the days when Active Reading activities were 

conducted at the same junior high school in the 2021 and 2022 school years. Active 

Reading is a reading method in which students read while asking questions (Toyokawa et 

al., 2024). Active Reading enables one to read quickly and understand the important points, 

and the class utilized multiple learning tools such as e-Books and Learning Analytics Tools. 

The target class consists of three classes, Day 1, Day 2, and Day 3 and there is a day of  

no-class between the first and second days. There were activities with e-Book memo, 

marker, and timer. There were also quizzes and measuring reading speed (WPM) before 

and after the class (pre- and post-). There is also a task where students write a summary of 

the text they have read, and their scores are kept. The indicators are shown in Table 5. 

Dataset from a high school (Dataset Y) 

Dataset Y focuses on the effectiveness of the problem recommendation system during the 

summer vacation period from July 20, 2021 to August 23, 2021. This dataset is a study 

investigating the impact of question recommendation reasons on student learning (Takami 

et al., 2022). In this setting, six classes were divided into two groups, with three classes 

receiving question recommendations with reasons for recommendation and the remaining 

three classes receiving question recommendations without reasons for recommendation. 

The curriculum was divided into two units, with two classes in Unit A and four classes in 

Unit B. The main objective was to evaluate the impact of the question recommendation 

model on the click rate (CVR) of the recommended questions. The indicators are shown in 

Table 6. 

 

 

 

Table 4 Summary of datasets 

ID Data from Year Log Count 

Dataset X a junior high school 2021, 2022 38*23 
Dataset Y a high school 2021 103*5 
Dataset Z a university 2019, 2020 206*11 
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Table 5 Indicators of Dataset X 

Abbreviation Description 

ARD D1 Active reading dashboard use on Day 1 
ARD D2 Active reading dashboard use on Day 2 
ARD D3 Active reading dashboard use on Day 3 
MRK D1 Marker use on Day 1 
MRK D2 Marker use on Day 2 
MEM D1 Memo use on Day 1 
MEM NC Memo use on a day of no-class 
MEM D2 Memo use on Day 2 
MEM D3 Memo use on Day 3 
RDG D1 Reading operations on Day 1 
RDG NC Reading operations on a day of no-class 
RDG D2 Reading operations on Day 2 
RDG D3 Reading operations on Day 3 
TIM D1 Timer use on Day 1 
TIM D2 Timer use on Day 2 
TIM D3 Timer use on Day 3 
QUZ PRE Score of the pre-quiz 
QUZ PST Score of the post-quiz 
WPM PRE Words per minute before the active reading activity 
WPM PST Words per minute after the active reading activity 
SUM SMR Score of summary after active reading class 

 

 

Table 6 Indicators of Dataset Y 

Abbreviation Description 

TPC Teaching topic 
MDL With or without reasons for recommendation 
RDT Time spent browsing prior to the start of the teaching period  
MRK Number of markers prior to the start of the teaching period 
CVR Percentage of clicks on recommended questions 

 

Dataset from a university (Dataset Z) 

Data from an educational data analysis contest conducted by the Council for Evidence-

Driven Education Research (EDE) was used (EDE, 2022). 

We use educational data obtained by using the LEAF system at a university. Among them, 

we used data on digital educational material browsing behavior in a total of four courses 

offered as Kyu-data in the 2019 and 2020 academic years. The logs were organized by 

class time and contents IDs, and data were produced for each indicator for each class. The 

indicators are shown in Table 7. 
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Table 7 Indicators from Dataset Z 

Abbreviation Description 

CNT LP Count of Lecture Period 
SUM OP Sum of Operations 
AVG OP Average Operations 
SUM ATT Sum of Attending Students 
PG LP Number of Pages Covered in Lecture Period 
DV LP Number of Devices Used in Lecture Period 
SUM MRK Sum of Markers 
AVG MRK Average Markers 
MV LP Number of Teaching Material Variations Used in Lecture Period 
AFE ATT Average Final Exam Score of Attending Students 
ONLINE Whether the Online Course 

 

Research questions 

(1) RQ1: What do we get from the observational causal discovery method 

adapted to real-world educational data? 

To answer RQ1, we utilize the causal discovery algorithm “SAM,” which employs deep 

learning to generate hypotheses from large datasets. SAM has shown promising results in 

real-world biological data, and this study aims to verify its effectiveness in the educational 

domain. 

