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 Abstract 

Error-based Simulation (EBS) is a learning support framework that visualizes 
learners’ errors and encourages trial and error. However, when a learner is stuck, 
EBS has difficulty in helping them overcome the impasse. Additionally, giving a 
correct answer to a learner who is stuck may interfere with the trial-and-error 
activity that EBS is oriented toward. Therefore, it is necessary to encourage learners 
during trial-and-error activities without giving them correct answers. In this study, 
we confirm the effectiveness of our system, which is based on conventional 
mechanics EBS and provides adaptive auxiliary problems based on learners’ errors. 
Furthermore, we analyze force-based self-overcoming to evaluate our system. Self-
overcoming means that the learner can eliminate errors by using the system 
without the intervention of the teacher. If self-overcoming occurs, the learner can 
continue trial-and-error with the auxiliary problems, even if they are stuck. To verify 
the learning effectiveness of such a system, we conducted a classroom 
implementation with 86 third-year junior high-school learners and analyzed the 
results. The system logs from the exercises revealed that self-overcoming was taking 
place, and that it was reflected in the test results. 

Keywords: Elementary mechanics, Learning support system, Error-based Simulation, 
Classroom practice 

 

Introduction 

Error-based Simulation (EBS) is an effective learning support framework that encourages 

trial and error by visualizing learners’ errors. EBS first presents a problem and a simulation 

of what would happen if the learner’s (wrong) answer was correct. If the answer is incorrect, 

the simulation behaves strangely, providing them with an opportunity to recognize their 

error by observing it. Applications of EBS have been studied in various fields and its 
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effectiveness has been demonstrated (Hirashima et al., 1998; Horiguchi et al., 2014; 

Shinohara et al., 2015). 

However, if a learner gets stuck in the middle of the trial-and-error process, it is difficult 

for EBS to help them overcome the impasse. Mechanics EBS visualizes the motion of an 

object in response to drawn forces, but it may not be able to visualize complex problems 

with many forces acting on the object, and thus may not be able to guide the learner to the 

correct solution. However, providing the correct answer may interfere with the trial-and-

error process on which EBS is based, so this should not be done. The goal, then, is for 

learners to self-overcome, solving incorrect problems without intervention by the teacher. 

In this study, we introduced a framework that presents error-specific auxiliary problems 

to learners who repeatedly make errors on the same problems. This system was then 

implemented in a classroom implementation for 86 third-year junior high school students 

(74 of whom constituted the data to be analyzed). We then investigated whether these 

auxiliary problems enable self-overcoming in learners. 

Related work 

Mechanics learning support system 

Mechanics has been a favored subject in the study of learning support systems, especially 

since the early days of their development (Wenger, 1987). Andes is a representative 

example of such a system (VanLehn et al., 2005), providing adaptive feedback by asking 

the learner to formulate equations and interpreting them to provide hints and explanations 

related to their errors. 

There is some concern that intervention from the system, such as providing hints and 

explanations, may inhibit learning when an emphasis is placed on recognition of errors 

(Tulis et al., 2016). Consequently, many simulation-based learning environments that 

provide feedback to a learner’s input have been proposed, and their effectiveness has been 

demonstrated for mechanics (Park, 2019). 

Error-based Simulation (EBS) 

Error visualization is a framework that makes learners aware of their errors by visualizing 

them in the target learning task, rather than giving it to them directly. A learning 

environment using simulation, especially error visualization, is referred to as an EBS 

(Hirashima et al., 1998). 

Applying EBS to mechanics has been shown to promote a greater conceptual 

understanding. This understanding helps to increase learning retention (Wilcox et al., 2020). 

These benefits have been observed to persist for one to three months (Horiguchi et al., 2014; 
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Shinohara et al., 2015). In the present study, we deal specifically with EBS for mechanics 

(mechanics EBS). 

It has also been pointed out that mechanics EBS may not allow learners to properly 

correct errors when visualized. Imai et al. (2008) conducted an EBS class practice session 

at a junior high school. While the learning effects of EBS were confirmed, the authors 

noted that EBS has limitations in its effectiveness for phenomena involving complex 

interactions. Therefore, there are cases in which mechanics EBS is ineffective at guiding 

learners to a correct solution. 

