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 Abstract 

Self-explanation is increasingly recognized as a key factor in learning. Identifying 
learning impasses, which are significant educational challenges, is also crucial as 
they can lead to deeper learning experiences. This paper argues that integrating 
self-explanation with relevant datasets is essential for detecting learning impasses 
in online mathematics education. To test this idea, we created an evaluative 
framework using a rubric-based approach tailored for mathematical problem-
solving. Our analysis combines various data types, including handwritten responses 
and digital self-explanations from 93 middle school students. Using hierarchical 
logistic regression, we examined feature groups such as Self-Explanation Quality, 
Handwriting Features, and Overall Level of Action. Models based solely on self-
explanation achieved a 74.0% accuracy rate, while adding more features increased 
the final model’s accuracy to 80.06%. This improvement highlights the effectiveness 
of an integrated approach. The combined model, which merges generated 
handwriting features counts with self-explanation features, shows the importance 
of both qualitative and quantitative measures in identifying learning impasses. Our 
findings suggest that a comprehensive approach, leveraging detailed operational 
data and rich self-explanation content, can enhance the detection of learning 
challenges, providing insights for personalized education in online learning 
environments. 

Keywords: Self-explanation, Impasse detection, Online mathematics education, 
Educational data analysis 

 

Introduction 

The integration of digital learning platforms has revolutionized educational practices, 

particularly within the domain of mathematics where self-explanation is recognized as a 

critical learning activity (Chi et al., 1994; Rittle-Johnson et al., 2017). These platforms 

offer interfaces that encourage students to engage in deep self-explanation, a practice that 
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has been shown to enhance understanding and problem-solving capabilities (Conati & 

VanLehn, 2000). Structured self-explanation templates aid in articulating thought 

processes, extending beyond traditional educational tools to encompass feedback 

mechanisms and automated analysis systems (Berthold & Renkl, 2009; Nakamoto et al., 

2024). Such self-explanatory data is invaluable for both educators and automated systems 

to gain insights into cognitive processes, shaping personalized educational strategies 

(Crippen & Earl, 2007). With the surge of online learning platforms, the need for effective, 

autonomous learning strategies is more pronounced than ever. In this context, self-

explanation emerges not only as a facilitator of individual learning processes but also as a 

critical element in monitoring and enhancing the quality of learning. 

In parallel, educational technology has concentrated efforts on identifying and addressing 

cognitive barriers or “impasses” that impede mathematical comprehension (Brown & 

VanLehn, 1980; Carroll & Kay, 1988; Siegler & Jenkins, 1989; VanLehn et al., 1992). 

Modern pedagogical approaches aim to foster not just content delivery but also deep 

cognitive engagement and sustained curiosity (Hattie et al., 2009). Recognizing impasses 

is crucial, as their presence signifies significant learning hurdles that can prompt 

introspective and explorative learning, enhancing the educational experience. Addressing 

these impasses directly has been proven to significantly elevate learning outcomes. 

Detecting learning impasses, especially in unstructured educational tasks, poses 

considerable challenges, often requiring significant time and resources. This complexity 

presents a notable burden for educators and limits the widespread implementation of 

impasse detection strategies. To address these challenges, our study proposes a novel 

approach: the creation of an automated impasse detection system that leverages the 

advantages of self-explanations. We argue that when learners engage in the process of self-

explanation, they generate rich conceptual data. This data, when analyzed in conjunction 

with relevant datasets, can be instrumental in detecting learning impasses—points where 

learners struggle or fail to grasp key mathematical concepts. Identifying these impasses is 

crucial in online learning scenarios where personalized instructor feedback is often limited. 

To explore this hypothesis, our study is guided by the following research questions: 

 

RQ1: How does self-explanation data influence the detection of learning 

impasses in our proposed evaluative framework? 

This question aims to understand and analyze the role of self-explanation in 

identifying barriers to understanding mathematical concepts and assesses the 

accuracy of the prediction model within our evaluative framework. 
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RQ2: Which factors are significant predictors of learning difficulties in online 

mathematics education? 

This explores which specific aspects of student engagement and self-explanation are 

most predictive of encountering learning challenges. 

 

To address these questions, we developed an impasse evaluative framework utilizing a 

rubric-based approach tailored for mathematics education. This framework emphasizes 

extracting and analyzing features from self-explanations provided by learners, which serve 

as a rich source of insights into their conceptual understanding and thought processes. Our 

goal is to identify key patterns and markers indicative of learning difficulties, thereby 

contributing to enhancing the effectiveness of online mathematics education. 

Related work 

Effectiveness of self-explanations in addressing impasses 

Self-explanation holds great promise for improving mathematics learning, with consistent 

support from previous research, particularly when paired with contrasting instructional 

examples (Renkl, 2017; Rittle-Johnson, 2017; Rittle-Johnson et al., 2017). In the context 

of mathematics, it plays a crucial role in advancing both conceptual and procedural 

knowledge. Conceptual knowledge relates to understanding abstract principles such as 

mathematical equivalence, while procedural knowledge is cultivated through problem-

solving practices specific to particular contexts (Rittle-Johnson et al., 2001; Star, 2005). 

Efforts have been made to integrate self-explanation into web-based learning 

environments, including the development of structured problem-solving tools like those 

created by Crippen and Earl (2007). McNamara et al. (2004) introduced iSTART, an 

interactive tutoring system that uses Natural Language Processing (NLP) techniques to 

assess and support self-explanations in reading comprehension. Similar systems have 

proven effective across diverse content domains (Jackson et al., 2010). Self-explanation 

contributes to learning through two key processes: firstly, it aids comprehension by 

streamlining knowledge integration (Chi, 2000), and secondly, it enhances the recognition 

and transfer of knowledge by directing learners’ attention to the underlying structural 

aspects of content rather than surface-level features (McEldoon et al., 2013; Rittle-Johnson, 

2006). 

Self-explanation enables learners to infer causal relationships and conceptual 

connections, thereby deepening their understanding. Often, learners struggle to grasp the 

interconnections between learning units, leading to an inability to apply their knowledge 

to different tasks. However, through the process of self-explanation, learners establish 

connections between various learning elements, enhancing their comprehension. 
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Additionally, the act of self-explanation has been shown to have effects such as revealing 

areas of non-understanding for the learner (Siegler & Jenkins, 1989). In other words, we 

thought that utilizing self-explanation can aid in detecting these impasses. Impasses are 

obstacles that obstruct the comprehension of mathematical concepts. Proficient learners 

adeptly employ self-explanation during mathematical problem-solving, infusing each step 

with reflective self-explanation, which helps identify essential knowledge components. 

