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 Abstract 

To make accurate predictions, complex artificial intelligence techniques are being 
adopted in intelligent systems. It leads to the need for explanations, helping users 
understand how the model works. Beyond this original purpose, explanations in 
educational intelligent systems have been found to increase students’ awareness, 
perceived usefulness, and acceptance of the recommendations. Can we ensure a 
model makes accurate predictions and has effects of explanations at the same 
time? Though it is commonly considered that complex models are accurate but 
difficult to interpret, it remains debatable whether there is a trade-off between the 
accuracy and explainability of such models. In this study, we explore the 
relationships between accuracy and explainability of different models for 
recommending math quizzes in the context of formative assessment. Focusing on 
three recommender models—an inherently explainable model (Naïve CE), a black-
box model (MF), and an integrated model (CE+MF), we compared the accuracy 
using a large-scale real-world dataset and evaluated the explanations in a semi-
interactive questionnaire survey. We found that: 1) There was a trade-off between 
accuracy and explainability given the specific context. 2) The explainability did not 
demonstrate consistent trends among different aspects. Especially, perceived 
understandability did not indicate the perceived usefulness in math learning and the 
behavioral intention to use the system. 3) The integrated model displayed a 
balanced level of accuracy and explainability, which implies the feasibility to 
develop an explainable educational recommender system by improving the 
accuracy of an inherently explainable model. 

Keywords: Recommender systems, Math quizzes, Explainability, Accuracy, Matrix 
factorization 
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Introduction 

Artificial intelligence (AI) techniques have been adopted in various intelligent systems to 

empower the task performance (Adadi & Berrada, 2018; Arrieta et al., 2020; Vultureanu-

Albişi & Bădică, 2022). Unlike traditional machine learning techniques, recent models 

have become more complex and bring about the need to explain how it works for humans 

(Khosravi et al., 2022; Vilone & Longo, 2021). Aspects of the explanation such as 

justification, effectiveness, efficiency, informativeness, and persuasiveness have been 

researched beyond the original motivation (Adadi & Berrada, 2018; Tintarev & Masthoff, 

2007; Vilone & Longo, 2021). Explanations in educational intelligent systems have been 

found to increase students’ awareness, perceived usefulness, acceptance of the 

recommended items (Barria-Pineda et al., 2021; Conati et al., 2021; Dai, Takami, et al., 

2022; Hur et al., 2022; Takami et al., 2022). It is important and beneficial to provide 

explanations when adopting advanced techniques in intelligent systems to make an impact 

on learning. 

Can we ensure a model that makes accurate predictions and has effects of explanations 

at the same time? Intuitively, more complex models have better performance at making 

predictions but are more difficult to interpret. However, deep models do not always 

outperform simpler ones, and complexity does not necessarily reduce explainability (Bell 

et al., 2022; Gervet et al., 2020). In addition, it is challenging to define and measure 

explainability consistently (Vilone & Longo, 2021). Consequently, the accuracy-

explainability trade-off is rarely verified in practice (Bell et al., 2022; Molnar et al., 2022; 

Rudin, 2019). Given the contrasting arguments in the discussion of the trade-off between 

accuracy and explainability and the difficulty to measure explainability, it is necessary to 

explore it in the specific context of our interest. 

If there is a trade-off between the accuracy and explainability of a model, what is the 

better approach to develop an explainable accurate model? Should we develop an 

explainable model in the first place and then improve the accuracy or develop a complex 

model and try to explain it afterwards (Molnar et al., 2022)? Over-using complex models 

was concerned while an inherently explainable model which has a comparable accuracy is 

available (Khosravi et al., 2022; Molnar et al., 2022). To address the forementioned issues, 

we focus on a formative assessment context, where the system estimates mastery levels 

and recommends math quizzes for K-12 students. By comparing three recommender 

models—an inherently explainable model, a black-box model, and an integrated model, 

our goal is to answer the following questions: 

RQ1: Is there a trade-off between the accuracy and the explainability of recommender 

models in the context of K-12 math learning? 

RQ2: Is it feasible to enhance the accuracy of inherently explainable educational 

recommender systems by integrating them with black-box models? 
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Specifically, we focused on a recommender system named Naïve Concept Explicit 

(Naïve CE) (Dai, Flanagan, et al., 2022) which recommends quizzes based on the 

estimation of the students’ mastery level on math concepts and provides explanations 

alongside with the recommendations. We selected Naïve CE as it serves as an example of 

an inherently explainable model which adopts shallow computations with human-readable 

math concepts. Besides, Naïve CE has a comparable black-box model—Matrix 

Factorization (MF), which is commonly used in general recommender systems. We also 

proposed an integrated model CE+MF with the expectation of preserving the 

characteristics of both models in terms of accuracy and explainability. We then compared 

the accuracy of three models using a large-scale real-world dataset of student quiz answers. 

For the explainability, we conducted a pilot study to explore how to generate and evaluate 

the explanations. We designed a semi-interactive questionnaire and collected the opinions 

of 12 participants on different aspects of the explanations. We found that: 1) There was a 

trade-off between the accuracy and explainability of the models given the specific context 

of a math recommender system. 2) The explainability demonstrated different trends among 

perceived understandability, perceived usefulness in math learning and the behavioral 

intention to use the system. 3) The integrated model displayed a balanced level of accuracy 

and explainability. 

The contribution of this study is threefold: 

⚫ We evaluated and compared the accuracy and explainability of educational 

recommender systems under realistic settings. 

⚫ We explored the way to measure explainability of recommender systems from 

educational perspectives, which is an important step towards the enrichment of 

explainable AI research. 

⚫ Our approach served as an example to develop explainable recommender systems by 

integrating inherently explainable models with black-box models. 

The remaining part of this paper is structured as follows. We first review and summarize 

the related works in both general and educational contexts. We then describe the basics of 

three models to be compared. Afterwards, we evaluate the accuracy and explainability of 

the models, respectively. Lastly, we present results, discussion, conclusion and future work. 