Learners may then get stuck in the problem practice in EBS, which could cause them to 

lose motivation and give up learning (Beck & Gong, 2013). It is common to give a stuck 

learner a completely correct answer or a hint about the incorrect portion of their answer 

(Shute, 2008). However, giving a learner the correct answer may leave them without a deep 

understanding of the error, and may interfere with the trial-and-error process on which EBS 

is based, so this should be discouraged. 

Scaffolding in learning support systems 

Scaffolding is a teacher-supported process that enables learners to perform tasks they 

cannot complete independently (Wood et al., 1976), and meta-analyses have shown that it 

improves individual academic performance (Belland et al. 2017). 

EBS and modeling learning environments are similar in that they generate and support 

strange simulations from learners’ answers. VanLehn et al. (2016) summarized scaffold 

methods in modeling learning environments and developed Dragoon, a system that 

implemented some of these methods. The scaffold method used in this study, and not 

implemented in Dragoon, is decomposition into subsystems. Beek and Bredeweg (2012) 

proposed a system that provides a causal explanation as a scaffold for beginning learners 

to identify the cause of the difference between correct and incorrect behavior in a modeling 

learning environment. However, providing explanations may lead to passive learning, in 

which the learner simply reads and accepts the explanations. 

Hayashi et al. (2014) developed a physics learning system in which an auxiliary problem 

that simplifies the original problem is presented to the erring learner. They confirmed that 

this system facilitates self-overcoming. However, in their system, learners are required to 

work on auxiliary problems in a predefined order, regardless of the type of error they make. 

Burton et al. (1984) discussed increasingly complex microworlds (ICM). ICM is an 

approach in which learners begin by experiencing and understanding simple phenomena 

before gradually increasing their complexity, thereby facilitating greater understanding of 

more complex phenomena. In this study, we instead present the target problem first. The 

learner’s errors are then identified, and simple error-specific auxiliary problems are 

presented. 
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Impasse-breaking support in EBS 

Aikawa et al. (2020) conducted research on providing adaptive auxiliary problems in 

mechanics EBS. They developed a system that targets complex problems and the 

associated impasse and presents auxiliary problems to learners who are stuck. Aikawa et 

al. used the dynamic whole-task selection approach (Salden et al., 2006), which 

automatically diagnoses the learner’s errors and presents auxiliary problems accordingly. 

This approach achieves a high level of problem control in which the most complex problem 

is solved first. The learner is then given a task that allows them to learn partial solutions 

dynamically based on the problem-solving situation. One way of creating auxiliary 

problems is to simplify the original problem (Hayashi et al., 2014). Having learners solve 

these auxiliary problems helps them understand where they are having difficulties in 

solving the original problem. They then assessed the learning effects for university students. 

However, some unresolved issues remain in the research of Aikawa et al.: 

1. There was no analysis of whether the auxiliary problem helps to resolve the impasse. 

2. The participants in their experiment were not junior high school students (beginning 

mechanics students), the primary target of the system. 

3. The sample size was small. 

Therefore, in the present study, the number of self-overcoming instances is analyzed for 

1. Additionally, we introduce a system that provides auxiliary problems to learners who 

are stuck in 2 and 3, specifically, to a class practice session for 86 third-year junior high 

school students (74 of whom were included in the analyzed data), and we verified its 

learning effects. 

In this study, an impasse is defined as “a state in which no progress is made in problem 

solving due to repeated failures over a long time through trial and error.” If self-overcoming 

occurs without teacher intervention in a learner who repeatedly gave incorrect answers to 

a problem, they will have broken the impasse by using an auxiliary problem. Based on this, 

Aikawa et al. analyzed self-overcoming (referred to as “breaking an impasse” in their 

paper). However, they were able to analyze only a single error in the original problem and 

up to its solution, and a comprehensive analysis of what errors and self-overcoming 

occurred during the learning activity was not possible. Here, we calculate the numbers of 

errors and instances of self-overcoming for each force in the learners’ answers, and assess 

for which ones the auxiliary problems were effective. 

