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 Abstract 

Personalized learning (PL) initiatives represent a powerful instructional strategy that 
prioritizes a learner-centered approach, allowing educators to tailor content to 
meet individual students’ characteristics and needs. Various technologies have been 
developed to support PL, the integration of Learning Management Systems (LMS) 
has emerged as a particularly effective to deliver adaptive materials and strategies 
in classroom settings. This study presents a systematic literature review on the 
application of LMS in facilitating PL, guided by PRISMA protocols to ensure rigorous 
screening and inclusion of relevant studies. Out of an initial 1,069 publications from 
2014 to 2024, a total of 61 studies met the inclusion criteria. Findings highlight 
promising opportunities to enhance standard LMS features with data-driven tools 
that support personalized learning. Additionally, this study highlights the need for 
further research into learner attributes extending knowledge levels and learning 
styles. It also encourages exploring learning outcomes that transcend cognitive 
achievements. 

Keywords: Personalized learning, Learning management system, Adaptive learning, 
Instructional technology, Systematic review 

 

Introduction 

Each learner entering the learning environment brings a distinct set of unique traits. While 

some learners are able to grasp learning materials quickly, others may require more time 

and support. Learners also come with diverse backgrounds and varying capabilities, 

mandating that educators and instructional designers to recognize and leverage these 

differences. Grant and Basye (2014) emphasize that learners who receive tailored support 

for their academic, emotional, and behavioral needs are more likely to succeed. This is in 

contrast to those who experience uniform instructional approaches. The Personalized 
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Learning (PL) approach offers a customized learning experience by addressing to the 

distinct needs, preferences, and performance of learners, thereby enhancing learning 

outcomes and overall effectiveness. Rooted in a learner-centered paradigm, PL emphasizes 

the learner in the educational process. This contrasts with the conventional one-size-fits-

all educational approach, wherein learners receive uniform instruction, assignments, and 

assessments, with minimal consideration for individual differences and needs (Li & Wong, 

2019). 

The U.S. Department of Education defines PL as tailoring learning objectives, content, 

methods, and pacing to meet learners’ needs, preferences, and interest. This approach is 

focused on aligning instruction with individual learners (Watson & Watson, 2017). 

Walkington and Bernacki (2020) contend that the implementation of personalized learning 

can be adjusted to improve learners’ affective, motivational, and cognitive processes, 

which will ultimately improve their overall learning experiences. Notwithstanding the 

extensively documented advantages of PL in empirical studies, its implementation 

continues to present significant challenges. A study by Gunawardena et al. (2024) 

identified challenges encountered by elementary schools’ teachers in adopting PL, 

highlighting that while educators recognize the potential benefits of PL, they struggle to 

integrate it within the existing school structure. Moreover, it was further observed that a 

significant challenge to personalized instruction is time constrains. The emphasis on 

learners’ mastering content may conflict with the rigid academic calendar. This could leave 

some learners without full comprehension by the end of the school year. In addition, the 

development of personalized activities that address individual learner traits may presents a 

multifaceted challenge, both pedagogically and technologically (O’Donnell et al., 2015). 

Recent technological advancements have enhanced research on PL by addressing some 

of these challenges within personalized learning environments. Tetzlaff et al. (2021) define 

personalized education as the data-driven adaption of instructional practices to align with 

the specific characteristics of individual learners. The PL approach focuses on developing 

a learner model through assessments and identifying tailored learning objects relevant to 

each learner model. In this regard, technological advancements and devices may enrich 

personalized learning experiences (Shemshack et al., 2021). Numerous technology-driven 

initiatives within PL have been recorded, including intelligent tutoring systems, machine 

learning algorithms, and artificial intelligence. Nevertheless, the nascent state of adaptive 

learning technology, coupled with the lack of established standards, presents challenges 

for educators and institutions in selecting the most suitable tools (Taylor et al., 2021). 

In contrast, the adoption of Learning Management Systems (LMS) has been widely 

adopted for decades (Gharbaoui et al., 2023), positioning LMS as a fundamental platform 

across various levels of education. LMS platforms are recognized for its user-friendly 

features that support educators, learners, and administrators in delivering instructional 
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content, managing assessments, and executing educational administration tasks. Ouatik 

and Ouatik (2021) identified several advantages of LMS, including its ability to host and 

distribute educational content, along with its functionality to manage and monitor both 

individual and collective learner progress. Furthermore, Salgado-Chamorro et al. (2023) 

strongly argues that LMS can proficiently support fully online, blended learning 

environments, as well as in face-to-face classroom settings. 

In terms of integration with personalized and adaptive strategies, Khan et al. (2019) 

emphasizes that open-source, web-based LMS platforms can be easily augmented with 

other software solutions to create adaptive learning systems. The incorporation of PL 

strategies within LMS platforms is feasible and has been examined in numerous studies. 

This corroborates the findings of Fariani et al. (2023), who similarly examined the PL 

model within the higher education context, primarily developed in personalized e-learning 

systems and integrated into existing LMS or e-learning platforms. Nonetheless, this study 

was unable to find any thorough analyses regarding the PL implications within the LMS 

platform. Therefore, the study seeks to discover how LMS features and development 

facilitate PL teaching and learning strategies in educational contexts. In light of this, the 

study is guided by five research questions, which address the existing gaps in the utilization 

of LMS within PL environment: 

RQ1: How are the study trends of LMS integration in PL environment in studies evolved 

between 2014-2024? 

RQ2: What learner characteristics have been utilized as parameters in PL through the 

integration of LMS? 

RQ3: How are PL initiatives developed and/or implemented in LMS? Which LMS 

platforms are most frequently used to facilitate the PL environment? 

RQ4: What learning aspects are personalized within PL environment through the 

integration of LMS? 

RQ5: What are targeted learning outcomes sought to be achieved through PL facilitated 

by LMS? 

Literature review 

Personalized Learning (PL) 

The term Personalized Learning (PL) has been widely adopted to promote a learner-

centered paradigm (Watson & Watson, 2017). In the classical classroom, teachers are fully 

authorized to regulate the entire teaching and learning process. In contrast, the PL 

classroom enabled learners to incorporate their particular traits and control in order to 

promote greater adaptability in learning. However, there is no consensus on the definition 
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of PL, but various academic disciplines are already researching the specific PL strategy by 

reflecting on their specialty. Chang et al. (2022) define PL as a learning approach that 

tailors the learning process based on learners’ needs, objectives, and capabilities by 

providing a variety of learning experiences. Bray and McClaskey (2013) addressed PL as 

an attempt to strike a balance between learner characteristics and the learning environment. 