Conversely, less proficient learners may underestimate or ineffectively use self-

explanation, resulting in a weaker grasp of mathematical concepts. 

Recent advancements in digital technology have enabled the integration of self-

explanation strategies into web-based learning platforms (Flanagan & Ogata, 2018; 

Nakamoto et al., 2021, 2022, 2024; Ogata et al., 2023). This shift towards digital education 

has prompted our exploration of the potential of self-explanations as a means to detect 

students’ difficulties, or “impasse,” in mathematics. 

Learning impasse 

Learning impasses represent pivotal moments in a student’s educational journey, 

particularly in the field of mathematics (VanLehn et al., 2003). Warli et al. (2020) 

emphasize the cognitive challenges students face in understanding complex mathematical 

concepts, particularly in group problem-solving contexts. These impasses often manifest 

as feelings of being stuck, error detection, or doubt, even when students are technically 

correct in their actions. In response to these difficulties, students might review previous 

knowledge, consult resources, or seek help from peers or instructors. These moments of 

struggle are pivotal in fostering genuine learning, as they lead to a deeper grasp of the 

subject, correction of misconceptions, and enhancement of problem-solving skills. These 

understanding aligns with the essence of our study on impasse detection and resolution in 

mathematics education. Extensive research on cognitive skill acquisition consistently 

underscores the prevalence of impasses in the learning process, particularly in the absence 

of tutors (VanLehn, 1987, 1990; VanLehn & Jones, 1993). Therefore, the automated 

detection of these mathematical impasse holds significant potential for advancing 

educational research. 

This study delves deeper into the concept of learning impasses, particularly in the context 

of math self-explanation learning, and seeks to detect these impasses in automated learning 

environments. Through this study, we intend to contribute to the field by not only defining 

and identifying impasses in automated math learning environments but also by evaluating 

the role of self-explanations in overcoming these challenges. 
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Learning context and premise conditions 

Math learning activities and collected logs in LEAF system 

As a system platform, we used the LEAF platform (Flanagan & Ogata, 2018), which 

consists of a digital reading system named BookRoll and a learning analytics tool LAViEW 

where students and teachers can monitor and reflect on their learning. BookRoll captures 

the handwriting data as a series of vectors representing the coordinates and velocity of pen 

strokes, allowing realistic playback of the handwritten answers and fine-grained analysis 

of the students’ answering process. 

Students follow a structured sequence in their interaction with the system, as outlined in 

Table 1. They begin by reviewing math problems tailored to their educational level. Using 

stylus pens on a digital interface, students solve these problems, capturing their problem-

solving approach as time series data. This data proves valuable for understanding stroke 

order, pauses, and handwriting patterns, aiding in anomaly detection. After solving the quiz, 

students utilize the LAViEW system to review their handwritten answers and explain their 

solution processes. Self-explanations are inputted chronologically, aligning them with the 

corresponding pen stroke data, ensuring a temporal association between self-explanations 

and the writing process. During these steps, the system meticulously logs various data 

points. This includes handwriting data, recorded as vectors to capture intricate details like 

stroke speed, pressure, and duration. This granularity in data collection provides insights 

into the cognitive processes of students during problem-solving and self-explanation 

phases. 

Figure 1, cited from Nakamoto et al. (2024), describes handwritten answer playback and 

self-explanation input. The students input a sentence of explanation every time they think 

they have completed some step in their answers during the playback. Therefore, the self-

explanation is temporally associated with the pen stroke data. The self-explanation of the 

 

 

Table 1 Student journey in the LEAF system 

Order Activity Description 

1 View the Math Problems Students start by reviewing math problems tailored to 
their educational level. 

2 Solve the Math Problems 
Using Stylus Pens 

Students use stylus pens on the digital interface to solve 
the problems. 

3 Playback One’s Answer The system allows for the playback of recorded answers, 
enabling students to reflect on and evaluate their 
problem-solving process. 

4 Input Self-Explanations Students articulate their thought processes and reasoning 
by inputting self-explanations for their solutions. 

5 Check the Standard 
Solution 

Post-solution, students have access to standard solutions 
for comparison and analysis. 
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answer contains the following from top to bottom: “If the area of triangle ABO is 1, the 

area of triangle AOC is 4. Since the whole is five and straight-line OP bisects the area of 

triangle ABC, the area of quadrilateral ABPO and triangle POC is 2/5. The area of triangle 

APO: triangle POC = 3:5, so the length of straight line AP: straight-line PC = 3:5.” 

Premise conditions and the definition of impasse in math learning 

Our approach to detecting impasses aligns with the definition proposed by VanLehn et al. 

(2003), where an impasse is seen as a point of cognitive struggle or uncertainty encountered 

by a student while trying to understand or apply a specific piece of knowledge in 

mathematics. Such impasses can manifest in various forms, including being stuck, 

detecting an error, or experiencing doubt or uncertainty even when the action is correctly 

performed. They prompt students to delve into their memory, consult external resources 

such as textbooks, or seek assistance from others. In line with this understanding, our 

research posits that the ability to produce detailed self-explanations is a crucial indicator 

of a student’s comprehension of mathematical concepts. We find that difficulties in 

providing coherent self-explanations often signal these underlying cognitive impasses. 

Therefore, we rigorously analyze the quality of self-explanations, understanding that clear 

and thorough explanations are indicative of a solid grasp of concepts, while vague or 

incomplete ones point to areas of weak comprehension. 

We closely examine instances where self-explanations by students in mathematics 

learning reveal significant impasses. A high-quality self-explanation is not only logically 

structured but also elucidates the student’s clear pathway through the problem-solving 

process. This type of explanation demonstrates a deep understanding of the mathematical 

concept, showcasing the student’s ability to integrate and apply their knowledge effectively. 