Related works 

Explanations in intelligent systems 

The discussion about explainable artificial intelligence (XAI) stems from the lack of 

transparency in black-box models (Adadi & Berrada, 2018). For example, recent AI 

techniques such as neural networks involve complex structures of hidden layers, which are 
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difficult to understand for humans (Khosravi et al., 2022; Vilone & Longo, 2021; 

Vultureanu-Albişi & Bădică, 2022). Early machine learning methods such as decision trees 

and linear regression are considered as transparent as the outcomes are traceable and easy-

to-understand to humans (Arrieta et al., 2020). With more attention from the researchers 

and practitioners, the purposes and effects of explanations have been extended to 

justification, control, improvement, effectiveness, efficiency, informativeness, 

persuasiveness, trust, satisfaction, and so on (Adadi & Berrada, 2018; Tintarev & Masthoff, 

2007; Vilone & Longo, 2021; Vultureanu-Albişi & Bădică, 2022). 

Due to the diverse purposes of providing explanations, there is still no agreement on the 

definition of explainability among scholars (Adadi & Berrada, 2018; Vilone & Longo, 

2021). In this study, we follow Miller’s (2019) notion of “explainability”, which is the 

ability of a system making the human-user to understand its decisions during the 

computation. 

Discussions about accuracy and explainability 

Complex black-box models are commonly considered to be more accurate but less 

interpretable. However, this trade-off between accuracy and explainability is rarely 

confirmed in practice, with conflicting evidence found in research (Arrieta et al., 2020; 

Bell et al., 2022; Guleria & Sood, 2023; Molnar et al., 2022; Rudin, 2019; Vilone & Longo, 

2021). Deep knowledge tracing models did not always generate better predictions than 

logistic regression models as the size and shape of dataset changed (Gervet et al., 2020). 

Guleria and Sood (2023) compared the performance of typical white-box and black-box 

classifiers for predicting job placement. They found that naïve Bayes models outperformed 

black-box models such as ensemble models and neural network. It is difficult to quantify 

explainability compared with the richness of metrics to measure accuracy (Bell et al., 2022). 

This motivates us to explore whether there is a trade-off between the accuracy and the 

explainability of recommender systems in the specific context of math learning. 

Given the uncertainty of the trade-off between accuracy and explainability, another 

intertwined question is how to develop an accurate and explainable model. Basically, 

model-intrinsic explanations can be generated easily from the model itself if the model is 

inherently explainable. Post-hoc explanations can be added if the model is complex in its 

nature (Zhang & Chen, 2020). In educational contexts, an example of model-intrinsic 

explanation can be to explain how the student’s knowledge state is estimated and why a 

learning item is considered preferable to improve his/her knowledge state (Dai, Flanagan, 

et al., 2022). In contrast, a post-hoc explanation for a recommended item can be something 

not necessarily related to the knowledge state estimation but instrumental in motivating the 

student to accept the recommendation. For instance, an explanation showing how many 
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students have attempted this item may work for students who are weak to peer pressure 

(Takami et al., 2023). 

Adopting post-hoc approaches could be risky for high-stakes domains as the explanations 

may provide misleading information (Rudin, 2019). For instance, feature-based 

explanations were adopted for black-box models but Swamy et al. (2022) found that the 

explainers are not consistent on feature importance. If an inherently explainable model has 

a comparable accuracy, over-using complex models is not recommended (Khosravi et al., 

2022; Molnar et al., 2022). What is the better way to develop accurate and explainable 

models? In this study, we investigate the accuracy and explainability of an inherently 

explainable model, a complex model, and an integrated model. Generating explanations 

for the complex model serves as the approach to explain a complex model and the 

integrated model serves as the approach to improve the accuracy of an explainable model. 

Types and principles of explanations 

Notions and characteristics of explainability should be expanded based on the domains in 

which it is applied (Vilone & Longo, 2021). From cognitive perspective, explanation is 

fundamental to human’s sense of understanding and has profound effects on causal 

inference and learning (Lombrozo, 2006). Therefore, two key elements of developing 

explainable educational recommender systems are—1) what explanations help improve 

students’ learning performance, 2) and how students react and perceive the explanations. 

Among various principles of generating explanations, a pair of contradictory principles 

is being complete and not overwhelming (Kulesza et al., 2015). Similarly, Ribeiro et al. 

(2016) named it as a trade-off between interpretability and fidelity of the explanations. A 

faithful explanation should describe the model completely to fulfill the fidelity. In contrast, 

an interpretable explanation should take human limitations into account. Following this 

argument, we divide explanations of intelligent systems into model-oriented and user-

oriented. For inherently explainable models, a complete explanation tends to be 

interpretable to users by its nature. Rule-based explanations are commonly adopted for 

models such as decision tree, fuzzy rules, and association rules (Alonso & Casalino, 2019; 

Conati et al., 2021). For black-box models, feature-based explanations are model-oriented 

as it uses “model language”. For example, Swamy et al. (2022) implemented different 

feature-based explainers in the neural network model of predicting student performance. 

They utilized the explainers to investigate the performance as model developers, who have 

knowledge to understand information such as feature importance scores. While knowledge-

based explanations emphasize how end users can process and utilize the information for 

decision making. For example, Wang et. al. (2018) extracted properties such as “neat”, 

“vegan”, and “sandwich”, which help users decide whether to accept a recommended 

restaurant. 
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In educational context, previous works investigated effects of explanations such as 

increasing students’ awareness, trust, and intention (Barria-Pineda et al., 2021; Conati et 

al., 2021; Ooge et al., 2022; Takami et al., 2023; Yu et al., 2021). However, the 

understandability and the fidelity of explanations, and how they interplay with other 

learning effects is underexplored. In this study, we aim at investigating whether the 

explanations a) help students understand how the model works, b) help math learning, and 

c) motivate students to adopt the recommendation in models of different types and 

performance. 