Therefore, PL strategies make the learning process more effective for learners by providing 

learning experiences that are tailored to their specific characteristics. In addition, Fake and 

Dabbagh (2023) argued that the best approach to designing PL experiences is to take into 

account learning theory, learning models, instructional strategies, learning tasks, outcomes, 

and technology, all of which must be pedagogically aligned. 

Shemshack and Spector (2020) revealed that the study of PL research has gained 

recognition since 2008. However, in the twenty-first century nowadays, the majority of PL 

research studies currently involve technology-supported adaptive and personalized 

technologies. Traditionally, learner characteristics have been the primary focus when 

designing personalized learning experiences, utilizing assessments and manual 

questionnaires as the predominant methods of data collection. However, current cutting-

edge technologies provide the capability to monitor learner behavior, progress, and level 

of knowledge in real time. By employing appropriate algorithms, personalized learning 

aspects can be more effectively tailored to enhance the teaching process and enhance 

implementation success (Alamri et al., 2021). 

Learning Management System (LMS) 

The Learning Management System (LMS) is a widely recognized web-based platform that 

supports learners, educators, faculty, and administrators, serving an integral part in the  

e-learning environment (Sejzi & Aris, 2013). Learning Management Systems (LMS) have 

been essential in providing modern education through the storage of learning content, 

delivery of educational materials, and assessment of learner progress. The various menus 

and functionalities of the LMS may enhance and optimize learning experiences and 

interactivity, both synchronously and asynchronously. Furthermore, both learners and 

educators can access all educational materials at any time and from any location, thereby 

ensuring permanent accessibility of the content (Salgado-Chamorro et al., 2023). 

Furthermore, Aulianda et al. (2023) propose the implementation of a Learning 

Management System (LMS) designed to optimize and enhance learning by integrating 

conventional and online learning formats. 

The adoption of LMS is primarily driven by educators and educational institutions in 

their selection of specific LMS platforms. The excessive number of LMS resulted in a 

complex procedure for identifying an appropriate option (Cavus & Zabadi, 2014). Mohd 

Kasim and Khalid (2016) deliberated on selecting the LMS platform according to the 
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institution’s requirements, taking into account flexibility, usability, accessibility, and user-

friendliness. The study emphasizes that each Learning Management System possesses 

distinct characteristics, advantages, and drawbacks. Nonetheless, open-source LMS 

platforms were the most convenient option for institutions, given their affordability, low 

cost, and minimal effort required to integrate the LMS into a digital learning environment. 

After evaluating six LMS platforms, including Sakai, ATutor, Blackboard, Moodle, 

SumTotal, and SuccessFactors, Kasim and Khalid determined that Moodle is the most 

recommended open-source platform for institutional adoption. Other investigations 

comparing LMSs, conducted by Cavus and Zabadi (2014), Khan et al. (2019), Salgado-

Chamorro et al. (2023), and Sánchez and Hueros (2010), yielded similar conclusions, 

indicating that Moodle distinguished itself from other LMS platforms. It is a community-

owned entity, currently accessible through mobile applications and various electronic 

platforms worldwide (Reid, 2019). Further LMS examples cited in studies encompass 

Claroline, Dokeos, dotLRN, Drupal, Paradiso, iLIAS, OLAT, Docebo, Chamilo, Spaghetti 

Learning, and Canvas. 

Related works 

Various systematic literature review (SLR) studies pertaining to Personalized Learning 

have been conducted. This section provides a brief summary of notable SLRs from the past 

five years. Begin with an extensive study conducted by Xie et al. (2019), which gathered a 

final total of 70 Social Sciences Citation Index (SSCI) articles from 2007 to 2017. The 

study aimed to investigate trends and future technology advancements in support of the PL 

environment. However, Xie et al. (2019) were also able to identify several research issues 

concerning the actualization of adaptive or personalized learning. The study also revealed 

the potential for a wide range of PL applications, such as Artificial Intelligence, Virtual 

Reality, Cloud Computing, and Wearable Devices. Furthermore, the study suggests for 

future PL research addressing working adults. Li and Wong (2019) also conducted similar 

investigations into PL trends and technological ventures. The research gathered 203 journal 

articles from 2001 to 2018. Li and Wong (2019) assert that the practices of Intelligent 

Learning Systems (ILS) and Learning Analytics can enhance the effectiveness of the PL 

environment. To discuss its findings, the study used several coding schemes, including 

research issue, PL strategies, PL devices, PL objectives, and PL success factors. One of the 

remarkable findings is that the means of achieving PL environments were not limited to 

technologies alone, but also to flexibility in curriculum and instructional design with an 

emphasis on individual learner goal setting. 

Given the close ties between information technology, computing solutions, and 

personalized learning, several systematic studies have been conducted to detail particular 

technologies utilized in PL endeavors. Raj and Renumol (2022) investigated the role of 
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adaptive content recommenders in the Personalized Learning Environment (PLE). The 

study proposed that the recommender system benefits learners by providing adaptive 

content recommendations, while also assisting educators with design and content authoring. 

Raj and Renumol were successful in reviewing 52 publications from 2015 to 2020 and 

exploring the methodology, attributes, and evaluation measures. Moreover, Khor and 

Mutthulakshmi (2023) investigated the role of Learning Analytics (LA) in supporting PL 

and discovered its ability to retrieve learning progress analytics for guiding educator 

intervention at multiple levels. Raj and Renumol (2022) identified several systems, 

including machine learning, Intelligent Tutoring System (ITS), knowledge-based, and 

ontology-based systems, to examine the adaptive recommender system. However 

unfortunately, Khor and Mutthulakshmi (2023) were not discussed the specific technology 

engines adopted in the LA environment. 

Recent technological advancements, however, have always included Artificial 

Intelligence (AI) in their applications, albeit in the PL environment. Bayly-Castaneda et al. 

(2024) conducted considerable systematic studies to investigate how AI might assist with 

PL implication in lifelong education settings. The study identified several AI-mediated 

solutions, including machine learning, content recommendation systems, adaptive learning 

environments, and virtual or augmented reality. Based on 78 articles reviewed from 2019 

to 2024, Bayly-Castaneda et al. pointed out that AI-based PLE has not yet been extensively 

researched and has been limited in a small number of countries, such as China, the United 

States, and India, taking into the accessibility gaps and disadvantages of country 

applicability. 