System used 

This section is an overview of the EBS system. The system works by analyzing the 

learner’s error based on their answer history for the exercises and presenting them with 

appropriate auxiliary problems. 
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Specifically, learners first work through exercises in a system similar to that used in 

conventional EBS (Figures 1 and 2). After a certain number of incorrect attempts at the 

same problem, the system offers the learner the choice to work on an auxiliary problem, 

and if they choose to do so, the system automatically presents one to them (Figure 3). The 

system analyzes the learner’s answer history and the errors in their answers, then selects 

auxiliary problems appropriate for those errors. The learner works on the auxiliary 

problems, and if they fail a certain number of times, the system presents additional auxiliary 

problems in the same way. If the learner answers a given auxiliary problem correctly, then 

the system presents a series of incrementally more complex problems. The goal is for the 

learner to be able to solve the initial problem by repeating this process. 

For this system to work effectively, it is necessary to have a set of auxiliary problems 

appropriate for the treatment of each error and a problem graph organized based on the 

differences between problems. The system used in this study implements these features in 

a conventional EBS, and was itself implemented on a tablet. This allowed us to make 

adjustments that made it easier for junior high school students to input data, based on the 

opinions of those who had experience teaching the system. For clarity, we refer to the 

auxiliary problems in the system as “support problems.” 

 

 

 

 

 

Fig. 1 System screen presenting the original problem 
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Support problems 

Here, we detail the auxiliary problems used by the system. Figure 4 shows all the problems 

implemented in the system and their problem graph. 

The original problem is shown in Figure 4. In this problem, two objects are stacked on a 

floor with the lower one being pushed sideways by an external force, causing it to 

 

Fig. 2 System screen for simulation 

 

Fig. 3 System screen for presenting support problems 
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accelerate. There are nine forces at work here, and we created auxiliary problems for each 

of them specifically. 

For example, support problem 6 includes force (3) (which exerted on the lower object by 

the upper object) but removes the lateral force and the upper object. This problem replaces 

the object above with an external force, bringing force (3) to the attention of the learner. 

We also included support problem 5 in the problem graph so that learners who have 

learned force (3) in support problem 6 can apply their understanding to the two-object 

problem. Support problem 5 is a stationary problem with two overlapping objects, so by 

solving support problem 6 and then support problem 5, the learner will be able to apply 

force (3) to problems with two overlapping objects. 

The gravitational and normal forces, represented by (1), (2), (4), and (5) in the original 

problem, are common to all problems, so we used the simplest problem, support problem 

7, as an auxiliary problem. For (7), (8), and (9) in the original problem, we created support 

problems 4, 1, and 2, respectively. This system implemented a problem graph consisting 

of eight problems: seven support problems and the original problem. 

Error analysis 

Here, we describe the method used to analyze learners’ errors in this system. Recall that 

we define an impasse as a state in which no progress is made in solving a problem because 

the learner repeats the same mistake multiple times. The system analyzes the number of 

errors by counting the ones that they made most frequently based on their answer history. 

First, the learner answers a problem by drawing a diagram using arrows. After each 

answer, the system compares their drawing to the correct answer and counts the number of 

arrows that are missing. 

The system performs this kind of analysis for each answer the learner gives and extracts 

the force that is missing most often from their answer history. It then assigns this as the 

 

Fig. 4 The problem graph implemented in the system 
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learner’s error (the process in the case of a tie is described in the “Presentation of auxiliary 

problems” subsection). For example, if the learner answers the original problem five times 

and misses force (3) four times, force (8) three times, and force (5) once, the system will 

mark force (3), the most frequently missed force, as the error. 

Presentation of support problems 

Here, we describe how the system presents support problems. It compares the learner’s 

errors using the problem graph in Figure 4 and selects the corresponding link. It then 

presents support problems in decreasing order of the number of elements at both ends of 

the link. 