Preliminaries 

Naïve CE for math recommendations 

Formative assessment implemented with individualized tools is considered beneficial to 

students (Faber et al., 2017). As one type of digital formative assessment activity, we focus 

on the learning scenario where the students practice math quizzes and get feedback from a 

recommender system. Estimating the probability of a student mastering a given skill, which 

is called cognitive diagnosis, is an essential step to provide adaptive feedback (Desmarais 

& Pelczer, 2010). Rather than the final scores, namely, the probability of correctly 

answering a quiz, identifying specific missing concepts and difficult areas is more 

instructive (Birenbaum et al., 1993). As a result, it is desirable that the model recommends 

quizzes and estimates student skill levels by readable math concepts. 

Models such as item response theory (Yen & Fitzpatrick, 2006) and knowledge tracing 

(Corbett & Anderson, 1994), predict students answers by modeling it with parameters such 

as student skill level, item difficulty, knowledge states, learning rates, and so on. These 

models can estimate mastery levels of predefined skills or concepts, but usually involve 

complex probabilistic reasoning in the estimation. In this study, we select a concept-

explicit recommender system Naïve CE (Dai, Flanagan, et al., 2022) as an instance of 

inherently explainable model, where students’ probabilities of mastering math concepts are 

estimated in a shallow and human-understandable manner. 

However, we also have a concern on the estimation performance of Naïve CE. In other 

words, how well can Naïve CE estimate students’ mastery level and their probabilities to 

correctly answer the quizzes? Is there an inferiority in estimation performance compared 

with more accurate but less explainable models? As Barnes (2005) pointed out, it is 

debatable whether an explicit model with expert-assigned concepts models student 

performance better than an implicit model with latent factors. Therefore, we selected a 

classic recommendation model matrix factorization with latent factors as a comparative 

target of Naïve CE. 
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MF for general and math recommendations 

Matrix factorization (MF) (Koren et al., 2009; Takács et al., 2008) is a frequently used 

model to recommend items that users may have interests. This model assumes that a user’s 

interest in an item comes from her/his preferences on some factors and the relatedness of 

the factors with the item. It then guesses the unseen user-item interactions by learning from 

observed user-item interactions. Khosravi et al. (2017) applied MF in their model to 

estimate students’ knowledge gaps to answering the quizzes. To integrate the strengths of 

both models, Abdi et al. (2018) fed the error in Bayesian knowledge tracing model to an 

MF model, improving the accuracy of estimating student performance. Since MF has been 

widely adopted and evaluated as a useful model to estimate student performance and shares 

some similarities in modeling the problem with Naïve CE, we chose MF as a comparative 

model in discussing the estimation performance and model explainability. We also propose 

a method to integrate two models so that the readability of concepts in Naïve CE is 

preserved. 

Math recommender models 

Problem definition 

In the recommender systems, the learning activity is modeled as a sequence of students’ 

reactions towards quizzes. The task is to recommend quizzes that fit an individual student’s 

learning progress. It is common that the observed student reactions are limited to a small 

set of quizzes. As a result, predicting student reactions on unseen quizzes is a key step. We 

formalize the problem as follows: Given a set of 𝑚 students, a set of 𝑛 math quizzes, and 

the observed student correctness rates on the quizzes 𝑅 ∈ ℝ𝑚×𝑛 (whose entry 𝑟𝑖𝑗  indicates 

the correctness rate of quiz 𝑞𝑗 by student 𝑠𝑖), we want to estimate the student correctness 

rates on the whole set of quizzes 𝑅̂ ∈ ℝ𝑚×𝑛. 

Naive Concept-Explicit Model (Naïve CE) 

In this section, we briefly review the basic idea and mechanism of Naïve CE, which is 

mainly regenerated from Dai, Flanagan, et al.’s work (2022). Suppose that we have a quiz 

“Let the set of all positive divisors of 12 be A. Fill in the □ with ∈ or ∉. (1) 2□A (2) 7□A 

(3) 12□A”. Solving the math quiz requires the knowledge of “set” and “positive divisor”. 

The probability that a student can successfully solve a math quiz depends on how s/he 

understands the required concepts. 

STEP 1 We are given the observed student-quiz matrix 𝑅 whose entry 𝑟𝑖𝑗  indicates the 

correctness rate of quiz 𝑞𝑗 by student 𝑠𝑖, and the quiz-concept matrix 𝐾 whose entry 𝑘𝑗𝑜 

indicates the relatedness of a quiz 𝑞𝑗 and a concept 𝑐𝑜, we calculate the students’ concept  
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mastery level 𝐿 by looking at how they successfully solved quizzes related to the concept. 

The calculation can be abstracted as 𝐿 = 𝑅 ∙ 𝐾. Note that the quiz-concept relatedness is 

extracted from the quiz information automatically, which is also readable concepts to 

students. 

STEP 2 We then estimate the probability of a student successfully solving a quiz by 

considering how many of the required concepts have been mastered. The calculation can 

be abstracted as 𝑅̂ = 𝐿 ∙ 𝐾𝑇. 

By doing this, the probabilities are modified by the inter-relationships between quizzes 

and concepts. For instance, 𝑠1  successfully solved 𝑞1  in history but got an estimated 

success of 0.67. This is because 𝑞1 requires the knowledge of 𝑐1 and the student failed to 

solve 𝑞2 which also requires the knowledge of 𝑐1. However, this model falls short in coping 

with unseen concepts. For instance, 𝑠2 had not attempted any quizzes related to 𝑐3. As a 

result, 𝑐3 is ignored in STEP 2. 