(2) RQ2: How different are the results between hypothesis-driven and data-

driven methods? 

For RQ2, the study involves a comparative analysis between Automated Similar Lecture 

Search as a Hypothesis-Driven Method and the observational causal discovery approach 

using SAM as a Data-Driven Method. This comparison aims to elucidate the characteristics 

and differences between these methods, thereby highlighting the strengths and limitations 

of each. 

(3) RQ3: Can the shortcomings of observational causal discovery be improved? 

Tackling RQ3 in Study 2, we introduce an updated version of SAM, termed SAM+. This 

enhanced version allows for the pre-input of improbable relationships. The application of 

SAM+ to real-world educational data will enable us to assess whether the identified 

shortcomings of the observational causal discovery method can be effectively addressed. 

This research consists of two studies. In Study 1, we address Research Questions 1  

and 2 (RQ1 and RQ2), and in Study 2, we respond to Research Question 3 (RQ3). In  

Study 1, we apply SAM to real-world educational data to explore RQ1 and RQ2. This 

approach will allow us to generate a diverse range of causal relationship hypotheses that 

might be difficult to identify based solely on human assumptions. One of the challenges to 
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be addressed is the generation of improbable hypotheses, which is a critical aspect of our 

analysis. Study 2 focuses on RQ3, where we implement SAM+. By pre-inputting 

improbable relationships, we aim to refine the process of hypothesis generation, enhancing 

the method’s overall effectiveness and applicability to educational data analysis. Through 

these studies, the paper aims to provide a comprehensive understanding of the potential 

and limitations of observational causal discovery methods in educational settings. We 

anticipate that our findings will contribute to the refinement of data-driven approaches in 

educational research and practice. 

The remaining sections of this paper are organized as follows. In Section 4, Study 1 is 

presented, where RQ1 and RQ2 are investigated. This section will detail the methodology, 

data analysis, and findings relevant to these research questions. Section 5 is dedicated to 

Study 2, focusing on the exploration of RQ3. It will elaborate on the methodologies 

employed, the analysis conducted, and the insights gained from this study. In Section 6, a 

General Discussion will synthesize the findings from both studies, providing a 

comprehensive understanding of the research questions and their implications in the 

broader context. The paper concludes in Section 7, summarizing the key findings, 

discussing the implications, and outlining future work and potential areas for further 

research. 

Study 1 

Method 

In Study 1, we will answer RQ1 and RQ2. The first step is for RQ1, which is to examine 

whether SAM applies to educational data and whether it provides effective results. The 

second step is for RQ2, which is to compare the SAM-based method to the previous method. 

For this step, we apply SAM to the three datasets. 

The detail of the analysis process is shown in Figure 5. First, the log data, which contains 

information about what and when students have done, are collected. Second, this 

information is summarized to show how many operations are conducted on digital 

textbooks in each class. Third, a causal discovery is conducted to determine whether a 

causal relationship exists. Fourth, the results are displayed as a table in the form of 0s and 

1s, by cutting off with threshold. The threshold is set to 0.8. Finally, the results are output 

as a DAG (directed acyclic graph). 
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Results 

RQ1: What do we get from the observational causal discovery method adapted 

to real-world educational data?  

To answer RQ1, we examined whether SAM applies to educational data and whether it 

provides effective results. SAM was applied to the three datasets for analysis. Figures 6, 7, 

8 show the result of SAM. 

 

 

Fig. 5 Method overview 
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(1) “Feasible and Interpretable Causal Relationship” 

The results of SAM function as a means to validate hypotheses based on existing 

knowledge and experience. For instance, it is confirmed that summary scores change as a 

result of active reading (Figure 6, Arrow 3: ARD D2 → SUM SMR). Additionally, it is 

evident that the number of attendees affects the number of operations (Figure 6, Arrow 10: 

MEM D2 → RDG D2). These results are consistent with existing knowledge and 

experience, and can be intuitively accepted without requiring complex analysis or deep 

understanding. In other words, SAM successfully captures patterns reflected in the actual 

data. 

(2) “Uninterpretable but Feasible Causal Relationship” 

SAM results can also lead to unexpected hypotheses. For example, the number of markers 

on Day 1 affects the number of memos on Day 3 (Figure 6, Arrow 5: MRK D1 → MEM 

D3). This relationship might suggest that content deemed important on Day 1 influenced 

the content on Day 3, but it is difficult to clearly interpret the causal relationship. 