On the other hand, an ineffective self-explanation, characterized by a lack of coherence 

and clarity, points to potential learning impasses. These impasses might manifest as 

 

Fig. 1 Handwritten answer review playback and self-explanation input user interface 
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fragmented thoughts, unclear connections between ideas, or an inability to express the 

underlying mathematical reasoning. Such explanations often signal a superficial 

understanding or a disconnect in cognitive processing, where the student might be able to 

perform certain steps of the problem-solving process but fails to comprehend the 

overarching concepts or principles. 

Proposed method 

Rubric-based evaluative framework 

Our study, in addressing the concept of learning impasses, seeks to develop a rubric-based 

evaluative system, aimed at providing an objective and precise assessment of student 

reasoning in mathematics. Rubrics, as defined by Andrade (2000) and Arter and Chappuis 

(2007), are vital assessment tools designed to classify the quality of student reasoning, 

performance, or outputs across a range from outstanding to deficient. These rubrics serve 

as guidelines to assess students’ work, with general rubrics offering a broad overview of 

performance levels, and task-specific rubrics detailing the mathematical elements crucial 

for each performance level. Particularly suitable for tasks that allow multiple solutions or 

strategies (Thompson & Senk, 1998), our study employs simplified rubrics to evaluate the 

step-by-step problem-solving ability of students, with a focus on facilitating systematic 

judgment by the system. 

Verschaffel et al. (1999) defined five essential steps in mathematical problem-solving: 

drawing representations, listing elements, simplifying figures, executing calculations, and 

assessing solutions. Self-explanation, although not directly linked to a particular step, is 

crucial in revealing the knowledge components involved in these steps. We hypothesize 

that students navigate these steps, with self-explanation being a key aspect of their 

procedural knowledge. Tables 2 and 3 present the rubric definitions and sample answers as 

proposed by Nakamoto et al. (2024), which we have applied in our theoretical framework 

for detecting learning impasses. Table 2, in particular, defines key terms utilized in this 

paper and Table 3 illustrates sample answers that ideally represent the required knowledge 

components at each step of solving the quiz. Through this rubric-based approach, we aim 

to provide a clearer understanding of students’ mathematical problem-solving processes 

and to identify where and why they encounter learning impasses. This framework not only 

aids in assessing students’ current understanding but also helps in pinpointing areas that 

require further instructional focus. 
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Table 2 Description of words 

Name Definitions 

Rubric Can-do descriptors that clearly describe all the essential elements of the 
quiz and are used to create labels and sample self-explanations for 
scoring. Ordinal Scale (1-4). 

Labels Labels consist of true or false for each of the rubrics 5 steps, subsequently 
referred to as “correct step” or “incorrect step” answers. In particular, 
“Incorrect Step” signifies the point at which the student got stuck. 

Sample Sentences of 
Self-explanations 

Model answers of self-explanations prepared according to the 4-step 
rubric number 

 

 

Table 3 Rubrics and sample sentences of self-explanation 

Number Rubric Sample Sentences of Self-explanations 

Step 1 Be able to find the equation of a linear 
function from two points. 

Substituting the y-coordinate of p into the 
equation of the line AC. 

Step 2 Be able to find the equation of the line 
that bisects the area of a triangle. 

Find the area of triangle ABC, and then find 
the area of triangle OPC. 

Step 3 Be able to represent a point on a 
straight line using letters  
(P-coordinates). Be able to represent a 
point on a straight line using letters  
(Q-coordinate). 

With the line OC as the base, find the  
y-coordinate of p, which is the height. p’s 
coordinate is (t,-1/2t+4). 
Since the coordinates of P are (3,5/2), the 
line OP is y=5/6 and the coordinates of Q are 
placed as (t,5/6). 

Step 4 Be able to formulate an equation for 
area based on relationships among 
figures. 

Finally, the area of △QAC was found from 
the areas of △AQO and △OQC, and the 
coordinates of Q were found. 

 

Labeling impasses by human assessment 

To assess students’ comprehension of rubric components, we proceed with the creation of 

labels of problem-solving step impasses through meticulous human assessment. This 

assessment process involves the manual review of students’ handwriting and self-

explanations, culminating in the assignment of labels that signify students’ grasp of the 

rubric components. 

Our approach extends beyond the conventional binary evaluation of responses as merely 

correct or incorrect. It resonates with the perspective of Carroll and Kay (1988) by 

prioritizing the cognitive processes underpinning student responses. We aim to probe into 

the cognitive depths of students who may rely on rote memorization or have a cursory 

understanding of mathematical concepts but struggle to articulate their thought processes. 

This nuanced approach transcends simple correctness assessment, striving to uncover the 

underlying reasons for student responses. It aligns with modern pedagogical research, as 

advocated by Hattie et al. (2009), which stresses the significance of a profound 

comprehension of student learning mechanisms. This approach crucially differentiates 
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between the presence and absence of comprehension barriers at each stage of the learning 

process. This representation serves dual purposes: 

 

Correct Step: We showcase a scenario where the learner demonstrates correct 

understanding. This is indicated by coherent self-explanations and consistent handwriting 

patterns, typically leading to a binary value of ‘1’ in our assessment, signifying no detected 

impasse. 

 

Incorrect Step: Errors in the handwritten solution and structural inadequacies in the self-

explanations, especially in tackling a geometric concept, point to a ‘0’ in our binary system, 

highlighting the specific area of the learner’s difficulty. 

 

With the acquired datasets in hand, our next focus was the creation of gold-standard self-

explanations for our model. This process involved a systematic deconstruction of each quiz 

into distinct steps. The self-explanations thus developed served as benchmarks against 

which we evaluated students’ responses. These model self-explanations played a pivotal 

role in our study, not only in terms of their comprehensiveness but also in representing the 

expected knowledge. 

Figure 2 displays an image of the handwritten answer along with its associated self-

explanations. Evaluators reviewed these elements to create a ground truth, classifying each 

part as correct or incorrect. In Figure 2, the self-explanation is outlined as follows. The 

term “Stroke No.” refers to a number that is automatically generated by the system. 

 

Stroke 34: Calculated the area of triangle ABC. 

Stroke 60: Calculated the area of triangle ABO. 

Stroke 182: Determined the coordinates of point P and derived the equation of line OP. 

Stroke 201: Expressed the coordinates of point Q in terms of variables. 

Stroke 291: Determined the value of k. 

Stroke 316: Substituted the value of k and obtained the answer. 