Matrix Factorization (MF) 

We apply MF in the setting of solving math quizzes. MF decomposes the observed student-

quiz interaction matrix 𝑅 ∈ ℝ𝑚×𝑛  into two matrices 𝑃 ∈ ℝ𝑚×𝑡  and 𝐹 ∈ ℝ𝑡×𝑛  such that 

𝑅 ≈ 𝑃𝐹, where 𝑡 is the number of latent factors. 𝑃 is the student-factor matrix whose entry 

𝑝𝑖𝑡  represents the mastery level of factor 𝑓𝑡 by student 𝑠𝑖. 𝐹 is the factor-quiz matrix whose 

entry 𝑓𝑡𝑗 represents the relatedness of factor 𝑓𝑡 and quiz 𝑞𝑗. By minimizing the difference 

between the estimated and the observed interactions (also viewed as a machine learning 

process), we get full 𝑃  and 𝐹 , which help us estimate the unseen interactions. This 

underlying idea is somehow similar to Naïve CE except that the factors are “latent” and 

difficult to interpret. There is a variant of MF which considers user bias and item bias. As 

a user may tend to highly rate all items or an item of low quality tends to be rated low by 

all users, introducing bias parameters in MF helps model this situation. In this setting, user 

bias and item bias can be interpreted as student ability and quiz difficulty. By doing this, 

 

Fig. 1 The mechanism of Naïve CE model 
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the sum of 𝑃𝐹 and bias better approximates the observed interactions but the intermediate 

value of 𝑃𝐹 is harder to interpret. We omit mathematical details of the bias model for the 

sake of conciseness. 

Concept-Explicit Matrix Factorization (CE+MF) 

Previously, we discussed that Naïve CE is easy to interpret since the concepts are 

predefined and the computation is simple and straightforward. However, it simply gives up 

guessing when encountering unseen concepts and quizzes. In contrast, MF is good at 

estimating the probable values for unseen interactions by iteratively learning from the 

observed interactions. However, the latent factors of the consisting matrices are difficult to 

interpret. To take advantage of both models, we propose a simple hybrid model called 

CE+MF. As illustrated in Figure 2, Naïve CE utilized the observed student-quiz matrix and 

quiz-concept matrix to estimate student-concept matrix. The student-concept matrix is 

again used to adjust the student-quiz matrix. MF simply decomposes the observed student-

quiz matrix into two matrices with latent factors. In CE+MF, we first estimate the student-

concept matrix as we do in STEP 1 in Naïve CE model. Then, we adopt MF model to 

update the student-concept matrix where the mastery level on unseen concepts is modified. 

Last, we update the student-quiz matrix with the updated student-concept matrix as we do 

in STEP 2 in Naïve CE model. As a result, CE+MF model is supposed to have a higher 

predictive performance than Naïve CE model while preserving the explainability on 

concepts. To avoid redundancy, we omit the mathematical details of CE+MF. 

Evaluation 

In this study, we aim at investigating two aspects of the recommender models—accuracy 

and explainability. For accuracy, we capture it as the quiz mastery level estimation 

performance, and use a historical dataset collected in a learning system to evaluate whether 

the models can correctly predict students’ answers for unseen quizzes. For explainability, 

 

 

 

Fig. 2 The mechanisms of Naïve CE, MF, and CE+MF 
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we conduct a questionnaire survey where the explanations are displayed in a semi-

interactive manner. We then collect participants’ opinions of explainability from different 

perspectives. 

Accuracy: Quiz mastery level estimation performance 

Dataset 

We collected quiz answering data from a learning system (Flanagan et al., 2021) of the 

first-year students in a Japanese high school from April 2021 to March 2022. During this 

period, the students attempted the math quizzes in different contexts such as finishing the 

assignments, preparing for an upcoming test, and self-oriented practicing. As a part of the 

adjustment and correction in the formative assessment, they were required to check the 

answer and report whether they solved the quiz successfully after attempting a quiz. The 

system language and quiz language were Japanese. Each attempt was recorded as a 0-1 

score associated with the student id, quiz id, and timestamp. We computed the aggregated 

student-quiz correctness rate by taking the average score of all attempts throughout the 

period. We did not conduct any data filtering process as the temporal order of attempts and 

the number of attempts are not essential in this evaluation framework. Finally, we obtained 

a dataset consisting of 27,431 attempts for 270 unique students and 1,919 unique quizzes. 

Table 1 shows the statistics of the number of attempts per student and per quiz. After 

converting the log data into the student-quiz correctness matrix, only 23,155 pairs of 

students and quizzes were observed, which indicates a very high sparsity of 95.53% 

(1 −
# 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

# 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ∙# 𝑞𝑢𝑖𝑧𝑧𝑒𝑠
) . 

Metrics 

Our main concern is to evaluate whether a model can predict a student’s success probability 

in a quiz. Therefore, we adopt two metrics to measure the agreement between the estimated 

probability and true correctness rates: Area under ROC curve (AUC) is considered an 

effective metric to measure how well a model separate negative and positive samples across 

different decision threshold choices (Bradley, 1997). Since the true correctness rates for 

student-quiz pairs are real numbers between 0 to 1, we first transform the true correctness 

 

 

Table 1 Statistics of the dataset for quiz mastery level estimation evaluation 

 # attempts per student # attempts per quiz 

Mean 101 .596 14 .294 
SD 97 .681 31 .404 
Min 1  1  
Max 808  426  
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rates into 1 if it is greater than 0.5, 0 otherwise when applying AUC. Root mean square 

error (RMSE) is used to measure the absolute differences between the estimated 

probability and the true correctness rates. 

Implementation 

As illustrated in the left part of Figure 3, we randomly set aside 20% of the student-quiz 

correctness rate values as test data and all models were blind to these data during training 

or tuning process. For models involving hyper-parameter tuning, we adopted a 5-fold cross 

validation approach to select the best combination of parameters. As illustrated in the right 

part of Figure 3, in each fold, 20% of the data is used to validate the model’s performance 

and the average performance of all the folds is treated as the final performance of a 

combination of parameters. We adopted a grid-search approach to generate combinations 

of parameters. Only the performance of the best combination of parameters will be reported 

in the following section. 

The following are some implementation details of the models: 1) Naïve CE. As described 

in Dai, Flanagan, et al. (2022), we adopted text mining techniques to automatically extract 

math concepts from the quizzes. The entries of quiz-concept matrix were computed using 

term frequency-inverse document frequency weighting scheme (Salton & Buckley, 1988). 

2) MF. We adopted stochastic gradient descent algorithm to obtain the matrices 𝑃 and 𝐹 

whose product has the minimum difference with the observed student-quiz correctness rate. 