(3) “Reverse Causal Relationship” 

These causal relationships are unfeasible in the observed direction but may become 

“feasible and interpretable causation” or “uninterpretable but feasible causation” when 

reversed. For instance, the number of operations affects the number of times the timer is 

used (Figure 6, Arrow 2: RDG D1 → TIM D1). Reversing this relationship results in a 

feasible and interpretable causation. Additionally, the result that WPM after active reading 

influences the number of memos on Day 1 (Figure 6, Arrow 1: WPM PST → MEM D1) 

also reverses the time axis. If the number of memos on Day 1 influenced WPM after active 

reading, it would be an unexpected hypothesis and could be classified as “uninterpretable 

but feasible causation.” 

 

Fig. 6 Result of SAM in Dataset X 
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(1) “Feasible and Interpretable Causal Relationship” 

The result showing that ReadingTime affects the number of Markers (Figure 7, Arrow 1: 

RDT → MRK) is both feasible and easy to interpret. 

(2) “Uninterpretable but Feasible Causal Relationship” 

The results indicate that the number of Markers and ReadingTime before the start of the 

course influence the Topic (Figure 7, Arrow 2: MRK → TPC, Arrow 3: RDT → TPC). 

This may be because the Topic is determined by whether the students that entered from 

high school or had entered from junior high school, with the ReadingTime and Markers 

differing accordingly before the course starts. However, it is difficult to interpret the 

specific mechanism behind this causal relationship. 

(3) “Reverse Causal Relationship” 

The result that the Model affects ReadingTime before the start of the course (Figure 7, 

Arrow 4: MDL → RDT) is a reversal of the time axis. Additionally, the result showing that 

CVR affects ReadingTime and Topic before the start of the course (Figure 7, Arrow 5: 

CVR → RDT, Arrow 6: CVR → TPC) is also a reversal of the time axis. 

 

 

 

 

 

 

 

Fig. 7 Result of SAM in Dataset Y 
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(1) “Feasible and Interpretable Causal Relationship” 

The analysis revealed a causal relationship between the number of teaching materials used 

during class time and the average number of operations (Figure 8, Arrow 5:  

MV LP → AFE ATT). In other words, the more types of teaching materials used, the 

greater the number of operations. This result is consistent with existing human knowledge 

and experience, and is easily accepted without requiring complex analysis or deep 

understanding. This means that the SAM captures patterns that are evident in the actual 

data. 

(2) “Uninterpretable but Feasible Causal Relationship” 

Conversely, there was a causal relationship between the number of device types used in 

class and the semester grade point average of the students who attended (Figure 8,  

Arrow 2: DV LP → AFE ATT). In other words, the more types of devices used, the higher 

the grade. If there is indeed a causal relationship, this is a new educational method worth 

trying. The causal relationship between whether a course is offered online or not and end-

of-semester grades (Figure 8, Arrow 3: AFE ATT → ONLINE) is also counterintuitive. It 

is hard to imagine that grades could be improved by online courses, but if so, we see new 

educational possibilities. 

(3) “Reverse Causal Relationship” 

These causal relationships are unfeasible but feasible in the opposite direction. A causal 

relationship exists between the total number of operations and the number of participating 

students (Figure 8, Arrow 4: SUM OP → SUM ATT). However, this causal relationship is 

clearly reversed. Of course, the total number of operations does not increase the number of 

students. Rather, the greater the number of students, the greater the number of operations 

should be, and this is the more natural causal relationship. 

 

Fig. 8 Result of SAM from Dataset Z 
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RQ2: How different results between the conventional method and observational 

causal discovery? 

Next, to answer RQ2, the SAM was applied to the Dataset X with the same activities as 

before. In Section 4.2.1, Figure 6 shows the results of the SAM from Dataset X and  

Table 5 describes each indicator. 

(1) “Causality indicating an intervention effect” 

The results of the analysis revealed whether there is an intervention effect that we wish to 

examine. An intervention in education is a series of actions performed by a teacher (human 

or machine) that produces a change in a student’s ability to perform a task. The first day of 

the study was spent in the classroom. We found that the active reading activity on the 

second day affected the quality of the summary of the notes (Figure 6, Arrow 3:  

ARD D2 → SUM SMR). Feedback of these results to the teachers would allow them to 

repeat what they did on the second day in the next similar class. 