Feature extraction method 

Feature 1: Self-explanation quality indicators 

Settings 

The primary objective of our problem setting is to establish a comprehensive framework 

that effectively identifies when and where students encounter cognitive barriers during 

mathematical problem-solving. To achieve this, we compare students’ self-explanations  
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with model answers, employing a similarity scoring mechanism. This mechanism 

quantitatively assesses the alignment of each student’s self-explanation with the exemplar 

sentences provided for each step of the rubric, as illustrated in Figure 3. The data collected 

from this comparison are subjected to rigorous statistical analysis, which not only validates 

the efficacy of our impasse detection method but also aids in refining our model. This 

refinement process involves pinpointing the most predictive features and enhancing the 

feedback mechanism for better educational outcomes. 

Our decision to standardize the problem-solving process into four distinct steps is 

grounded in an extensive analysis of junior high school mathematics curricula, 

incorporating the rubric steps proposed by Nakamoto et al. (2021, 2024). In junior high 

school mathematics, problem-solving typically involves multiple steps, each representing 

a unique unit of knowledge or skill. These steps can vary in number, from two to six or 

more, depending on the complexity of the mathematical concept. For our study, we have 

deliberately chosen to limit the problem-solving steps to four. This decision is based on the 

standard level of junior high school mathematics curricula and the common problem-

solving approaches observed at this educational stage. For each problem P, we assume the 

presence of four essential knowledge elements, denoted as K1, K2, K3, and K4, with A(P) 

representing the self-explanatory text created by a student. This relationship is formulated 

as follows: 

A(P) = [A(K1), A(K2), A(K3), A(K4)]                        (1.1) 

 

Fig. 3 Overview of impasse detection analysis and self-explanation related features 



Nakamoto et al. Research and Practice in Technology Enhanced Learning   (2025) 20:19 Page 11 of 27 

 

Method 

In our methodology, both the sample sentences and the students’ self-explanations are 

transformed into vectors using BERT (Bidirectional Encoder Representations from 

Transformers). We then compute cosine similarity to align the rubric steps with the 

students’ explanations. The weighted average of these similarity scores is used to determine 

a rubric-based score for each student, resulting in five distinct scores corresponding to each 

rubric step. These scores are instrumental for further analysis and model development. Our 

approach incorporates a range of language models for text representation. These include 

traditional models like TF-IDF (Salton & Buckley, 1988) and advanced transformer-based 

models such as BERT (Devlin et al., 2019) and Sentence BERT (SBERT; Reimers & 

Gurevych, 2019). BERT, built upon the transformer architecture (Vaswani et al., 2017), is 

renowned for its effectiveness in natural language processing tasks and has been widely 

applied in educational technology (Yang et al., 2021). SBERT, an adaptation of BERT, 

excels in generating sentence embeddings and is particularly suited for evaluating the 

diverse self-explanations of students. 

When a student creates a self-explanation S(P), we calculate the similarity for each 

knowledge element using a function Sim and perform block division using a function Split. 

The association of each knowledge element (K1 to K4) in the student’s self-explanation 

block L with A(P) is determined by similarity. For instance, combinations such as (K1, L4), 

(K2, L2), and so forth, are considered. The self-explanation in block L is then linked to 

handwritten log information, as shown below: 

 

Sim(P) = [Sim(S(K1), A(K1)), Sim(S(K2), A(K2)), Sim(S(K3), A(K3)), Sim(S(K4), 

A(K4))]                                           (1.2) 

 

Feature 2: Handwriting data associated with each self-explanation 

In our research, we employ a comprehensive approach that combines handwritten data with 

self-explanation texts to profoundly understand students’ learning processes, building upon 

prior studies in handwriting detection (Flanagan et al., 2022; Iiyama et al., 2017; Kishi & 

Miura, 2018; Ochoa et al., 2013; Nakamoto et al., 2021). Figure 3 describes the overview 

of the Image of feature extraction associated with one Self-explanation of a student. This 

method involves analyzing handwritten data, including pen strokes and inputs, to reveal 

the temporal and procedural aspects of problem-solving, crucial for identifying impasses 

by observing the sequence and methodology students employ in tackling mathematical 

problems. Integrating these insights with self-explanation data allows us to form a holistic 

view of how students learn and pinpoint areas of difficulty. We adopt a methodology 

inspired by Kishi and Miura (2018), preparing model solutions for each quiz that 



Nakamoto et al. Research and Practice in Technology Enhanced Learning   (2025) 20:19 Page 12 of 27 

 

encapsulate essential steps and knowledge components for correct answers. We then 

compare students’ self-explanations to these models and identify the most relevant self-

explanation sentences. Lastly, we generated the handwriting data associated with a most 

relevant self-explanation sentence as shown in Figure 3 and Table 4. The detail of feature 

extraction method for the key factor is as follows. 
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Table 4 Description of features for analysis 

Feature Group Feature Name Description Mean SD 

Self-Explanation 
Quality 
Indicators 

Self-Explanation 
Engagement Level 

The count of strokes or actions taken 
associated with each self-explanation, 
indicating the degree of user 
engagement. 

0.06 0.19 

Self-Explanation Length The character count of each self-
explanation, serving as an indicator of 
the explanation’s level of detail. 

0.08 0.22 

Self-Explanation Complexity The number of nodes (words) in each 
self-explanation, determined through 
morphological analysis using MeCab, 
indicating the complexity of the 
explanation. 

0.09 0.22 

Self-Explanation Sequence The order of strokes (operations) in each 
self-explanation, important for 
understanding user operation patterns. 

0.25 0.24 

Self-Explanation Similarity 
Score 

A score based on cosine similarity 
between self-explanations and reference 
sentences, indicating the similarity of the 
text. 

0.08 0.22 

Self-Explanation 
Related Action 
(Generated 
Handwriting 
Features) 

Total Activity Duration The total sum of time intervals between 
consecutive operations for each user, 
reflecting the overall duration of user 
activity(Include time intervals). 

0.10 0.23 

Generated Handwriting 
Features Count 

The total count of operations performed 
by each user, indicating the level of user 
activity. 

0.30 0.25 

Total Activity Duration The total sum of time intervals between 
consecutive operations for each user, 
reflecting the overall duration of user 
activity. 