Significantly, comprehensive literature reviews on trends and technologies in 

Personalized Learning have been undertaken. The reviews indicate promising PL strategies 

for implementation across various educational levels. Consequently, it is anticipated that 

this study will contribute to the body of knowledge examining the use of LMS in 

conjunction with the application of a personalized learning approach. 

Method 

The systematic literature review entails a comprehensive inquiry into a specific subject. 

Specifically, this study focuses on Personalized Learning (PL), Learning Management 

Systems (LMS), and the application of the PL approach within LMS environments. 

Various systematic literature frameworks exist, including Kitchenham’s Framework 

(Kitchenham & Brereton, 2013), the Cochrane Handbook (Noyes et al., 2013), SPAR-4 

SLR (Paul et al., 2021) and the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) (Page et al., 2021). Although PRISMA has been intended 

mainly for reviewing studies on health interventions, it is also adaptable to other categories 

of interventions, including social and educational interventions. The comprehensive 
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reports enable assessing of the methods’ appropriateness, thus assessing the credibility of 

the findings (Page et al., 2021). Therefore, this study utilizes the PRISMA strategy to 

guarantee a transparent screening report. 

Data sources and search protocol 

The key approach of this study involved accessing an extensive range of scholarly 

publications by navigating reputable academic databases. Five prominent databases were 

evaluated, including Science Direct, Scopus, and ERIC. Given the close relationship 

between PL strategy and technology integration (Fariani et al., 2023), the authors also 

incorporated IEEE Xplore and ACM Digital Library databases. 

Subsequently, the authors enumerated the following significant keywords pertinent to the 

systematic review: “personalized learning”, “adaptive learning”, “personalization”, 

“learning management system”, “LMS”. Additionally, as the study also examines 

contemporary innovative advancements in LMS technology, the additional keyword 

“plugin”, “tool”, and “system” were incorporated. Furthermore, the initial pool was 

identified using the following three database search strings: 

• personaliz* OR adaptive AND learning OR learning management system OR 

lms OR plugin 

• personaliz* OR adaptive AND learning AND plugin or tools or system 

• (personaliz* OR adaptive) AND learning AND plugin 

Inclusion and exclusion criteria 

This systematic review establishes the study’s eligibility by applying inclusion and 

exclusion criteria (see Table 1). All studies included must be published between 2014 and  

 

Table 1 The criteria of inclusion and exclusion of the study 

Criteria Inclusion Exclusion 

Timespan Published between January 1, 2014 and 
February 17, 2024 

Published outside of January 1, 2014, 
and February 17, 2024 

Language Must be written in English Other than English 

Population Setting at Classroom, School, or 
University 

Setting outside of a Classroom, School, 
or University (e.g., workplace, 
organization, etc.) 

Intervention • Utilization of LMS environment 

• Empirical study of PL Integration 
within LMS environment 

• Development of adaptive system 
and/or plugin within LMS 
environment to support PL strategy 

• Does not utilize LMS environment 

• Design of a PL framework as a future 
study endeavor 

Publication 
type 

Journal article, and conference 
proceeding 

Book chapter, thesis, dissertation, review 
articles, editorial, and opinion paper 

Accessibility Available in full text under university 
access 

Unavailable in full text 
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2024, considering that Google Trends analysis indicated a rising interest in PL since 2010 

(Zhong, 2022). However, to ensure novelty, we decided to focus on publications from the 

last decade. Furthermore, the study must be written in English and highlight the PL strategy 

within the LMS environment as the empirical research design. Not only describe or 

construct a framework for PL integration, as a future study endeavor. Moreover, all studies 

pertaining to the theories and literature reviews lacking empirical evidence have been 

excluded. 

Selection process 

The systematic review process required the researchers perform rigorous and methodical 

procedures. The selection process of the study aims to evaluate the study’s quality and its 

relevance to the research questions. Two reviewers independently screened the studies to 

determine eligibility. Any disagreements that emerged were addressed through discussion 

to achieve consensus. Furthermore, this study employed Covidence (www.covidence.org), 

a web-based systematic review management tool. Covidence enhances collaboration by 

resolving disagreements within the research teams, aiding data extraction, documenting the 

systematic review process, and generating visual representations of the study outcomes 

(Kellermeyer et al., 2018). Figure 1 delineates the comprehensive selection process and the 

quantity of articles at each stage. A total of 1,069 articles were generated from the initial 

pool utilizing the search strings in the scholarly databases. 

The initial filtering process involves eliminating duplicate articles, followed by selection 

based on title (n=1065), abstract (n=246), and ultimately, full-text accessibility. Following 

the screening of titles and abstracts, the full-text studies were reviewed by two independent 

reviewers. If any studies were missing, we attempted to contact the corresponding authors 

or searched other scientific databases to discover the missing studies. Disagreements over 

study inclusion were subsequently discussed with two other authors. The final screening 

of the study comprises a full-text review (n=235) that identifies multiple reasons impeding 

diverse studies from being included in the final analysis. The primary reason was to 

eliminate retracted articles to preserve the integrity of scientific literature (k=3) (Chen et 

al., 2013). The second reason for excluding articles outside the scope of education and 

information technology, and lack of relevance to the study (k=17). Then, for removing 

insufficient empirical studies, such as book chapters (k=9), theoretical or reviews (k=22), 

and not involving the LMS environment (k=21). We also encountered studies where only 

the title and abstract were in English, while the full article content was in another language 

(k=11). Additional detailed analysis and screening reasons displayed in Figure 1. Moreover, 

only articles which also met the criteria outlined in Table 1 were incorporated into the 

review, resulting in a total of 61 articles included in the analysis. 
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Data analysis and coding 

The selected 61 articles were subsequently extracted into a spreadsheet to address the 

research questions. This study utilized Cohen’s Kappa analysis to evaluate the level of 

agreement between two reviewers responsible for screening the studies (Cohen, 1960). The 

quality of the final 61 studies was assessed following the completion of a full-text review 

(Pérez et al., 2020). Additionally, the Guidelines for Reporting Reliability and Agreement 

Studies (GRRAS) (Kottner et al., 2011) criteria were employed, to evaluate the quality of 

the studies, taking the research question into consideration. After the two reviewers 

provided binary scores for the criteria, the agreement coefficient was calculated to be 

approximately 𝑝𝑜  = 0.70, indicating that the reviewers agreed 70% of the time and 

disagreed 30% of the time. Notably, the Cohen’s Kappa  (𝜅)  score was reported as 0.53, 

which represents a moderate level of agreement according to the scale proposed by Landis 

and Koch (1977). 