(2) “Reverse causation” 

The results were similar to those of RQ1. Reversed causality is not unique to the RQ1 

dataset. Some time points were also reversed, which also suggests the possibility of a causal 

relationship. For example, there is a relationship between the number of words per minute 

in the after-class activity and the amount of notes used on Day 1 (Figure 6, Arrow 1:  

WPM PST → MEM D1). Given the order of the activities, the direction of causality is 

opposite. However, if the direction is adjusted, the causal relationship between memo use 

and WPM is “uninterpretable but feasible causality.” It is significant that AI, which can 

process a large amount of data, can suggest a relationship to something that humans cannot 

consider a relationship. 

(3) “Causation that does not exist” 

In addition to the “possibility that a causal relationship exists,” there are also indications 

that a causal relationship may not exist. For example, there are no arrows for active reading 

dashboard use on Days 1 and 3 (“ARD D1” and “ARD D3”). This indicates that the 

activities using the dashboards on Days 1 and 3 were not as effective, but the activities on 

Day 2 may have been very effective. In the future, when designing active reading lessons, 

we may focus on the activities on the second day. If it is more effective, it will reduce the 

teacher’s workload while contributing to the improvement of learners’ learning 

effectiveness. 
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Discussion 

RQ1: What do we get from the observational causal discovery method adapted 

to real-world educational data? 

These results confirmed that SAM applies to educational data and outputs useful results. 

However, not all the causal relationship outputs are true, so care must be taken when 

interpreting them. However, one of the appeals of this method is that it can process large 

amounts of data and suggest causal relationships that may not have been assumed by 

humans. Based on the results, it is also possible to select which causal relationships should 

be examined more deeply. These results suggest that SAM can be useful for educational 

data analysis. However, to take full advantage of its attractiveness, proper interpretation, 

and verification of the causal relationships in the output is necessary. 

RQ2: How different are the results between hypothesis-driven and data-driven 

methods? 

The auto-comparison method is compared with the causal discovery method SAM. The 

auto-comparison method can be verified based on the hypothesis, but it is necessary to fix 

the indices to be compared. However, it also outputs “backward causality,” which needs to 

be improved. In Study 2, we will develop SAM+ that improves this drawback and 

demonstrate it using RWD. 

Study 2 

Method 

Algorithm developed SAM+ 

We have developed and used SAM+: Integration of NGLIST with Standard SAM. In this 

study, we introduce our innovative algorithm, SAM+, which is a step forward by adding 

NGLIST to SAM to specify the causal direction (Figures 9, 10). In Study 1, we found that 

SAM suggests many candidates causal relationships, but it also suggests “reverse 

causation.” In Study 2, SAM+ overcomes this shortcoming by adding NGLIST to the SAM; 

causal directions added to NGLIST are learned as having no causal potential (Table 8). In 

this study, we compared the original SAM with our newly developed SAM+. This 

comparative analysis focuses on assessing the ability to handle causal discovery more 

accurately. 
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Table 8 NGLIST 

As an example of NGLIST, the NGLIST on the matrix of Dataset Y is shown. The remaining details are 
provided in Appendix. 

NGLIST = [[0,1],[0,2],[0,3],[1,0],[1,3],[2,0],[2,3],[3,0],[3,1],[3,2],[4,0],[4,1],[4,2],[4,3]]. 

 TPC MRK RDT MDL CVR 

TPC (0) 0 0 0  
MRK 0 (0)  0  
RDT 0  (0) 0  
MDL 0 0 0 (0)  
CVR 0 0 0 0 (0) 

(0): Originally set to 0 because the generated graph is acyclic. 

 

Results 

Figure 11-1 shows the result of applying SAM to Dataset X, and Figure 11-2 shows the 

result of applying SAM+ to the same dataset. In this NGLIST, directions that are 

impossible on the time axis are set (see attached document for details). The threshold for 

both figures is 0.8. 