0.22 0.21 

Operation Segment 
Duration 

A segment of time data associated with 
specific user operations, segmented 
based on user interactions, indicating the 
temporal aspects of user interactions. 

0.23 0.23 

Accurate Activity Duration The total of calculated times, reflecting a 
more accurate measure of user activity 
duration(Exclude time intervals. only the 
time for operations). 

0.30 0.22 

Rubric Step Number An ordinal scale (typically ranging from  
1 to 4) that quantifies the number of 
rubric steps. 

2.50 1.12 

Overall Level of 
Action 
(Raw 
Operational 
Data) 

ADD_HW_MEMO Addition of hardware-related memo. 0.04 0.17 

UNDO_HW_MEMO Undo hardware-related memo. 0.09 0.22 

CLOSE Close an item or section. 0.21 0.38 

OPEN_RECOMMENDATION Open a recommended item. 0.05 0.18 

TIMER_PAUSE Pause a timer. 0.01 0.10 

CLOSE_RECOMMENDATION Close a recommended item. 0.03 0.17 

ADD MEMO Addition of a general memo. 0.02 0.13 

QUIZ_ANSWER_CORRECT Provide a correct answer in a quiz. 0.04 0.19 

PAGE_JUMP Jump to a specific page. 0.08 0.24 

QUIZ_ANSWER Provide an answer in a quiz. 0.01 0.09 

CHANGE MEMO Modify an existing memo. 0.00 0.00 

DELETE_MEMO Delete a memo. 0.04 0.17 

CLEAR_HW_MEMO Clear hardware-related memos. 0.04 0.17 

REDO_HW_MEMO Redo a hardware-related memo. 0.09 0.22 

ADD_RECOMMENDATION Add a recommendation. 0.21 0.38 
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Experimental settings 

Datasets overview 

During the data collection period from January 1, 2020, to December 31, 2022, our study 

amassed a significant dataset comprising 900 answers. The dataset was derived from the 

engagement of 93 unique users who interacted with a set of 23 different quizzes. Initially, 

all students were in the 1st grade of junior high school at the onset of the study. From April 

1, 2021, the students transitioned into the 2nd grade, and from April 1, 2022, the students 

transitioned into the 3rd grade. While there are no explicit criteria indicating the students’ 

precise level of academic ability, as a reference, the average score on the year-end 

mathematics exam was 74.92 out of 100, with a standard deviation of 11.74. 

The quizzes covered a range of topics, each coded with a unique identifier reflecting both 

the topic and the specific focus within the curriculum. The topics included: 

 

Linear Functions: Analyzing relationships and constructing graphs based on linear 

equations. 

Quadratic Functions: Exploring the properties and applications of quadratic equations 

in various contexts. 

Geometry and Similarity: Investigating properties of geometric shapes and their 

similarity through rigorous problem-solving. 

Quadratic Equations: Delving into the solutions and real-world applications of 

quadratic equations. 

Pythagorean Theorem: Applying the theorem to solve problems involving right 

triangles. 

Properties of Circles: Understanding the geometric properties of circles and their 

implications in different scenarios. 

Symmetric Expressions: Exploring the use of symmetric expressions in algebraic 

contexts. 

Square Roots: Examining the concepts and calculations involving square roots. 

Utilization of Simultaneous Equations: Solving complex problems using systems of 

equations, with a focus on applications that involve algebraic solutions and real-world 

scenarios. 

 

The self-explanation answers were meticulously documented and categorized based on 

two key criteria: the presence of step numbers (1 to 4) in the rubric and the identification 

of a learning impasse (“Impasse” or “Not Impasse”). There were 581 responses at Step 1, 

488 at Step 2, 382 at Step 3, and a further reduction to 314 at Step 4. Conversely, responses 

labeled as ‘Impasse’ exhibit an ascending pattern with the advancement of rubric steps, 
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starting with 319 responses at Step 1, 412 at Step 2, 518 at Step 3, and eventually reaching 

586 at Step 4. This data suggests that as the complexity of tasks increases with each rubric 

step, the incidence of impasses also rises. This indicates a potential accumulation of 

learning challenges that students encounter as they progress through the steps. The ground-

truth impasse labels of each step were created by one academic assistant and the results 

were reviewed by one of the authors. 

Hierarchical logistic regression model 

Table 5 describes the hierarchical Analysis Features Group. The use of hierarchical logistic 

regression analysis in our study is a strategic choice aimed at dissecting the impact of 

various predictors on the likelihood of learning impasses in an online educational setting. 

This method allows us to sequentially introduce variables related to self-explanation 

activities, engagement metrics, and interaction patterns to the model and assess their 

individual and collective contribution to the variance in the dependent variable, which in 

this case could be the occurrence of an impasse. By accounting for other variables, this 

technique clarifies the unique predictive value of each factor and its effectiveness in 

identifying student learning behaviors. 

Our approach is methodically aligned with the dichotomous analytical framework of 

“overall level of analysis” and “specific task analysis,” as established by Jovanović et al. 

(2021), and draws from the methodologies of Allen et al. (2015). This dual perspective 

ensures a comprehensive examination of student behavior, capturing both the broad 

learning environment and the intricate details of specific tasks. 

Results 

Correlation analysis 

The purpose of the correlation analysis was to empirically test the relationships between 

self-explanation features and the correctness of answers (Ground Truth), directly relating 

to our first research question about the influence of self-explanation on detecting learning 

 

 

Table 5 The hierarchical Analysis Features Group 

Feature Group / Model Name MS MG MA MS+G MF (Final) 

Self-Explanation Quality Indicators 
 

     

Self-Explanation Related Action 
(Generated Handwriting Features) 

     

Overall Level of Action 
(Raw Operational Data) 

     

Total Features 5 6 15 11 26 
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impasses. By employing Spearman correlation analysis, we observed how closely student 

self-explanations mirror reference materials and whether the detail in their explanations 

correlates with their understanding of mathematical concepts. 

RQ1: How does self-explanation data influence the detection of learning 

impasses in our proposed evaluative framework? 

Self-Explanation Similarity Score: A positive correlation of 0.2527 between 

“Ground_Truth” and “Self-Explanation Similarity Score” suggests that greater similarity 

to reference material often corresponds to better comprehension. While this correlation is 

statistically significant, it is relatively low, indicating that other factors may also play 

significant roles in comprehension. 