We tuned three parameters—learning rate 𝛼, regularization factor 𝛾 and number of latent 

factors 𝑘 for MF. MF_bias and CE+MF_bias are variants with bias parameters of MF and 

CE+MF, respectively. The best combination of hyperparameters is 𝛼 = 0.01, 𝛾 = 0.1,

𝑘 = 5 and is used in all MF-related models. The code for MF-related parts was adapted 

from Yeung (2020). 

 

 

 

 

Fig. 3 The data splitting process 



Dai et al. Research and Practice in Technology Enhanced Learning   (2026) 21:4 Page 12 of 27 

Results 

Table 2 shows the AUC and RMSE values for each model. Overall, Naïve CE has the 

lowest, MF has the highest, and CE+MF has the medium performance in both metrics. MF 

with bias has better performance both in separate and hybrid models. This result is 

consistent with our expectation: 

⚫ Naïve CE is straightforward but ignores unseen concepts or quizzes. From the 

perspective of AUC, this model can discriminate between correct or incorrect answers. 

However, the performance was nearly a random model from the perspective of RMSE, 

which means the detailed values of the correctness has a large gap with student’s true 

mastery level. 

⚫ MF and MF_bias did a good job at approximating the observed student-quiz 

correctness rates and therefore the latent factors helped to predict the values for 

unseen pairs. With the AUC value being close to 0.8, MF_bias is supposed to be 

practically useful to separate a correct or incorrect answer (Mandrekar, 2010). 

Meanwhile, the RMSE value was still high if we consider a situation where we 

mistake a student’s correctness rate 0.98 into 0.6. However, whether the students can 

recognize the difference and how they perceive the estimation needs to be further 

investigated and discussed. 

⚫ The hybrid model CE+MF achieved better performance than Naïve CE but still has a 

distance to MF. We consider a possible reason to be the flaws in quiz-concept matrix. 

First, not all necessary knowledge and skills for solving a math quiz can be detected 

from the textual information of the quiz. Second, the relatedness of the concepts to a 

quiz may not be correct just judging from their occurrences in the quiz. Ingesting 

more elaborate domain models to Naïve CE and observing the performance 

improvement is one of the future directions. 

Explainability 

Before evaluating with real users at a large-scale, we conducted a preliminary survey to 

reduce the uncertainty of the measurement of explainability. The survey is simulation-

based, where the participants do not really answer quizzes but only evaluate 

recommendations with synthesized answering history. Admittedly, the setting might be 

 

Table 2 Quiz mastery level estimation evaluation results 

Model AUC RMSE 

Naïve CE 0.639 0.508 
CE+MF 0.688 0.478 
CE+MF_bias 0.692 0.464 
MF 0.772 0.419 
MF_bias 0.799 0.381 
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limited as the experience of participants is not complete. Fortunately, simulation-based user 

studies were able to provide insights before real-world deployment (Wang et al., 2018). 

The following sections present the questionnaire design, survey procedure, and the results, 

respectively. 

Questionnaire design 

Following Miller’s (2019) notions, we call the statements which explains how the system 

works as explanations, the agent who generates the explanations as explainer, the human-

users who receives the explanations as explainees. The behavior of explaining is an 

interactive process between the explainer and the explainee (Miller, 2019). Intuitively, the 

explainee can question any elements s/he does not understand in a statement the explainer 

makes, which leads to the next explanation. Given this premise, it is intuitive to develop a 

conversational system between the recommender model and the user. However, conducting 

unstructured surveys such as interviews is difficult to quantify. In this study, we designed 

a semi-interactive questionnaire where all the available explanations are prepared in a 

sequence, and the participants can view them in an interactive manner. After the 

participants viewed the explanations, we used a 5-point Likert scale to evaluate the 

perceived understandability, perceived usefulness in math learning, and behavioral 

intention as listed in Table 3. Single-item measures were used in this study, and we leave 

well-constructed measures in the future work. 

Figure 4 illustrates the overall design of the questionnaire. The participant is supposed 

to view the explanation sequences and evaluate the models one by one. For each model, 

the explanations are displayed one by one, and the participant can stop viewing the 

remaining explanations at any time if s/he is satisfied with the previous explanations. As a 

result, the participant may give evaluations based on different numbers of explanations for 

the recommender models. Tables 4 to 6 list the explanation sequences for Naïve CE, MF, 

and CE+MF, respectively. Naïve CE, MF, and CE+MF are versatile at making various 

mathematical estimations. In this study, we focus on exploring their explainability on a 

common estimation. Therefore, the explanations of all three models start with the same 

recommendation of a specific mathematical quiz, followed with two explanations which 

 

 

Table 3 Items to evaluate explainability 

Aspect Item Source 

Perceived 
understandability 

I understand how the system works and 
makes its judgements. 

Chatti et al. (2022) 

Perceived usefulness in 
math learning 

I think the system and its explanations 
are helpful in my math learning. 

Original 

Behavioral intention to 
use the system 

I would like to use the system in real 
settings. 

Tintarev & Masthoff (2007) 
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indicate the estimated difficulty of the quiz. The explanations diverge from the third 

statements based on the algorithms behind the models. Note that we randomly sampled a 

quiz and synthesized the values to avoid bias. For instance, the explanations of Naïve CE 

then clarify how the difficulty is estimated by introducing the extracted mathematical 

concepts, their relevance with the quiz, how the mastery level is estimated from the 

answering history. Finally, the explanations end with an overview of the algorithm with 

some simple annotations. The explanations for MF and CE+MF are generated following 

the same policy. For MF, the explanations are the shortest as the latent factors are not 

explainable and the rationale of matrix factorization is too complex to be explained. In 

other words, many elements of the algorithm in MF model are still encapsulated in the 

explanations. For CE+MF, the explanations are the longest as it integrates Naïve CE with 

MF in terms of the algorithm. Note that all the explanations are generated from the 

perspective of explaining how a recommendation is made in the system in a student-

friendly manner. When we go deeper into the explanation sequence, we expect that it may 

not be of students’ interests to know the very details of the system. However, it is 

meaningful to include these explanations in a preliminary evaluation to explore participants’ 

opinions. 