 

Fig. 9 Image of causal discovery using SAM+ 

 

Fig. 10 Overview of SAM+ 
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There are 3 unchanged causations, 4 disappeared causations, 4 newly appeared causations, 

and 3 reversed causations. Focusing on the reversed causations, first is (1,a). While 1 was 

“reverse causation,” a is “uninterpretable but feasible causation”. If the number of notes on 

the first day affects WPM PST, it could form a good hypothesis since WPM PST is a key 

indicator in this experiment. The remaining two are (7,e) and (9,f). Does reading operation 

affect timer use, or is it the other way around? Since “reading operation = timer use + …,” 

either direction could be described as “feasible and interpretable causation.” There is also 

a change in the variable affecting the summary score (SUM SMR), from ARD D2 to RDG 

D3. This represents a significant change in the hypothesis. 

Figure 12-1 shows the result of applying SAM to Dataset Y, and Figure 12-2 shows the 

result of applying SAM+ to the same dataset. In this case, the NGLIST includes not only  

 

 

Fig. 11-1 SAM to Dataset X (Same as Fig. 5)              Fig. 11-2 SAM+ to Dataset X 

Fig. 11 

 

Fig. 12-1 SAM to Dataset Y (Same as Fig. 6)               Fig. 12-2 SAM+ to Dataset Y 

Fig. 12 
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Table 9 Structural gate 

As an example of Structural Gates, that of SAM+ to Dataset Y is shown. 

 TPC MRK RDT MDL CVR 

TPC 0.00 0.00 0.00 0.00 0.00 
MRK 0.00 0.00 0.00 0.00 0.10 
RDT 0.00 0.00 0.00 0.00 0.00 
MDL 0.00 0.00 0.00 0.00 0.75 
CVR 0.00 0.00 0.00 0.00 0.00 

 

 

directions that are impossible on the time axis, but also directions affecting TPC and MDL, 

as they are deterministically exposed (Table 9). 

While SAM has a threshold of 0.8, applying the same threshold for SAM+ caused all 

causations to disappear, so setting the threshold to 0.75 produced the result shown in  

Figure 11-2. The sole causation represented by a is the effect originally intended to be 

observed in this experiment, and the fact that RDT, MRK, and TPC do not affect CVR is 

a critical point. 

Figure 13-1 shows the result of applying SAM to Dataset Z, and Figure 13-2 shows the 

result of applying SAM+ to the same dataset. In this case, the NGLIST includes directions 

that are impossible on the time axis, as well as directions where the number of lectures or 

whether it was online should have no influence (see attached document for details). The 

threshold for both is set to 0.8. 

There are 6 unchanged causations, 2 disappeared causations, 4 newly appeared causations, 

and 2 reversed causations. Focusing on the reversed causations, first is (3,c). While 3 was 

“reverse causation,” c shows that whether it was online or not influences the final score, 

making it “uninterpretable but feasible causation” (the distinction between interpretable 

and uninterpretable might be based on whether it can be expressed mathematically). This 

seems to be a hypothesis worth testing. Then there’s (8,h); 8 was also “reverse causation,” 

but h now represents “uninterpretable but feasible causation.” 

 

 

 

Fig. 13-1 SAM to Dataset Z (Same as Fig. 7)          Fig. 13-2 SAM+ to Dataset Z 

Fig. 13 
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Discussion 

In this study, we applied two methods, SAM and SAM+, to Dataset X, Dataset Y, and 

Dataset Z, and compared the results. Observing the changes, disappearances, new 

occurrences, and reversals in causal relationships from these experiments, we discuss the 

effectiveness of SAM+. 

First, in the results for Dataset X shown in Figure 10, the application of SAM+ led to a 

notable change where the previous “reverse causation” transformed into “uninterpretable 

but feasible causation.” Specifically, hypothesis (a), which suggests that the number of 

notes recorded on the first day influences WPM PST, aligns well with the primary purpose 

of this experiment since WPM PST is a key indicator. Thus, applying SAM+ highlighted 

more interpretable and feasible causal relationships, producing results that are more aligned 

with the experimental expectations compared to SAM. 

Next, in Figure 11 for Dataset Y, adjusting the threshold to 0.75 in SAM+ revealed the 

originally anticipated causation. This suggests that SAM+ can more accurately identify 

causal relationships that indicate intervention effects. Additionally, it was confirmed that 

RDT, MRK, and TPC do not influence CVR, providing significant insights for this 

experiment. 