Self-Explanation Length: The length of self-explanations showed a positive correlation 

of 0.2434 with “Ground_Truth”, indicating that more detailed explanations tend to signify 

deeper understanding. Although the correlation is modest, it highlights the potential benefit 

of encouraging students to provide detailed explanations. 

Self-Explanation Engagement Level: The correlation between “Ground_Truth” and 

“Self-Explanation Engagement Level” is 0.0909. According to the guidelines by Schober 

et al. (2018), this indicates low practical value. This suggests that engagement alone, as 

measured in this study, may not be a predictor of comprehension. 

RQ2: Which factors are significant predictors of learning difficulties in online 

mathematics education? 

Self-Explanation Sequence: A significant negative correlation of -0.2522 between 

“Ground_Truth” and “Self-Explanation Sequence” points to certain structuring methods of 

explanations possibly being less effective or overly complex. This suggests that the way 

students organize their explanations might sometimes hinder their understanding. 

Rubric Step Number: The increasing complexity of material, indicated by a negative 

correlation of -0.2007 with “Rubric_Step_Number,” correlates with a decrease in correct 

answers. This indicates that as the material becomes more challenging and requires 

students to combine multiple pieces of knowledge, their performance declines. This 

suggests that later steps in the quizzes, which are more complex, present greater difficulties 

for students. 
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Fig. 4 The correlation analysis 
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Hierarchical logistic regression analysis 

In this section, we analyze the efficacy of various predictors in identifying learning 

impasses in middle school students’ mathematical comprehension through hierarchical 

logistic regression. The analysis is organized under three subheadings: (1) Analysis of Self-

Explanation Features, (2) Exploring General Learning Operations and the Impact of Memo 

and Quiz Actions, and (3) Comprehensive Analysis in the Final Model. Each subheading 

represents a distinct model or combination of models to examine different aspects of 

student engagement and self-explanation features, offering a holistic understanding of the 

factors influencing learning impasses. 

Analysis of self-explanation features (MS, MS+G, MF) 

In our study, examining the efficacy of various predictors in identifying impasses in middle 

school students’ mathematical comprehension, we employed distinct models that focused 

on self-explanation features and general learning activities. The analysis, segmented into 

different models—MS, MS+G, and MF—revealed insightful findings on the predictors’ 

influence on detecting comprehension difficulties, as indicated by their respective AUC 

values. 

(1). Model MS (AUC = 0.740): This model focused on self-explanation features. Four self-

explanation features demonstrated a statistically significant association with successful 

impasse detection:  

⚫ Self-Explanation Length: Odds Ratio: 15.69 

⚫ Self-Explanation Similarity Score: Odds Ratio: 8.75 

⚫ Self-Explanation Engagement Level: Odds Ratio: 1.63 

⚫ Self-Explanation Sequence: Odds Ratio: 0.12 

These positive coefficients corroborate the hypothesis that a higher level of detail in self-

explanations aligns with better comprehension and course success. 

(2). Combined Model MS+G (AUC = 0.777): This model integrated generated handwriting 

features counts with self-explanation features, enhancing the predictive power of each 

feature group. The significant predictors included: 

⚫ Self-Explanation Length: Odds Ratio: 18.44 

⚫ Self-Explanation Similarity Score: Odds Ratio: 10.11 

⚫ Generated Handwriting Features Count: Odds Ratio: 2.30 

⚫ Rubric Step Number: Odds Ratio: 0.62 

This integration suggests that both qualitative aspects of self-explanation and quantitative 

measures of operational engagement are pivotal in identifying learning impasses. 

(3). Model MF (AUC = 0.802): This model achieved the highest AUC among the self-

explanation focused models, underscoring the significance of combining various 

predictors: 
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⚫ Self-Explanation Length: Odds Ratio: 24.76 

⚫ Self-Explanation Similarity Score: Odds Ratio: 9.15 

⚫ Generated Handwriting Features Count: Odds Ratio: 15.98 

This model’s high AUC value reinforced the importance of a multifaceted approach, 

combining both qualitative and quantitative elements of student engagement to predict 

learning impasses effectively. 

Exploring general learning operations and the impact of memo and quiz actions 

(MG, MA) 

(1). The MG model (AUC = 0.655) highlighted the role of operational factors such as: 

⚫ Generated Handwriting Features Count: Odds Ratio: 3.43 

⚫ Total Activity Duration: Odds Ratio: 1.37 

Although this model exhibited a lower AUC compared to self-explanation focused 

models, it still underlined the relevance of general engagement levels in learning activities. 

The model’s findings align with the notion that higher operational engagement is positively 

associated with mathematical comprehension and course success. 

(2). The MA model (AUC = 0.603) centered on memo-related actions and quiz answers, 

revealing a nuanced perspective on impasse detection: 

⚫ Quiz Answers Correct: Odds Ratio: 2.18 

⚫ Add Memo: Odds Ratio: 0.56 

⚫ Add HW Memo: Odds Ratio: 0.53 

While quiz answers were significant predictors, memo actions had a lesser impact, 

indicating a more complex relationship with learning comprehension. 

Comprehensive analysis in final model (MF) 

The final model, MF (AUC = 0.802), gathered significant predictors from the previous 

models, providing a holistic view of the factors influencing impasse detection. This 

model’s high AUC value reinforced the importance of a multifaceted approach, combining 

both qualitative and quantitative elements of student engagement to predict learning 

impasses effectively. 