 

Fig. 1 PRISMA protocol implementation of the study 
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Each article was examined and categorized according to the following categorizations: 

(1) authors; (2) year of publication; (3) type of publication; and (4) level of education. A 

qualitative synthesis was conducted employing thematic and sub-thematic methodologies 

to analyze data comprehensively (Surahman & Wang, 2023). The data synthesis process 

allows the authors to present definitive answers to the research questions (Rana et al., 2022). 

Subsequently, calculate the data synthesis using quantitative methods to assess the 

frequency and basic descriptive percentages for each dimension. Eventually, represent the 

gathered information using data visualization tools, including graphs, tables, and diagrams. 

Results 

This section presents the outcomes of analysis corresponding to each research question. 

Basic descriptive analysis and data visualizations are expected to help elucidate the key 

findings of the study. 

RQ1: How are the study trends of LMS integration in PL environment in studies 

evolved between 2014-2024? 

Publication type, year, and geographic distribution 

The study extracted a total of 61 articles, consisting of 37 journal articles (61%) and 24 

conference papers (39%) from 36 countries. The study indicates that the majority of PL 

research within the LMS environment has been conducted in Asia (n=21, 34%) and Europe 

(n=21, 34%). Subsequently, North America (n=8, 13%), the Middle East (n=6, 10%), and 

Africa (n=5, 8%). According to the type of publication (refer to Figure 2), there has been a 

notable increase in journal publications since 2014, while conference publications have 

exhibited a decline. Nonetheless, the rising number of personalized learning initiatives 

suggests an increasing interest in personalized instruction to individual learners’ needs over 

the past decade. 

 

 

Fig. 2 Publication type and year of the study 
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Research target level 

The study reports that Personalized Learning strategies have been implemented at various 

educational levels (see Figure 3). Given that there has always been a growing interest in 

PL implication in higher education, and as evidenced by the findings of this study, the 

undergraduate level received the highest percentage (70%) of research targets. 

Nevertheless, the lower educational levels (i.e., elementary, secondary, high school) 

received minimal interest for investigation. This study found that multilevel research 

targets (n=8, 13%) garnered significant attention. For instance, García-Peñalvo et al. (2014) 

conducted a study examining the perceptions of learners and teachers regarding Project 

Management after engaging in a personalized instructional scenario utilizing a Learning 

Management System (LMS). Other studies also incorporate multiple levels, such as 

undergraduate and postgraduate cohorts, in their research (El Fouki et al., 2017; Karaoglan 

Yilmaz & Yilmaz, 2020; Sein-Echaluce et al., 2017). 

Academic fields of PL study 

During the final study extraction, the authors acknowledged that the literature on PL 

encompasses multiple academic disciplines. A considerable cohort of scholars is emerging 

from the domains of Education and Instructional Technology. However, it is not surprising 

that the study of PL has drawn the attention of several prominent authors and scholars in 

the fields of computer science and information technology. Bernacki et al. (2021) 

confirmed that research in PL has resulted from effective collaboration among 

interdisciplinary researchers. This section attempts to analyze the distribution of academic 

disciplines that explore personalized learning by coding and examining first author 

affiliations. There are seven primary categories of academic disciplines who study the 

Personalized Learning, such as: Computer Science, Computing, Education, Information 

Technology, Science, Business and Management, and Engineering. Interestingly, this 

study revealed that researchers in Computer Science (n=21; 34%) and Computing (n=9; 

15%) were more frequently involved in the investigation and development of PL strategies 

and tools within the LMS environment compared to scholars from the educational field 

(n=9; 15%). 

 

 

Fig. 3 Target of educational level within 61 studies 
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Another intriguing finding is that several terms emerged when addressing personalized 

learning in the included literatures. We identified five frequently used terms: personalized, 

adaptive, personalised, personalization, and individualized. This significant discussion has 

arisen and addressed by Shemshack and Spector (2020), the study aims to minimize the 

gap in the usage of PL terms by identifying a unified and robust term. Since those terms 

have been known and used interchangeably. Given the circumstances, we attempted to 

analyze the use of personalized learning terms in our study and investigate the relevance 

of each term to the authors’ academic field. As shown in Figure 4, the majority of terms 

used were “Personalized” and “Adaptive”, with few studies using the term 

“Individualized”. The term “Adaptive” was most commonly used in computer science 

studies, whereas the term “Personalized” was used in education. Furthermore, limited 

studies utilized the term in British English writing style by employing the term 

“personalised”. However, the field of Science demonstrated an uncertain use of the term, 

as studies adopted multiple terms. Table 2 details and samples the studies that used each of 

the terms, as well as the definition used within each study, in order to assist 

understandability of the rationale behind the choice of the PL term. 

 

 

 

 

 

 

 

 

 

Fig. 4 Relationship between academic fields and personalization terms used 
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Table 2 Terms in personalized learning used in 61 studies 

Term Author Academic 
Field 

Definition summary 

Adaptive Chang et al. 
(2016) 

Computer 
Science 

Adaptive learning provides diverse learners the 
opportunity to pursue personalized learning paths 
and fulfil their educational needs through adaptive 
technologies, which include adaptive presentation 
and adaptive navigation support. 

Bhaskaran & 
Swaminathan 
(2014) 

Computing Adaptive learning encompasses intelligent software 
that must be autonomous and capable of learning 
within the system architecture of learner agents, 
classifier agents, and collaborative agents to 
accurately classify learners. 

Personalized Nguyen et al. 
(2024) 

Education Personalized learning entails identifying suitable 
educational resources for every learner based on 
their specific attributes, such as learning style. 

Jeevamol & 
Renumol 
(2021) 

Computer 
Science 

Personalized learning entails the development of 
domain knowledge that includes learner 
preferences and objectives to recommend suitable 
learning materials for each learner. 

Personalised Papanikolaou 
& Boubouka 
(2020) 

Education Personalized learning addresses the feasibility and 
effectiveness of tools or features for implementing 
adaptive courses personalized to individual learner 
differences. 

Zielinski et al. 
(2014) 

Engineering Personalised learning seeks to enhance the 
individual learning experience by defining specific 
learning objectives and unique learning pathways, 
facilitated by semantic web educational resources, 
reasoning frameworks, and formal ontologies. 

Tashiro et al. 
(2016) 

Business and 
Management 

Personalised-inclusive-adaptive refers to a system 
that evaluates a student’s accessibility and 
preferences, while also enabling students to enroll 
in the lesson at any time based on their needs. 