Finally, in Figure 12 for Dataset Z, causal relationships previously identified as “reverse 

causation” were reinterpreted by SAM+ as “uninterpretable but feasible causation.” In 

particular, (c) revealed that whether the session was online or not affected the final score, 

indicating a hypothesis worth further investigation. 

In summary, SAM+ reduces “reverse causation” and increases both “feasible and 

interpretable causation” as well as “uninterpretable but feasible causation,” making it a 

method that reveals meaningful causal relationships aligned with the experiment’s goals. 

Additionally, relationships previously deemed non-existent in SAM are shown as 

intervention effects in SAM+, further substantiating the utility of SAM+. This, in turn, 

enhances the reliability of the experiments and contributes to the formulation of more 

effective intervention strategies. 

General discussion 

Key findings 

1. Discovering and improving the limitations and potential of data-driven 

approaches 

In this study, we developed and validated a data-driven approach for automated evidence 

extraction. This data-driven approach demonstrated the ability to generate unexpected 
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causal hypotheses. However, it also has the drawback of generating unfeasible causal 

hypotheses. This drawback was addressed by improving the model. 

2. Issues in automating causal analysis in education 

It is important to note, however, that the current process requires the teacher to manually 

add causality of 0, which is a major barrier to automation. Future work will focus on 

overcoming this challenge through pattern recognition and automatic integration of 

temporal data from other sources. This advancement is critical to fully realize the potential 

of automated evidence extraction in educational settings. 

3. Importance of estimating intervention effects in educational evidence 

extraction 

In addition, estimating the effects of these interventions is essential for providing 

meaningful feedback to the field. This helps to assess whether the outcomes justify the 

costs involved. 

Implication 

Using educational data to understand causal relationships could contribute to the 

development of a more equitable and effective education system. Data-based insights could 

inform policies aimed at improving the quality of education and ensuring equal 

opportunities for all learners. Incorporating individual learner variables could also lead to 

optimized and personalized education, providing a more effective learning experience 

tailored to the needs of each student. 

Impact on education 

1. Evidence-based decision support 

This is a transformative approach that significantly enhances evidence-based practice in 

education. This method harnesses the power of data analytics and machine learning to 

extract actionable insights from vast amounts of educational data, including routine. In 

doing so, educators can develop, refine, and implement instructional strategies that are not 

only theoretically correct, but empirically proven to be effective. 

2. Utilization by teachers, learners, and researchers 

Based on the provided causal graphs, the system can offer practical advice to teachers, 

learners, and researchers. A tremendous amount of data is now being collected in 

educational settings from a variety of Educational Technology tools and services. This 
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creates opportunities to leverage methods from Artificial Intelligence (AI) and Learning 

Analytics (LA) to improve both learning and the environments in which it occurs. 

However, the analytics results produced by these methods often fail to connect with 

theoretical concepts from the learning sciences, making it difficult for educators to trust, 

interpret, and apply them. At the same time, many educational theories are challenging to 

formalize into testable models that connect to educational data. Causal modeling can help 

bridge this gap by formalizing the connection between big data and educational theory 

(Kitto et al., 2023). 

Furthermore, graphical causal models can help bridge the disciplinary divide, offering a 

new tool that assists educators in understanding and, potentially, challenging the technical 

models developed by LA practitioners (Hicks et al., 2022). 

It is essential that this advice be presented in a way that is comprehensible and acceptable 

to educators. Large language models (LLMs), such as ChatGPT, can also be utilized to 

support this process. 

3. Possibility of evidence-based educational policy and curriculum design 

RWE can be used in educational policy and curriculum design. In the example of  

Dataset Y, since the reasons for the recommendation are effective, it may be recommended 

that the reasons for the recommendation be given as a policy or curriculum. 

Social impact 

1. Contribution to a fair and effective educational system 

Using educational data to understand causal relationships could contribute to the 

development of a more equitable and effective education system. Data-based insights could 

inform policies aimed at improving the quality of education and ensuring equal 

opportunities for all learners. 

2. Prospects for personalized education 

Incorporating individual learner variables could result in optimized and personalized 

education, providing a more effective learning experience tailored to each student’s needs. 