 

 

 

 

 

Fig. 4 Illustration of the questionnaire design 
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Table 4 Explanation sequence of Naïve CE model 

Number Content 

Recommendation Quiz 129: The area decided inequality (boarder line is a parabola) 

Plot the area of the inequality in the graph.  

(1) 𝒚 > 𝒙𝟐 + 𝟐𝒙 (2) 𝒚 ≤ 𝟐𝒙𝟐 − 𝟖𝒙 + 𝟗 

Explanation 1 I recommend this quiz as I think it is challenging for you. 

Explanation 2 The estimated probability of you answering this quiz correctly is 0.2002. 
Since the probability is quite low, I think it is challenging for you. 

Explanation 3 I estimate the probability based on your understanding of the math concepts 

[inequality (不等式), parabola (放物線)] that are necessary to solve the quiz. 

Specifically, I estimate your level of understanding of inequality is 0.28, and 
your understanding of parabola is 0.18. 

Explanation 4 [inequality (不等式), parabola (放物線)] are considered to be necessary 

math concepts as they appear in the quiz or the standard solution. 

Explanation 5 Your level of understanding of inequality is estimated from your attempts on 
other quizzes which also requires the knowledge of inequality. Specifically, 
you have got Quiz 120 wrong once (correctness rate=0/1=0.0), and you 
attempted Quiz 121 twice and got it right for the second time (correctness 
rate=1/2=0.5). Then, I estimate your level of understanding of inequality by 
taking the weighted average of the correctness rates. 

Explanation 6 The weight of math concepts to a quiz is decided from the term-weighting 
perspective. If a math concept appears frequently in a quiz and not in other 
quizzes, it is considered to be important to this quiz. Therefore, inequality 
has different weights in Quiz 120 and Quiz 121, which affects the estimated 
level of understanding. 

Explanation 7 The following illustration summarizes how I work. 

student-quiz matrix (observed): you and other students’ correctness rates on 
the quizzes. 

quiz-concept matrix (observed): concepts’ weights in the quizzes. 

student-concept matrix (estimated): estimated levels of understanding of 
the concepts. 

student-quiz matrix (estimated): probability of answering quizzes correctly. 
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Table 5 Explanation sequence of MF model 

Number Content 

Recommendation Same as Naïve CE model. 

Explanation 1 

Explanation 2 

Explanation 3 I estimate the probability based on your understanding of some latent math 
factors that are necessary to solve the quiz. Let’s call them factor 1 and  
factor 2. (Unfortunately, I don’t know what exactly they are.) Then, I suppose 
[correctness rate of answering Quiz 120 = weight of factor 1 in Quiz 120 * 
understanding level of factor 1 + weight of factor 2 in Quiz 120 * 
understanding level of factor 2.] 

Explanation 4 Since I can observe your and other students’ correctness rates of answering 
the quizzes from your attempts, I can guess the values of weights of the 
factors and understanding levels of the factors through a mathematical 
method called Matrix Factorization. 

Explanation 5 The following illustration summarizes how I work. 

student-quiz matrix (observed): you and other students’ correctness rates of 
the quizzes. 

student-factor matrix (estimated): estimated levels of understanding of the 
factors. 

factor-quiz matrix (estimated): estimated weights of factors in quizzes. 

student-quiz matrix (estimated): probability of answering quizzes correctly. 
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Table 6 Explanation sequence of CE+MF model 

Number Content 

Recommendation Same as Naïve CE model. 

 Explanation 1 

Explanation 2 

Explanation 3 I estimate the probability based on your understanding of the math 

concepts [inequality (不等式), parabola (放物線)] that are necessary to 

solve the quiz. Specifically, I estimate your level of understanding of 
inequality is 0.28, and your understanding of parabola is 0.18. 

Explanation 4 [inequality (不等式), parabola (放物線)] are considered to be necessary 

math concepts as they appear in the quiz or the standard solution. 

Explanation 5 Your level of understanding of inequality is estimated from your attempts 
on other quizzes which also requires the knowledge of inequality. 
Specifically, you have got Quiz 120 wrong once (correctness rate=0/1=0.0), 
and you attempted Quiz 121 twice and got it right for the second time 
(correctness rate=1/2=0.5). Then, I estimate your level of understanding of 
inequality by taking the weighted average of the correctness rates. 

Explanation 6 The weight of math concepts to a quiz is decided from the term-weighting 
perspective. If a math concept appears frequently in a quiz and not in other 
quizzes, it is considered to be important to this quiz. Therefore, inequality 
has different weights in Quiz 120 and Quiz 121, which affects the estimated 
level of understanding. 

Explanation 7 Since you may have only attempted a small number of quizzes, there is not 
sufficient data to make a good estimation. I also use other students’ 
answers to improve my estimation of your levels of understanding of the 
concepts. 

Explanation 8 I estimate the understanding level of concepts based on some latent math 
skills that are necessary to solve the quiz. Let’s call them factor 1 and  
factor 2. (Unfortunately, I don’t know what exactly they are.) Then, I 
suppose [understanding of inequality = weight of factor 1 in inequality * 
level of factor 1 + weight of factor 2 in inequality * level of factor 2.] 

Explanation 9 Since I have estimated your and other students’ levels of understanding of 
inequality, I can guess the values of weights of the factors and levels of the 
factors through a mathematical method called Matrix Factorization. 

Explanation 10 The following illustration summarizes how I work. 

student-quiz matrix (observed): you and other students’ correctness rates 
on the quizzes. 

quiz-concept matrix (observed): concepts’ weights in the quizzes. 

student-concept matrix (estimated): estimated levels of understanding of 
the concepts. 

student-factor matrix (estimated): estimated levels of factors. 

factor-concept matrix (estimated): estimated weights of factors in 
concepts. 

student-quiz matrix (estimated): probability of answering quizzes correctly. 
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Procedure 

There were two requirements for the participants: 1) They need to answer the questionnaire 

in the role of a user to solve math quizzes in the system, and 2) They need to understand 

English. Finally, we recruited 18 participants who hold bachelor’s degrees and conducted 

research in English. They consented to provide anonymized answers for research use. 