Discussion 

Effectiveness of a multifaceted evaluative framework in identifying learning 

impasses 

In our study, we used hierarchical logistic regression to better understand learning 

challenges in online secondary school mathematics education. Our results show that 

combining different types of data can effectively identify these challenges. Initially, our 
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Table 6 Results for the effect models with the indicators. Only significant indicators are shown 

Model Predictors Odds Ratio Coeff. Std Error t Value p-value 

MS AUC = 0.740 Self-Explanation Length 15.69 2.75     0.21 13.09   <0.001  

 LogL = -2133.1 Self-Explanation Similarity 
Score 

8.75 2.17     0.19 11.50   <0.001  

 AIC = 4278.1 Self-Explanation Engagement 
Level 

1.63 0.49     0.18 2.72   0.010  

 BIC = 4315.3 Self-Explanation Sequence 0.12 -2.10     0.15 -13.83   <0.001  

MG AUC = 0.655 Generated Handwriting 
Features Count 

3.43 1.23     0.15 8.38   <0.001  

 LogL = -2360.8 Rubric_Step_Number 0.65 -0.42     0.03 -13.46   <0.001  

 AIC = 4731.7 Accurate Activity Duration 0.49 -0.71     0.24 -2.88   0.004  

 BIC = 4762.6       

MA AUC = 0.603 QUIZ_ANSWER_CORRECT 2.18 0.78     0.21 3.71   <0.001  

 LogL = -2433.0 ADD_MEMO 0.56 -0.58     0.11 -5.29   <0.001  

 AIC = 4898.0 ADD_HW_MEMO 0.53 -0.64     0.15 -4.13   <0.001  

 BIC = 4997.0       

MS+G AUC = 0.777 Self-Explanation Length 18.44 2.91     0.22 13.43   <0.001  

 LogL = -2027.7 Self-Explanation Similarity 
Score 

10.11 2.31     0.20 11.79   <0.001  

 AIC = 4075.4 Generated Handwriting 
Features Count 

2.30 0.83     0.24 3.48   <0.001  

 BIC = 4137.2 Rubric_Step_Number 0.62 -0.48     0.04 -13.58   <0.001  

  Self-Explanation Sequence 0.13 -2.02     0.16 -12.86   <0.001  

MF AUC = 0.802 Self-Explanation Length 24.76 3.21     0.23 13.94   <0.001  

 LogL = -1941.8 Generated Handwriting 
Features Count 

15.98 2.77     0.31 8.82   <0.001  

 AIC = 3933.7 Self-Explanation Similarity 
Score 

9.15 2.21     0.20 10.87   <0.001  

 BIC = 4088.4 Accurate Activity Duration 2.03 0.71     0.31 2.31   0.021  

  ADD_MEMO 0.75 -0.28     0.13 -2.15   0.031  

  Rubric_Step_Number 0.60 -0.51     0.04 -14.10   <0.001  

  OPEN 0.52 -0.65     0.28 -2.34   0.019  

  Self-Explanation Sequence 0.26 -1.34     0.18 -7.34   <0.001  

  ADD_HW_MEMO 0.06 -2.84     0.26 -10.88   <0.001  

 

 

model, which focused only on self-explanation features like the length of explanations, 

showed good accuracy (AUC = 0.740). This finding highlights that self-explanation traits 

are important markers of students’ understanding and potential learning barriers, 

addressing Research Question 1. 

In contrast, models that focused on operational aspects, such as the number of operations 

and total activity duration, showed moderate accuracy (AUC = 0.655). This suggests that 

operational engagement also plays a significant role in the learning process, addressing 

Research Question 2. While operational metrics alone showed moderate accuracy, 
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combining them with self-explanatory data significantly improved the model’s precision 

(AUC = 0.777). This shows the benefits of integrating these data types. 

Most notably, our comprehensive model, which combined self-explanation and 

operational factors, achieved the highest accuracy (AUC = 0.802). This result confirms the 

effectiveness of a holistic approach that includes detailed operational, engagement, and 

self-explanation data. Overall, our findings highlight the important roles that both self-

explanatory attributes and operational engagement play in identifying learning challenges 

in secondary school mathematics. 

Interestingly, none of the MA features had a strong impact in the MF model. This can be 

explained by how the ground truth was established, primarily relying on self-explanation 

data. Self-explanation features directly influence the model’s predictions, making them 

more prominent. In contrast, memo-related actions and quiz answers, which are indirectly 

related to the ground truth, have less impact when included with self-explanation features. 

This happens because the predictive power of the self-explanation features overshadows 

the contributions of the indirectly related features. 

Significant predictors of learning difficulties in online mathematics education in 

MF 

The ‘Self-Explanation Length’ emerged as a significant predictor with an odds ratio of 

24.76. This means that students who provide longer, more detailed explanations are likely 

to understand complex mathematical concepts better. Self-explanation is critical in 

enhancing understanding by requiring students to articulate their thought processes, which 

reinforces their learning. Previous research has shown that detailed self-explanations 

promote better integration of new knowledge (Chi, 2000) and enhance both conceptual and 

procedural understanding in mathematics (Rittle-Johnson, 2017). This finding supports the 

idea that detailed self-explanations lead to deeper cognitive processing. This directly 

addresses RQ1, as it shows how detailed self-explanations can help identify and overcome 

learning impasses by revealing students’ thought processes and areas of misunderstanding. 

Additionally, the ‘Self-Explanation Similarity Score’ showed a substantial odds ratio of 

9.15, reinforcing our methodological approach. This high odds ratio indicates a strong link 

between the similarity of a student’s self-explanation to reference material and their 

understanding of mathematical concepts, addressing Research Question 1. The high 

predictive value of the similarity score suggests that students who can closely align their 

explanations with accurate reference material achieve better understanding. This aligns 

with the notion that high-quality self-explanations facilitate the recognition and transfer of 

knowledge by focusing on the structural aspects of content (Rittle-Johnson, 2006). 

However, ‘Self-Explanation Complexity’ and ‘Self-Explanation Sequence’ did not 

significantly associate with step correctness, suggesting that these aspects might not align 
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well with actual comprehension. This finding is relevant to RQ2, as it helps identify which 

aspects of self-explanation are less predictive of learning difficulties, thereby refining our 

understanding of effective self-explanation strategies. The ‘Rubric Step Number’ suggests 

that later stages in problem-solving, which involve more complex tasks, are more 

challenging for students, which is supported by a negative correlation coefficient of  

-0.2007, indicating that more difficult problems are associated with lower correctness rates. 

The ‘Generated Handwriting Features Count’ was a significant predictor with an odds 

ratio of 15.98, highlighting the importance of active engagement in learning. This indicates 

that more operations reflect greater student involvement with the learning material, 

aligning with RQ2. Active engagement, as evidenced by frequent handwriting operations, 

indicates a higher level of interaction with the learning material, which is essential for 

effective learning. This supports findings that emphasize the role of active problem-solving 

and manipulation of information in understanding complex concepts (McNamara et al., 

2004). 