For example, if the learner continues to make errors with force (3) in the original problem, 

then the system will select the corresponding link between support problem 7 and support 

problem 6. Support problem 7, which has fewer elements, is presented first, and once 

answered correctly, support problem 6 is then presented. We assume that by solving these 

problems in this sequence, the learner will become aware of how they differ, which is in 

the presence of force (3). 

If multiple arrows are tied for the most times being excluded from the answer, then the 

system sets a priority for each arrow and presents the support problems in order of highest 

priority. In this system, forces (1), (2), (4), and (5) (gravity and the normal forces) have the 

highest priority, followed by force (6) (an applied external force), force (3) (the force 

exerted by the lower object on the upper object), and forces (9), (7), and (8) (all friction 

forces), in that order. 

The learner works through these support problems, and after a certain number of incorrect 

answers, the errors are analyzed again in the manner outlined in the “Analysis of error” 

subsection, and a new set of support problems are presented. If they answer a support 

problem correctly, a support problem with more elements is presented according to the 

problem graph in Figure 4. Since the support problems are constructed from the original 

problem, they are designed to revert to the original problem as they become more complex, 

the goal being to help the learner recognize what was prohibiting them from answering it 

correctly. 

As for when support problems are presented, the system is designed to present one after 

10 consecutive incorrect answers to the same problem. In consideration of the learner’s 

workload, we also implemented a function that allows the system to present a support 

problem at the learner’s discretion if they make three or more errors in the same problem. 

Comparison with the system of Aikawa et al. (2020) 

Here, we describe the differences between our system and that developed by Aikawa et al. 

(2020), specifically regarding the interface, problem graph, and transition method. In 
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Aikawa et al.’s system, the interface was drawn by inputting certain elements, such as the 

starting point, direction, and size. However, it is considered to be too much work for junior 

high school students to have them think of each element. Our system is designed so that 

they can draw arrows on a tablet using their fingers. The tasks in the problem graph are the 

same, but support problems 1 and 4 are different. In Aikawa et al.’s system, these problems 

dealt with the acceleration of an object between the floor and the ceiling and the 

acceleration of an object on a conveyor belt. The force elements for these are identical to 

those in the original problem, but the objects are different. However, to facilitate the 

transition to the original problem, both problems were treated as phenomena in which two 

objects accelerate when the object below is pushed, thus bringing the objects involved into 

a sort of unification with those in the original problem. Aikawa et al.’s transition method 

differed, however, in that it presented a problem that included the force associated with the 

error when an impasse was reached. However, we considered it necessary to have the 

participants observe the difference between the problem without the corresponding force 

and the problem with the corresponding force when there was an error. Therefore, our 

system presents problems that do not include the force associated with the error before 

presenting those that do. 

Practical use 

Procedure 

We conducted a class practice session at a junior high school to assess the effectiveness of 

our system for junior high school students learning elementary mechanics. EBS, which 

forms the basis of this system, has been practiced many times in junior high schools 

(Horiguchi et al., 2014; Shinohara et al., 2015). In a study by Horiguchi et al., it was 

mentioned that none of the junior high school students who used EBS experienced any 

major difficulties in using the system. In this study, we targeted students who had already 

studied the range of physics covered by the system as part of their curriculum; the system 

is not intended for students who do not know the subject matter, but those who do and get 

stuck in the exercises. 

Therefore, three classes (two with 29 students and one with 28 students, for a total of 86) 

in the third grade of a junior high school were taught for three periods (135 minutes). The 

class practice session consisted of a greeting and class explanation (41 minutes), a pre-test 

(10 minutes), a period using the system (64 minutes), a post-test (10 minutes), and a 

questionnaire (10 minutes). To assess whether the students had retained what they had 

learned, a delayed test was administered eight weeks later, when they were considered to 
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have sufficiently forgotten the test problems. Similar studies have allowed a period of one 

to three months. 

Concerning instructional intervention during the use of the system, we implemented a 

practice mode using simple problems to demonstrate how to use the system and guided 

students while letting them operate the system. They were then asked to switch to a version 

of the problem targeted in this classroom implementation. During the use of the system, 

teachers and system developers visited the students, answered questions about the system, 

and gave guidance to students who seemed to be stuck. They answered questions about the 

system specifications but did not give stuck students the answers, instead advising them to 

“try the answers you think” and to “interpret the simulations.” 