Table 7 shows their background knowledge of high school math and expertise in 

recommender systems. As the mean values indicate, we consider they had sufficient math 

knowledge to make judgements in the role of a system user. Besides, they demonstrated 

different levels of expertise in recommender systems, which indicates they did not 

necessarily understand the algorithms behind recommender systems. Table 8 shows the 

orders of models these participants were presented with. The answers of P3, P5, P8, P15, 

P17 and P18 were excluded from the analysis as they only viewed the same explanations 

(only the first one or the first two) for all the three models, which were considered invalid 

evaluations. As a result, we used the answers from 12 participants for analysis and 

discussion. 

Results 

Table 9 shows how many of the explanations were viewed by the participants. Overall, 

participants viewed more explanations in CE+MF than in MF and Naïve CE. As the 

explanations of CE+MF combined the explanations of Naïve CE (Explanations 3-6) and 

MF (Explanations 7-10) in a linear order, we discuss the results by comparing [Naïve CE, 

MF], and [Naïve CE, CE+MF], respectively. 

 

 

Table 7 Background information of the participants 

Variable [scale] N Mean SD 95% CI 

Confidence in solving the recommended quiz [1-5] 12 4.333 0.985 [3.708, 4.959] 

Familiarity with the terminologies related to 
recommender systems [1-5] 

    

Familiarity with “recommender system” [1-5] 12 4.417 0.669 [3.992, 4.841] 
Familiarity with “collaborative filtering” [1-5] 12 3.500 1.446 [2.581, 4.419] 
Familiarity with “matrix factorization” [1-5] 12 3.083 1.379 [2.207, 3.959] 

 

 

Table 8 The order of evaluation 

Order of evaluations Participants 

Naïve CE -> MF -> CE+MF P1, P11, P13, P19 
Naïve CE -> CE+MF -> MF  P2, P7, P14 
MF -> CE+MF -> Naïve CE P3, P8, P15 
MF -> Naïve CE -> CE+MF P4, P9 
CE+MF -> Naïve CE -> MF P5, P10, P17 
CE+MF -> MF -> Naïve CE P6, P12, P18 
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Table 9 Number of explanations viewed for the three models 

Participant Naïve CE MF CE+MF 

P1 4 5 5 
P2 1 5 2 
P4 3 5 5 
P6 2 1 3 
P7 5 5 10 
P9 5 3 9 
P10 1 3 1 
P11 5 3 8 
P12 7 5 4 
P13 4 4 5 
P14 4 5 10 
P19 1 2 3 
Average number of explanations viewed 
(total number of explanations) 

3.500 
(7) 

3.833 
(5) 

5.417 
(10) 

 

 

(1) Comparing Naïve CE and MF. 

In Naïve CE, we found more participants stopped viewing explanations from the 4th and 

5th explanations. As Explanations 1-4 do not include any computational details in the 

model, some of the participants may stop here out of satisfaction. Explanation 5 (“Your 

level of understanding of inequality is estimated from your attempts on other quizzes which 

also requires the knowledge of inequality. Specifically, you have got Quiz 120 wrong once 

(correctness rate=0/1=0.0), and you attempted Quiz 121 twice and got it right for the 

second time (correctness rate=1/2=0.5). Then, I estimate your level of understanding of 

inequality by taking the weighted average of the correctness rates.”) started to include 

computational details and demonstration with answering history. This could be 

overwhelming for the participants and stop them from further reading the explanations. In 

MF, more participants viewed through all the explanations. The reason that these 

participants did not stop at Explanations 1-4 could be polarized: Explanations 1-4 are 

confusing because they need more explanations to clarify, or the explanations are easy to 

follow. For either reason, the explanations in Naïve CE provide stop points for the 

participants while the ones in MF have a continuous flow to attract readers. However, it 

remains questionable whether the participants stopped due to positive reasons such as being 

convinced by the information or to a negative one such as losing interest. Similarly, it is 

interesting to explore whether the participants continued due to curiosity or confusion. 

(2) Comparing Naïve CE and CE+MF. 

Participants viewed more explanations in CE+MF. It is interesting that both Naïve CE and 

CE+MF contained the same first 6 explanations but CE+MF was viewed deeper by the 

participants. One possible reason is that once the participant viewed Naïve CE part of 

explanations and entered MF part, they tend to read more explanations (see P7, P9 and 

P14). 
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(a) Statistics of perceived understandability of three models. 

 

 

(b) Statistics of perceived usefulness in math learning of three models. 

 

 

(c) Statistics of behavioral intention to use the system of three models. 

 

Fig. 5 Evaluations of the explanations for the three models 
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Figure 5 shows the participants’ evaluations on the explanations of three aspects. 

Interestingly, the evaluations demonstrated different trends of three models in perceived 

understandability, usefulness, and behavioral intention. Specifically, Naïve CE was the 

least, MF the second, and CE+MF the most understandable model (Figure 5a). Besides, 

Naïve CE and CE+MF were more useful in math learning and more motivating than MF 

(Figures 5b and 5c). 

Naïve CE had the lowest score in perceived understandability but the highest scores in 

perceived usefulness and behavioral intention. In contrast, MF had a higher score in 

perceived understandability but lowest scores in perceived usefulness and behavioral 

intention. The participants did not necessarily fully understand how the system works but 

found the explanations useful in learning math, thus, were willing to use the system in a 

real setting. Or reversely, the participants somehow understood the mechanism of the 

system but did not find it very useful in learning math, thus, were less willing to use it. 

CE+MF had the best overall evaluation of three aspects. CE+MF was more 

understandable than Naïve CE, equally useful in math learning, but not necessarily 

motivating for the participants to use in the real setting. This implies the intricate 

relationships among perceptions—understanding the recommendation and considering it 

useful in learning may not guarantee positive behaviors. 