Personalization Hinkle (2023) Science Personalization of learning entails tailoring content 
delivery to more targeted teaching methods and 
improving remediation of specific areas of learners’ 
knowledge deficits. 

Imran et al. 
(2015) 

Information 
Technology 

Personalization of learning assists students by 
offering recommendations for selecting learning 
tasks based on their prior achievements, collective 
grades from the same cohort, individual 
preferences, and the difficulty level of the tasks. 

Individualized Donevska-
Todorova et 
al. (2022) 

Science Individualized learning enables learners to take 
greater control over their educational experience, 
supported by adaptive technologies that provide 
personalized feedback, tailored sequences of 
learning activities, and individual pathways. 

 

RQ2: What learner characteristics have been utilized as parameters in PL 

through the integration of LMS? 

This section examined the diverse learner characteristics utilized as parameters or models 

to tailor the learning experience in the PL strategies (refer to Figure 5). The most commonly 

referenced attribute was the Learner’s Knowledge level (n=31; 38%). Over half of the  
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studies examined indicated that the academic level of learners may assist the adaptive LMS 

in delivering customized materials and activities. The determination of knowledge level is 

often conducted through initial diagnostic tests, a prior knowledge database, and 

performance monitoring. The second significant characteristic is the incorporation of 

learning styles (n=21, 26%) in aligning key teaching and learning materials according to 

the dimensions of the selected learning style. Figure 6 depicted the three most frequently 

referenced learning styles in the PL research among the reviewed studies, such as:  

(1) Felder-Silverman Learning Style Dimension (FSLSM); (2) Visual, Auditory, 

Read/Write, and Kinesthetic (VARK); and (3) Myers-Briggs Type Indicator (MBTI). 

The interaction between learners and the LMS platform (19%) was also regarded as a 

significant input for the PL strategy. The data captures learner behaviors throughout the 

learning process. This pertains to the frequency and eagerness of learners in engaging with 

course materials and assessments within the LMS. In addition, it is accessible in nearly all 

LMS platforms, referred to as data logs. Instructors and administrators may extract these 

logs to carry out learning analytics and monitor learning progression through the LMS. 

Learner preference constituted 10% of the studies. This parameter offers learners a certain 

degree of control over their learning process. The learners may decide on their language 

 

Fig. 5 Learner characteristics used to develop learner model in LMS within the study 

 

Fig. 6 Learning styles adopted to develop learner model in LMS within the study 
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and dashboard preferences (Qazdar et al., 2016; Suwawi et al., 2018), or the format of 

learning materials (Al Abri et al., 2020; Qazdar et al., 2016; Tashiro et al., 2016). Some 

questionnaires designed to elicit learner preferences can demonstrate learner interest in the 

personalized aspect that will be provided to them. Further automated methods are also 

feasible through monitoring via the LMS system. Moreover, a small percentage of studies 

(7%) utilized learner background characteristics to personalize teaching content. 

RQ3: Which LMS platforms are most frequently used to facilitate the PL 

environment? How are PL initiatives developed and/or implemented in LMS? 

This section examines the technological supports that facilitate the personalized learning 

strategy within LMS. The predominant LMS framework utilized was Moodle (n=41, 67%). 

Figure 7a specifically indicated additional LMS frameworks predominantly utilized 

following Moodle, including University-based LMS (n=5; 8%), Canvas (n=3; 5%), and 

Blackboard (n=3; 5%). This study also analyzed a university-based LMS to assess the 

extent of its utilization in higher education. For instance, Cai (2018) examines the Adaptive 

Learning (AL) technology within the Web-based Learning Management System at 

Colorado Technical University (CTU), Huang et al. (2023) examined the use of the 

iLearning online learning platform at a northern university in Taiwan, while Tashiro et al. 

(2016) investigated the development of personalized learning at Northern Arizona 

University, referred to as NAU-PL. The three studies indicated the initial objective of 

developing the personalized learning management system platform but weren’t clear on 

the framework employed, thus, we classified it as a university-based LMS. 

 

 

 

 

                                        (a)                                                                               (b) 

Fig. 7 (a) The distribution of LMS used; (b) Technology initiatives to develop PL environment 
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Furthermore, Canvas and Blackboard are also popular options for educational institutions 

to manage their personalized education processes. In addition, this study also indicated that 

15% (n=9) of the studies did not specify the type of LMS utilized in establishing the PL 

environment. For example, Bhaskaran and Swaminathan (2014), Nouman et al. (2024), and 

Al-Chalabi et al. (2021) developed an Intelligent Adaptive System within LMS, yet they 

did not explicitly state the name of the LMS framework. This suggests that when the study 

omitted the title of the LMS framework, the researchers developed their own versions of 

the LMS framework. For instance, Alsobhi and Alyoubi (2019) constructed an innovative 

adaptive system known as the Dyslexia Adaptive E-learning Management System 

(DAELMS), without referring any specific existing LMS framework such as Moodle. 

Moreover, this study examines the specific technologies utilized to facilitate PL 

environments, following the identification of the most commonly used LMS platforms (see 

Figure 7b). The study revealed that default or standard menu of LMS options constitute the 

most frequently utilized initiative, representing 23% (n=16) of the identified technologies. 

This discovery suggests that numerous researchers were utilizing the built-in menu features 

of LMS platforms to deliver customized learning experiences. For example, functionalities 

such as restricting access to educational resources based on individual learners’ 

performance metrics are frequently employed. Subsequently, algorithm-driven initiatives 

receive significant attention, emphasizing the importance of computational methods in 

advancing PL. Algorithms utilized encompass fuzzy logic (Bradáč et al., 2016) machine 

learning, J48 (Maâloul & Bahou, 2021), Bayesian networks (Chang et al., 2022), and  

k-means clustering (Laksitowening et al., 2020). 

In addition, the notable integration of ontology (10%), intelligent systems (7%), and 

recommender systems (6%) in LMS illustrates the necessity of improving the PL 

environment by taking into account learners’ attributes and providing customized content. 