Limitation 

1. RELIANCE on user input for unfeasible causal relationship 

Current processes require manual intervention by the user to add unfeasible causal 

hypotheses (NGLIST). This reliance is a major barrier to achieving full automation and 

poses challenges to scalability and efficiency. However, the potential use of large language 

models (LLMs) presents a promising avenue for overcoming this limitation. LLMs can be 
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trained to identify patterns in causal relationships and detect unfeasible causalities by 

analyzing large datasets. They could assist in automatically generating NGLIST by 

recognizing potential contradictions or inconsistencies in the causal directions based on 

contextual understanding. This would reduce the dependence on user input and improve 

scalability, efficiency, and the overall automation of the process. 

2. Contextual limitations of the data 

The effectiveness of automated case extraction methods is highly dependent on the context 

and quality of the data used. Misinterpretation of the context of the data can lead to 

erroneous conclusions, underscoring the need for careful data management and 

understanding of the context. 

3. Limitations of performing causal discovery for every analysis  

It may not be practical to conduct causal discovery for every analysis, and in such cases, 

methods like propensity score adjustment to account for background information could be 

a useful alternative. However, this would shift the approach to a hypothesis-driven 

framework, which differs from the data-driven approach used in this study. Moving 

forward, it will be important to consider how these two methodologies—hypothesis-driven 

and data-driven—can be effectively integrated to optimize the analysis process. 

Future works 

1. Improved hypothesis generation  

In future developments, a key focus will be on enhancing the system’s ability to generate 

more precise and meaningful hypotheses. This will involve incorporating more 

sophisticated statistical and machine learning techniques to better differentiate between 

plausible and implausible hypotheses. Additionally, integrating external datasets and prior 

knowledge from educational theories could improve the accuracy of hypothesis generation. 

By doing so, we can ensure that the system not only responds to patterns in the data but 

also aligns with educational insights and pedagogical frameworks. Moreover, we aim to 

develop mechanisms that enable the system to prioritize hypotheses that have higher 

potential impact on educational outcomes, guiding educators towards the most effective 

interventions and strategies. 

2. Advances in automation 

Emphasis will be placed on overcoming a key barrier to full automation: the current need 

for teachers to manually input backward causality. To automate this aspect, we will explore 

the integration of pattern recognition techniques and temporal data from a variety of 
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sources. Additionally, leveraging large language models (LLMs) could help automate the 

identification of unfeasible causality and other aspects that currently rely on manual input. 

LLMs can be trained to assist in predicting and refining causal relationships based on the 

vast amount of educational data, potentially improving the scalability and efficiency of the 

system. 

3. Intervention effect estimation and feedback 

An important area for future research is to estimate the effects of these causal hypotheses. 

This will provide essential feedback to educators and help determine the utility and cost-

effectiveness of the results. Strengthening this evaluative aspect is key to ensuring the 

applicability and value of the extracted real-world evidence (RWE). As Smith suggests 

(Smith, 2023), combining counterfactual analysis may also enhance the understanding of 

intervention effects. However, attention must be paid to the potential issue of “double 

dipping” when using such methodologies (Gradu et al., 2024). Moreover, the emergence 

of datasets such as CausalEdu (Gong et al., 2023) offers an opportunity to further develop 

automated evidence extraction algorithms. Using these datasets, we aim to upgrade the 

system to better support educational decision-making based on robust evidence. 

Conclusion 

In conclusion, as an educational data research, this study is an important advance in the 

field of data-driven educational research, encompassing two very important studies. 

Study 1 is a comparative analysis of the SAM algorithm and conventional methods.  

Study 1, the first part of this study, successfully demonstrated the ability of the SAM 

(Structural Agnostic Model) algorithm to generate innovative causal hypotheses in the 

educational domain. This study not only demonstrated the potential of the SAM algorithm 

by identifying differences from traditional hypothesis-driven methods, but also highlighted 

its challenges, such as generating causal relationships without regard to practical 

constraints. Study 2 is the development and demonstration of SAM+. To address the 

challenges identified in Study 1, Study 2 developed and introduced an improved version of 

the SAM algorithm, called SAM+. This model was developed specifically to improve the 

accuracy and reliability of the model in identifying plausible causal relationships; the 

introduction of SAM+ showed significant improvements in observational causal discovery 

and came close to maximizing the potential of data-driven approaches in education. 

This study highlights the transformative potential of data-driven automated evidence 

extraction in education. The development and validation of this method opens new avenues 

for generating causal hypotheses that do not rely solely on traditional human reasoning. 