Discussion 

RQ1: Is there a trade-off between the accuracy and the explainability? 

As the results show, MF had the highest performance of estimating quiz mastery level 

while Naïve CE had the lowest, CE+MF had the medium performance. At the same time, 

Naïve CE and MF demonstrated different trends on different aspects of the explainability. 

Specifically, Naïve CE had lower perceived understandability and higher perceived 

usefulness in math learning and higher behavioral intention, while MF had the opposite 

results. Overall, CE+MF demonstrated high levels of explainability. Given the specific 

context and dataset, we did observe a trade-off between the accuracy and the explainability 

of recommender models, with the explainability being more intricate than we expected. 

Why were the explanations of Naïve CE more difficult to understand than the ones of 

MF? One possible reason is the weakness of the mechanism of inherently explainable 

models. As found in Bell et al.’s (2022) study, an inherently explainable model—decision 

tree did not help the users to identify important features due to the bias brought by the tree 

diagram. In our survey, more participants stopped at Explanation 5 in Naïve CE model, 

which was lengthy and involved the estimation of mastery level of math concepts from 

learning history of other quizzes. The mechanism is relatively simple, and shallow 

compared with other black-box models, but not absolutely easy-to-understand for an end 
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user. In contrast, the explanations of MF encapsulated many complex details about 

mathematical reasoning, such as what the latent factors and matrix factorization are. 

Consequently, the explanations of MF were easier to “process” as they were simplified. As 

indicated in previous research, the detailedness of explanations may affect its effects 

(Chatti et al., 2022; Kulesza et al., 2013). Chatti et al. (2022) found that the perception of 

explanations with different levels of detailedness was affected by the explanation goal and 

user type. In this context, the participants were supposed to improve their math learning by 

solving quizzes in the system. In this sense, their primary goal is not to understand the 

mathematical background of the system with a large cognitive cost. Kulesza et al. (2013) 

proposed a framework to model the soundness and completeness of the explainability, 

which may be a future direction to refine the explanations. 

Why did the participant show positive judgements towards Naïve CE without fully 

understanding how it worked? As discussed previously, the primary goal of the user in this 

context is to improve learning by solving recommended quizzes. Understanding the 

model’s mechanism is not equal to obtaining the necessary information for the task. One 

of the participants mentioned in the open question that s/he would like to know “what if i 

still cannot solve the recommended problem, because I failed all the problems on these 2 

knowledge. there can be also high possibility to cannot solve the recommended problem 

with wheelspinning,”. Obviously, the participant still had questions about how the system 

works, but the information presented in the explanations helped her/him to consider a 

learning scenario. The informativeness of explanations may be related to the development 

of meta-cognitive skills (Dai et al., 2024), which needs to be further explored. In contrast, 

two participants mentioned they wanted to know what the “factors” of MF model are, so 

that they can make a judgement on the selection of quizzes. In the real world, it is more 

important to provide pedagogically useful information than to merely explain how the 

model works. 

RQ2: Is it feasible to enhance the accuracy of inherently explainable models by 

integrating them with black-box models? 

As we did observe a trade-off between the accuracy and the explainability of three models, 

it leads to the question of how to develop an explainable and accurate recommender model. 

Our experiment served as an example to improve the accuracy of an inherently explainable 

model. The advantages of this approach are as follows: 1) The advantages of explanations 

in inherently explainable models are difficult to generate from black-box models. For 

example, the math concepts used in Naïve CE played an important role in providing math-

related information, which are not the original idea of MF. 2) The integrated model 

preserved both characteristics of two models. For example, CE+MF built on the basic 

framework of Naïve CE and integrated MF into a local step in its mechanism. As a result, 
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the out-layer explanations of CE+MF provided math-related information, and the accuracy 

improved. Theoretically, a model that has a balanced performance of accuracy and 

explainability should be preferred (Khosravi et al., 2022; Molnar et al., 2022). However, it 

remains challenging to quantify the balance of explainability and accuracy. This is closely 

dependent on the context, in this case, improving learning effects. In some extreme cases, 

it would be sufficiently explainable if the students are satisfied with the general difficulty 

without the interest in understanding how it is computed. Therefore, it is necessary to select 

models based on the purpose of the model and explanations. 

Conclusion and future work 

In this study, we explored the accuracy and the explainability of math recommender 

systems. Focusing on three recommender models—an inherently explainable model (Naïve 

CE), a black-box model (MF), and an integrated model (CE+MF), the accuracy was 

evaluated by measuring how correctly the model can estimate students’ mastery level of 

the quizzes; the explainability was evaluated from three perspectives in a questionnaire 

survey. The findings indicate a trade-off between the accuracy and explainability of the 

recommender models. However, the explainability was more complex and dependent on 

the context. In the learning scenario, participants found the model useful in math learning 

without fully understanding how the model worked. Overall, the integrated model 

displayed a balanced level of accuracy and explainability, which implies the feasibility to 

develop an explainable educational recommender system by improving the accuracy of an 

inherently explainable model. 

Some limitations can be addressed in future work: 1) In this study, we measure accuracy 

at the step of estimating students’ probabilities to succeed in answering quizzes. The 

process to generate recommendations based on the estimation was not included yet, as the 

“goodness” of a recommendation is more difficult to measure. Future work should be 

conducted to extend the measurement of accuracy of such educational intelligent systems. 

2) The sample size was limited to provide statically strong evidence in the questionnaire 

survey. In the future work, we plan to conduct online experiments with students in authentic 

environments. 3) In this study, we only explored one way to integrate Naïve CE and MF. 

There exist other ways to improve the accuracy of Naïve CE by elaborating the domain 

model, or to improve the explainability of MF by feeding explicit factors. It is promising 

to improve accuracy and explainability at the same time. 4) The quantification of practical 

effects of accuracy and explainability is still unclear. When we develop explainable 

educational intelligent systems, how can we compare the learning effects between an 

improvement of accuracy and an improvement of explainability? We will explore ways to 

address this issue. 
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