In addition, the utilization of plugins (8%) to enhance default LMS functionalities is 

significant. For instance, Arsovic and Stefanovic (2020) proposed a plugin extension for 

an adaptation module on Moodle LMS, Limongelli and Sciarrone (2014) developed a 

plugin in conjunction with adaptive educational hypermedia, and Pagano and Marengo 

(2021) employed a plugin to provide additional assessments, thereby creating personalized 

learning paths. The adoption of advanced technologies, including deep learning (DL), 

artificial intelligence (AI), natural language processing (NLP), and support vector 

machines (SVM), although representing a minor percentage, indicates an emerging trend 

towards the integration of innovative technologies into learning management systems 

(LMS). Pardamean et al. (2021) developed an AI technology designed to enhance the 

Moodle LMS through collaborative filtering, which yielded satisfied and objective 

evaluations. This AI technology was capable of creating a logical flow for determining 

learning styles, forming study groups, managing the learning process, and recommending 
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learning materials. Similarly, Qi et al. (2023) integrated NLP and DL methods to optimize 

feedback within LMS platforms. The NLP component extracted learners’ behaviors and 

learning portfolios, enabling the delivery of tailored, personalized feedback aligned with 

each student’s progress. These findings emphasize the significant potential of advanced 

technologies to improve personalization and adaptability in educational settings. 

This section presents a Sankey diagram in Figure 8 to elucidate the relationship between 

the year of publication, the academic disciplines studying personalized learning, and the 

technological initiatives employed to implement personalized learning. The objective of 

this effort is to demonstrate trends over time illustrating how various fields have 

contributed to the advancement of PL through technology. Beginning in 2014, computer 

science (CS) and information technology (IT) prominently emerged as leading contributors 

to PL research. Then, commencing in 2018, Education field has been engaged in reporting 

the development of PL environments, utilizing the default LMS menu and features, along 

with various additional applied techniques. This highlights practical applications rather 

than solely technical innovations in fields such as computer science and information 

technology. Nonetheless, we observed a rising trend of interdisciplinarity in the PL 

approach, incorporating the academic fields of Computing, Engineering, Science, and 

Business Management into PL research. Moreover, the introduction of AI and data-driven 

solutions underscores the potential transition towards interdisciplinary approaches in 

shaping the LMS to support the PL environment. 

 

 

 

 

 

 

 

Fig. 8 Relations among year of publication, academic fields, and PL initiatives in LMS 
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RQ4: What learning aspects are personalized within PL environment through 

the integration of LMS? 

This section emphasizes the predominant aspects of personalized learning within a 

Learning Management System (LMS) environment. Following the classification of 

learners according to learners’ attributes and requirements, the LMS platform will deliver 

customized learning aspects designed by instructional designers or educators. Figure 9 

demonstrates that personalized learning content constitutes the predominant feature in 

LMS environments (59%), followed by personalized learning paths (20%), personalized 

feedback (9%), personalized assessments (7%), customized dashboards and learner profile 

(3%), and personalized forums at 1%. 

Remarkably, the majority of studies (41 out of 61 studies) tailored the learning content 

in attempt the personalized learning strategy. This study defines learning content as the 

materials and knowledge to be provided, including reusable learning objects available to 

learners through the LMS. Ristić et al. (2023) categorized different learning objects, 

including presentations, video materials, and audio resources, designed for specific 

learning styles, such as VARK. The alignment of learning objects with distinct learning 

styles demonstrates the implementation of content personalization. In addition, 

personalized learning paths have been extensively embraced by researchers in PL. For 

example, Musumba and Wario (2019) allowed students to modify their learning trajectories 

based on their preferences, whereas Lagman and Mansul (2017) employed learner 

achievement metrics to regulate the sequence of educational content, thereby illustrating 

the adaptability of personalized pathways. 

Moreover, personalized feedback and tailored assessments have drawn significant 

interest. For instance, the study conducted by Qi et al. (2023) which provided feedback 

based on learners’ performance levels, illustrating a considerable effect in contrast to 

conventional feedback methods. Additional personalized elements, including activity 

completion notifications (Molins & García, 2023), tailored dashboards (Suwawi et al., 

2018), individualized learner profiles (Maâloul & Bahou, 2021), and personalized forums 

 

 

Fig. 9 The distribution of personalized learning aspect in LMS environment 
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(García-Peñalvo et al., 2014) while constituting a minor percentage of implementations, 

this illustrates the capacity for expanded personalization beyond educational content, and 

highlight emerging opportunities for enhancing personalized efforts within LMS platform. 

RQ5: What are targeted learning outcomes sought to be achieved through PL 

facilitated by LMS? 

To address this research question, the authors examined the primary objectives of the 

selected studies that implemented the PL strategies. Although not every research paper 

explicitly stated their primary rationale, we endeavored to ascertain the reason by 

examining the end-goal of the proposed PL model in each selected study. Figure 10 

provides the specific learning outcomes identified in the selected studies. This study 

highlights that the incorporation of PL within the LMS environment primarily seeks to 

improve learners’ educational outcomes. A total of 30 analyzed studies concentrating on 

enhancing performance (Al-Shamali et al., 2020; Holthaus et al., 2018; Maier, 2021), 

achievement (Alsobhi & Alyoubi, 2019; Lagman & Mansul, 2017; Pardamean et al., 2021), 

and mastery of course content through the continuous monitoring of learner performance 

(Al-Chalabi et al., 2021; Hernandez Cardenas et al., 2022; Karaoglan Yilmaz & Yilmaz, 

2020). Furthermore, there was a remarkable objective aimed at improving the effectiveness 

of the learning process (Cai, 2018; Imran et al., 2015; Papanikolaou & Boubouka, 2020), 

and the overall learning experience (Kaw et al., 2022; Nouman et al., 2024; Zielinski et al., 

2014). 

The nurturant learning effects beside cognitive academic performance have also garnered 

considerable interest. This study indicates that PL strategies can enhance satisfaction 

(Bhaskaran & Swaminathan, 2014; Kouis et al., 2020; Lee et al., 2018), motivation (Huang 

et al., 2023; Qi et al., 2023), self-regulated learning (SRL) (Manickavasagam & Surwade, 

2017; Molins & García, 2023), and self-directed learning (SDL) (Donevska-Todorova et 

al., 2022). Additionally, an equivalent proportion of studies (4%) focused on improving 

 

 

Fig. 10 Targeted learning outcomes within the selected studies 
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learner engagement (Huang et al., 2023; Pagano & Marengo, 2021; Sweta & Lal, 2017), 

assessing the acceptance (Apoki, 2021; Louhab et al., 2020), and usability of LMS tools 

(Chang et al., 2016) that facilitate personalized learning. A minor portion of the studies 

(3%) investigated the establishment of learner social networks through the development of 

LMS plugins, thereby allowing learners to maintain personal pages featuring posts and 

widgets (Suwawi et al., 2018), as well as through the delineation of learner social profiles 

to categorize learners according to their interests (Maâloul and Bahou, 2021). Furthermore, 

a mere 1% of studies concentrated on mitigating dropout rates (Sein-Echaluce et al., 2017) 

and training time (Pagano & Marengo, 2021). 