Despite challenges such as the generation of unfeasible hypotheses, continuous 

improvement of the model is paving the way for more accurate and practical applications. 
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As educational data researchers, we are excited about the prospects this research brings 

to the field. Continued refinement of these methods will not only deepen our understanding 

of the dynamics of education but will revolutionize approaches to teaching and learning 

with data-driven insights. It is hoped that this data-driven methodology will result in more 

effective and evidence-based educational practices. 

Appendix 

Dataset Y 

NGLIST= 

[[0,10],[1,0],[1,3],[1,8],[1,10],[2,0],[2,3],[2,8],[2,10],[3,0],[3,10],[4,0],[4,8],[4,10],[5,0],[

5,10],[6,0],[6,8],[6,10],[7,0],[7,8],[7,10],[8,0],[8,10],[9,0],[9,1],[9,2],[9,3],[9,4],[9,5],[9,6

],[9,7],[9,8],[9,10],[10,0]] 

 

The array is difficult to read, so it is converted into a table for better readability. 

The same approach will be applied to the Dataset Z section as well. 

 

 CNT 
LP 

SUM 
OP 

AVG 
OP 

SUM 
ATT 

PG LP DV LP SUM 
MRK 

AVG 
MRK 

MV 
LP 

AFE 
ATT 

ONLINE 

CNT LP (0)          0 
SUM OP 0 (0)  0     0  0 
AVG OP 0  (0) 0     0  0 
SUM ATT 0   (0)       0 
PG LP 0    (0)    0  0 
DV LP 0     (0)     0 
SUM MRK 0      (0)  0  0 
AVG MRK 0       (0) 0  0 
MV LP 0        (0)  0 
AFE ATT 0 0 0 0 0 0 0 0 0 (0) 0 
ONLINE 0          (0) 

 

Dataset Z 

NGLIST= 

[ [0,16]  

    ,[1,0],[1,3],[1,5],[1,6],[1,9],[1,10],[1,13],[1,16],[1,18]  

    ,[2,0],[2,1],[2,3],[2,4],[2,5],[2,6],[2,7],[2,9],[2,10],[2,11],[2,13],[2,14],[2,16],[2,18]  

    ,[3,16] 

    ,[4,0],[4,3],[4,5],[4,6],[4,9],[4,10],[4,13],[4,16],[4,18] 

    ,[5,16] 

    ,[6,0],[6,3],[6,5],[6,9],[6,13],[6,16],[6,18]  

    ,[7,0],[7,3],[7,5],[7,6],[7,9],[7,10],[7,13],[7,16],[7,18]  
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    ,[8,0],[8,1],[8,3],[8,4],[8,5],[8,6],[8,7],[8,9],[8,10],[8,11],[8,13],[8,14],[8,16],[8,18]  

    ,[9,16] 

    ,[10,0],[10,3],[10,5],[10,9],[10,13],[10,16],[10,18]  

    ,[11,0],[11,3],[11,5],[11,6],[11,9],[11,10],[11,13],[11,16],[11,18]  

    ,[12,0],[12,1],[12,3],[12,4],[12,5],[12,6],[12,7],[12,9],[12,10],[12,11],[12,13],[12,14],[

12,16],[12,18]  

    ,[13,16]  

    ,[14,0],[14,3],[14,5],[14,6],[14,9],[14,10],[14,13],[14,16],[14,18]  

    ,[15,0],[15,1],[15,3],[15,4],[15,5],[15,6],[15,7],[15,9],[15,10],[15,11],[15,13],[15,14],[

15,16],[15,18]  

    ,[17,0],[17,1],[17,2],[17,3],[17,4],[17,5],[17,6],[17,7],[17,8],[17,9],[17,10],[17,11],[17,

12],[17,13],[17,14],[17,15],[17,16],[17,18],[17,19] 

    ,[18,0],[18,3],[18,5],[18,9],[18,13],[18,16] 

    ,[19,0],[19,1],[19,2],[19,3],[19,4],[19,5],[19,6],[19,7],[19,8],[19,9],[19,10],[19,11],[19,

12],[19,13],[19,14],[19,15],[19,16],[19,18] 

    ,[20,0],[20,1],[20,2],[20,3],[20,4],[20,5],[20,6],[20,7],[20,8],[20,9],[20,10],[20,11],[20,

12],[20,13],[20,14],[20,15],[20,16],[20,17],[20,18],[20,19]] 
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