Handwriting features, including stroke count and timing patterns, were found to indicate 

cognitive effort and problem-solving, supporting VanLehn’s (1990) concept of impasse-

driven learning. ‘Accurate Activity Duration’ also showed a positive relationship, 

suggesting that factors like the time spent on an activity and the number of pen strokes 

significantly influence learning outcomes. This finding is relevant to both RQ1 and RQ2, 

as it shows that sustained effort and engagement are crucial for overcoming learning 

impasses and improving comprehension. 

Qualitative evaluation in impasse detection outcomes 

Our model works well in certain situations. For example, when students write detailed and 

well-structured self-explanations, the model effectively identifies what is missing or 

unclear in their understanding. It is particularly good at recognizing gaps in students’ 

knowledge when their explanations are comprehensive. 

However, there are challenges when students cannot explain well. In such cases, the 

model tends to interpret this as a learning impasse, especially early in the problem-solving 

process. This suggests that our model is more effective for students who can clearly explain 

their thinking but struggles to accurately detect issues for those who are not used to writing 

self-explanations or lack such skills. To improve the model’s utility, it needs adjustments 

to better handle cases where the student’s explanation is less detailed or clear. Additionally, 

supporting students’ motivation and ability to write self-explanations is crucial. These 

adjustments would provide a reliable tool for identifying learning challenges across a wider 

range of student responses and problem-solving stages. 
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Table 7 Quiz of Pythagorean theorem 

Question Step Sample Answer Students’ Self-explanation Ground Truth Pred 

In the provided 
diagram, two 
semicircles 
with AC and BC 
as diameters 
are present. 
The chord AQ 
of the larger 
semicircle is 
tangent to the 
smaller 
semicircle at 
point P. Given 
that 
∠APC=120° and 
the radius of 
the smaller 
semicircle is 6, 
calculate the 
area of the 
shaded region. 
Express your 
answer in the 
form of √3 - π. 

1 To determine the 
shaded area, first 
divide the figure into 
various sections. 
Starting with △AOQ, 
using the dimensions 
obtained from the left 
diagram, the base and 
height can be 
determined, resulting 
in an area of 81r³/4. 

To determine the length of 
side BC in triangle BPC, 
considering the triangle 
ratios of 90 degrees, 60 
degrees, and 30 degrees, 
we draw a perpendicular 
line PK from point P to line 
BC. We then calculate the 
length using the area of 
triangle BPC. 

Correct  
Step (1) 

Correct 
Step (1) 

2 For the sector OQC, 
with a central angle of 
60 degrees, the area is 
calculated as 9 × 9 × π 
× 1/6, which equals 
27/2π. 

Utilizing the triangle ratios 
for 90 degrees, 60 degrees, 
and 30 degrees, we 
determine the length of KC 
(the radius of the large 
circle). Next, we calculate 
the area of sector KPC. 

Correct  
Step (1) 

Incorrect 
Step (0) 

3 Additionally, the area 
of the smaller 
semicircle is 
calculated as 6 × 6 × π 
× 1/2, resulting in 18π. 

We find the area of 
triangle AQK using ratios. 

Incorrect  
Step (0) 

Incorrect 
Step (0) 

4 Therefore, the area of 
the inclined section is 
given by 81r³/4 - 9/2π. 

Finally, we calculate the 
total area of sector KPC 
plus triangle AQK minus 
the semicircle BC. 

Incorrect  
Step (0) 

Incorrect 
Step (0) 

The question 
reads:  
“Please find the 
radius of the 
circumscribed 
circle for a 
triangle with 
sides of lengths 
5, 6, and 7.” 

1 Draw auxiliary lines in 
the triangle inscribed 
in a circle. Designate 
the circumcenter as O, 
and let E be the 
intersection point 
between AO and the 
circumcircle. Also, 
designate the foot of 
the perpendicular 
dropped from vertex 
A to the base BC as D. 

Find a similar triangle  
when considering the 
height with the base of  
the triangle as 7. 

Incorrect  
Step (0) 

Incorrect 
Step (0) 

2 Prove that the 
triangles △ABE and 
△ADC inside the 
circumcircle are 
similar. 

Subsequently, solve it 
proportionally. 

Incorrect  
Step (0) 

Incorrect 
Step (0) 

3 Using the Pythagorean 
theorem, determine 
the height of △ABC. 
Let h be the height, 
BD=x, and find the 
values of x and h. 

 Incorrect  
Step (0) 

Incorrect 
Step (0) 

4 From △ABE ∽ △ADC, 

determine the radius 
based on the ratio of 
corresponding sides. 
With AB:AD=AE:AC, 
derive the radius R of 
the circumcircle as 
R=35r6/24 using the 
similarity ratio. 

 Incorrect  
Step (0) 

Incorrect 
Step (0) 
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Limitations and future work 

Our study has a few key limitations. First, we rely heavily on the presence and quality of 

self-explanations. We assumed that well-written self-explanations mean there are no 

learning barriers, while poor explanations signal a problem. However, not all students are 

equally skilled at explaining their thoughts in writing, which can lead to misjudging their 

understanding. Some students might skip self-explanations because they feel confident in 

the material or lack the training to write detailed explanations. This reliance on self-

explanation data can introduce biases. Additionally, our model’s effectiveness depends on 

identifying consistent patterns in student behavior to predict learning impasses. This 

approach assumes that all students have similar learning styles and problem-solving 

methods, which is not always true. Poorly articulated or incomplete explanations can 

significantly reduce the model’s accuracy in detecting impasses. Finally, our research 

focused on middle school mathematics, specifically on linear equations and functions, 

categorized into four steps. However, mathematical content is diverse and complex, 

requiring a more flexible approach to analyzing different concepts and strategies. The 

findings from this specific dataset and context may not apply to other settings or domains 

in mathematics (Ikawati et al., 2020). Future research should aim to broaden the scope to 

include a wider range of topics and educational environments, improving the model’s 

adaptability and relevance. 

Despite these limitations, our study has practical applications for educational settings. 

Features like ‘Self-Explanation Length’ and ‘Self-Explanation Similarity Score’ can be 

integrated into intelligent tutoring systems to provide real-time feedback and personalized 

learning paths. By monitoring these features, educators can identify students who need 

extra support and adjust their teaching strategies accordingly. 
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