Discussion 

This paper provides a review of the literature concerning personalized learning initiatives 

utilizing learning management systems over the past ten years. Over 61 studies indicate 

that the investigation of PL practices within classroom settings has become increasingly 

prevalent, particularly in Asia and Europe. This study reveals that the implementation of 

Learning Management Systems (LMS) in achieving personalized learning (PL) is primarily 

observed in higher education contexts, particularly at the undergraduate level. Nonetheless, 

this finding corroborates prior systematic literature reviews in PL, which indicated that the 

primary focus of PL implementation was mainly on higher education level (Bernacki et al., 

2021; Li & Wong, 2019). Moreover, there was also an increase in interest in the 

employment of multi-level learner as research subject, which were followed by lower 

education levels. For instance, a study conducted by Al-Chalabi et al. (2021) involved 60 

learners aged 18 to 30 years in Python programming courses to assess their knowledge 

levels in relation to their personalized strategies. 

This study argues that the practice of PL should not be confined to higher education. For 

instance, The US Department of Education has established PL regulations for elementary 

schools since 2015 through the “Every Student Succeeds Act” (ESSA) (Zhang, 2020). 

Similar policies have been implemented by the Australian Curriculum, Assessment, and 

Reporting since 2010 (Zhang & Stephens, 2013), Japan’s GIGA initiatives (Yu & Anezaki, 

2024), and the United Arab Emirates’ Mohammed bin Rashid Smart Learning Program 

(MBRSLP), which proposes digital tools for adaptive learning technologies (Alnaqbi & 

Sarah, 2022). This presents a research opportunity to examine the implications of Learning 

Management Systems (LMS) and Personalized Learning (PL) within lower education 

levels, taking into account the capabilities of young children, specifically elementary and 

secondary learners, in utilizing the LMS platform. 

In addition to discussing our findings, this study highlights the persistent inconsistency 

in the use of the term “personalization” within learning research. Despite the significant 

contributions from leading scholars in fields such as Computer Science, Computing, and 
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Education, this inconsistency mirrors previous research observations. Notably, we 

uncovered intriguing variations in how different academic disciplines define and employ 

the concept of personalized learning. Studies led by scholars in Computer Science, 

Computing, and Engineering predominantly used the term “adaptive” learning, while those 

from the Education field and other disciplines tended to employ the broader term 

“personalized” learning in their research. This inconsistency in terminology has been 

previously examined by Shemshack and Spector (2020), who concluded that a unified 

consensus on the adoption of either “adaptive” or “personalized” learning is necessary, 

particularly as these terms may evolve due to advances in human-machine interaction. 

Furthermore, our study identified only one instance of the term “individualized” learning, 

which originated from research within the Science discipline. To address these 

discrepancies, this study attempts to define and clarify the terms “personalized,” “adaptive,” 

and “individualized” in Table 3, providing a framework for adoption in future research. 

The second research question examined which learner characteristics are most frequently 

incorporated into modelling adaptive learning plans LMS. Findings from this study 

indicate that learners’ knowledge levels and learning styles are of primary interest in 

adaptive learning design. These characteristics are integral to building a learner model, 

serving as indicators that assist PL systems in understanding learners’ perceptions and 

recommending suitable learning resources (Ulfa et al., 2019). According to Fariani et al. 

(2023), the learner model involves categorizing learners based on distinct components, 

forming a foundation for tailored recommendations. Al-Chalabi et al. (2021) further 

emphasized that learners’ knowledge levels significantly influence the overall learning 

experience. Based on knowledge level classification, a personalized LMS platform can 

suggest tailored learning materials, promoting differentiated learning paths for each learner 

according to their progress and achievements. A related study by Apoki (2021) 

demonstrated the value of tracking learners’ progression through details such as knowledge 

level, grades, and completed competencies. These elements contribute to the learning state, 

which establishes associations with domain-specific knowledge and supports semantic 

reasoning. 

Another notable finding is the importance of learning style as a critical variable in 

adaptive learning, with the Felder-Silverman Learning Style Model (FSLSM) becoming 

widely used. The FSLSM categorizes learners into four dimensions: active/reflective, 

visual/verbal, sensing/intuitive, and sequential/global, allowing for a more nuanced 

approach to personalized learning. In contrast, this study contradicts the categorization of 

learners based on learning styles, corroborating the concerns of Nancekivell et al. (2020), 

Newton and Miah (2017), and Riener and Willingham (2010), who contend that learning 

styles are predominantly a “myth.” This assertion is bolstered by the absence of substantial 

evidence indicating that distinct learning styles (i.e., auditory, visual, kinesthetic, or 
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sensory) necessitate customized educational resources for optimal results. Riener and 

Willingham (2010), for instance, asserted that tailoring media exclusively to various 

learning styles, such as offering videos solely for visual learners or podcasts exclusively 

for auditory learners, is typically unwarranted and lacks empirical support. Shemshack et 

al. (2021) addressed the prevalent method of utilizing self-reported questionnaires for 

gathering learning style data. Such methods frequently permit learners to select their 

preferred style, which may not produce optimal educational outcomes, as learners often 

find it challenging to discern the most effective style for their requirements. In their 

conclusion, Newton and Miah (2017) assert that, due to the debates regarding learning 

styles, educators may more effectively enhance their classrooms by prioritizing empirically 

validated instructional strategies instead of accommodating assumed learning style 

preferences. For example, Sumarlin et al. (2024) developed Mobile Adaptive Educational 

Hypermedia (AEH) tailored to the learning styles of specific engineering students, 

resulting in improved learning outcomes empirically. 

This study indicates that Moodle is the most extensively utilized LMS for enhancing 

personalization in the classroom. Reid (2019) asserts that Moodle is the preferred Learning 

Management System employed by numerous universities worldwide for managing 

educational activities, owing to its cost-effectiveness. Moodle possesses a comprehensive 

array of features, and its open-source nature renders it especially conducive to developing 

customized strategies. Furthermore, Moodle’s default menu encompasses a broad variety 

of features to support personalized learning, including access restrictions, activity 

completion functionality, conditioned activities, and an alert system (Molins & García, 

2023). Consequently, it involves the potential for customizing course learning materials 

(Alsadoon, 2020; Lim et al., 2019; Pardamean et al., 2021), and learning paths (Donevska-

Todorova et al., 2022). Although these default features may not seem cutting-edge, they 

are systematically designed to be adaptive based on learner-centric approaches. In addition, 

frequently associated with more sophisticated strategies such as monitoring learner 

progress and tailoring feedback. Furthermore, this finding underscores the significance of 

synchronizing instructional strategies with Moodle’s tools, as demonstrated by Donevska-

Todorova et al. (2022) and Hernandez Cardenas et al. (2022). Cevikbas and Kaiser (2022) 

also contributed to the body of knowledge regarding the potential integration of flipped 

classroom and personalized learning initiatives. 

The enhancement of learning performance emerged as one of the primary instructional 

objectives within PL initiatives facilitated by LMS in our study. Despite the potential 

challenges associated with digital learning strategies, particularly in monitoring and 

evaluating progress due to the vast and complex data generated (Surur et al., 2024). LMS 

platforms mitigate these difficulties through built-in grading and tracking features. These 

tools enable instructors to closely monitor individual learners’ progress, identify areas of 
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strength and areas needing support, thereby subsequently provide personalized 

recommendations. Such functionality aligns with the overarching goal of PL to promote 

mastery learning by tailoring instruction to each learner’ unique needs. Interestingly, our 

study also highlights a potential emerging trend in exploring nurturant effects within LMS-

supported PL environments. Nurturant effects refer to the significant, often implicit, impact 

that instructional models have on learners’ emotional and social development, alongside 

cognitive outcomes (Joyce et al., 2016). In the context of PL, these broader effects 

encompass learner satisfaction, motivation, Self-Regulated Learning (SRL), Self-Directed 

Learning (SDL), engagement, and perceived usability of the learning platform. In addition, 

the increasing focus on outcomes beyond cognitive gains has garnered significant attention 

within educational research. Various technology initiatives have been investigated for their 

potential to boost learner engagement, especially within online learning contexts (Fatawi 

et al., 2020). Furthermore, heightened levels of SRL and SDL have demonstrated positive 

impacts on learners, facilitating autonomy and responsibility in the learning process 

(Lasfeto & Ulfa, 2023). Such findings underscore the potential of PL strategies to cultivate 

enriching and positive learning experiences, thereby contributing to improved achievement, 

persistence, and overall educational satisfaction. 

In summary, this study has explored the trends and advantages of integrating personalized 

learning through the use of LMS over the past decade. It is noteworthy that this research 

makes a significant contribution to the body of personalized learning theory. According to 

Watson and Watson (2017), personalized learning is deeply rooted in constructivist 

frameworks, including Self-Regulated Learning (SRL), Self-Determination, Goal-

Orientation, and Flow Theories. Additionally, this study suggests that personalized 

learning environments supported by LMS can be conceptualized through Bandura’s Social 

Learning Theory (SLT) (Bandura, 1977), which emphasizes that learning occurs through 

observation, imitation, and reinforcement within social interaction contexts. A key feature 

of LMS is its ability to extend the classroom and foster meaningful interactions among 

users (i.e., teachers, learners, and peers) irrespective of time and location (Sejzi & Aris, 

2013). Moreover, the accessibility of diverse learning materials enables learners to engage 

with content prior to applying it in real classroom settings. Features such as discussion 

forums, feedback mechanisms, and public learning progress tracking further encourage 

learners to reinforce positive learning behaviors. The alignment between personalized 

learning via LMS and SLT lies in the enhancement of both individual and social learning 

experiences, creating a more holistic educational process. 

Despite the extensive body of knowledge on personalized learning, concerns have 

emerged regarding its practical application in real-world educational settings. These 

concerns are driven by the complex challenges educators face, such as managing 

increasingly heterogenous classrooms, and adapting to new digital learning media (Mötteli 
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et al., 2023). Consequently, the integration of personalized learning systems and 

technologies prompts educational stakeholders to formalize the adoption of advanced 

teaching and learning solutions that extend conventional learning environments. For 

instance, the enactment of LMS in educational institutions can alleviate instructors’ loads 

to identify individual learner characteristics and deliver customized learning experiences. 

Bernacki et al. (2021) argue that educational stakeholders designing PL strategies must 

align their teaching materials with these changes, thereby allowing decision-makers to 

determine and adopt PL strategies that complement and enhance prior one-size-fits-all 

learning approach. In sum, this study suggests that the establishment of policy briefs and 

comprehensive guidelines on personalized learning would benefit educational stakeholders 

by bridging the gap between PL theory and its application in authentic learning 

environments. 

Conclusion 

This study has performed a comprehensive analysis of Personalized Learning (PL) 

strategies executed through Learning Management System (LMS) platforms. In the last ten 

years, there has been a notable increase in publications examining the construction of PL 

strategies, indicating growing scholarly interest, especially within computer science and 

education disciplines. The varied functionalities of LMS platforms have allowed 

instructors, scholars, and learners to gain significant educational advantages by employing 

the multitude of tools and features available within LMS, thereby improving the 

effectiveness of the educational process. This study concludes that the knowledge levels 

and learning styles of learners are the primary attributes utilized in developing learner 

models to inform personalized strategies within LMS. Furthermore, it was noted that the 

personalization of learning materials, learning paths, and feedback were the most 

commonly tailored components enabled by LMS platforms. Moreover, the main learning 

outcomes aimed at by these PL learning initiatives were the improvement of learning 

performance and learning effectiveness. Nevertheless, the overall objectives beyond 

cognitive improvements, including enhanced motivation, satisfaction, engagement, self-

regulated learning (SRL), and self-directed learning (SDL), exhibited promising interest. 

These findings indicate that LMS platforms can facilitate the development of favorable 

nurturant learning outcomes, promoting an engaging and supportive educational 

atmosphere. 

Notwithstanding the contributions of this study, several limitations must be recognized. 

Some important findings might have been unintentionally overlooked due to the lengthy 

literature review process and the enormous number of included studies. Future 

investigations into personalized and adaptive learning within Learning Management 

Systems are highly advisable to rectify current gaps. Significantly, since the majority of 
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personalized learning studies concentrate on higher education, there is a necessity for 

additional empirical research investigating the effects of personalized learning in lower 

educational contexts. Secondly, empirical evidence concerning the efficacy of learning 

styles, especially within frameworks beyond FSLSM and VARK, would contribute 

significantly to the existing knowledge on PL. Finally, augmented research on data-driven 

technologies is crucial to improve personalized instructional strategies, allowing LMS to 

provide customized learning experiences that cater to each learner’s pace, preferences, and 

distinct attributes. These advancements will guarantee that LMS platforms persist in 

evolving as dynamic instruments for promoting effective, learner-centered education 

across diverse educational levels and contexts. 
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