Evaluation method 

Learning effectiveness was evaluated based on the results of the pre-, post-, and delayed 

tests. The difference between the pre- and post-tests was used to investigate how well the 

system helps learners solve problems. The difference between these and the delayed test 

was used to investigate whether the system provides learners with an understanding that 

persists over time. The content of each test was the same, consisting of four learning tasks 

(Figure 5) and three transfer tasks (Figure 6), for a total of seven problems. The problems 

 
 

(a) Learning task 1 (b) Learning task 2 

 

 

(c) Learning task 3 (d) Learning task 4 

 

Fig. 5 Learning tasks used in the test 
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in the learning tasks were part of those handled by the system: the original problem of 

Figure 4 and support problems 2, 5, and 7. The problems in the transfer tasks were of a 

more advanced nature and were not included in the system. All these problems were 

drafting problems, and the correct answers are indicated with arrows in the diagrams in 

Figures 5 and 6. 

Furthermore, we used the system logs from the exercises to assess whether the auxiliary 

problems helped to eliminate errors in the learning activities. Specifically, we analyzed the 

students’ answer histories for the original problem before and after solving the auxiliary 

problems. We then determined whether error resolution occurred in their answers for each 

ability (we refer to this as self-overcoming (Hayashi et al., 2014) in this paper) and 

calculated the number of times this occurred. 

Results 

Test results 

The results of the pre-, post-, and delayed tests are given in Table 1. Since some of the 

students were absent from class and the delayed test, only 74 could be included in the data. 

In Table 1, we summarize the means and standard deviations for the learning tasks, the  

 

(a) Transfer task 1  

  

(b) Transfer task 2 (c) Transfer task 3 

 

Fig. 6 Transfer tasks used in the test 
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Table 1 Test results. Values outside and inside the parentheses are mean values and standard 
deviations, respectively. The learning task is worth 4 points, the transfer task is worth 3 points, and 
the total is worth 7 points 

 Learning task Transfer task Total 

Pre-test 0.64 (0.88) 0.03 (0.16) 0.66 (0.95) 
Post-test 2.53 (0.79) 0.89 (0.48) 3.42 (1.07) 
Delayed test 1.45 (1.12) 0.35 (0.48) 1.80 (1.36) 

 

 

transfer tasks, and their sum. First, the total results show that most students improved their 

scores from 0.66 on the pre-test to 3.42 on the post-test. No scores decreased from the pre-

test to the post-test. A t-test revealed a significant difference between the pre-test and post-

test at p < .001. In the delayed test, the average score was 1.80, which was higher than the 

pre-test, indicating that the percentage of correct answers was maintained. 

In a previous study, Aikawa et al. (2020) conducted a laboratory-scale experiment 

comparing the proposed system to one with auxiliary problems but no automatic 

presentation function. As a result, there was a large difference in the effect size between 

the pre-test and post-test (1.70 for the experimental group and 0.82 for the control group). 

Furthermore, in the log analysis, many learners in the control group were unable to perform 

the appropriate auxiliary problem transition. From this, we found that not including 

auxiliary problems, or their including but could not be used appropriately, cannot 

adequately support the improvement of learning outcomes. 

The problems given in the test are shown in Figures 5 and 6, and the graphs of the number 

of correct answers and the percentage of correct answers for each problem are shown in 

Figure 7. In this system, problems that were considered too difficult for junior high school 

students (Figure 5(d)) were implemented as original problems in Figure 4 and were 

practiced. However, more than half of the students answered the problems correctly during 

the class, and 30 answered them correctly on the test, while none answered them correctly 

in the pre-test. This suggests that students can learn to solve problems that they are initially 

unable to by using this system. Additionally, 30 of the 74 students correctly answered the 

most basic problem (Figure 5(a), Figure 4 support problem 7) in the pre-test, while all 74 

correctly answered it in the post-test. 

 

Fig. 7 Scores and the percentage of correct answers per problem in the test 
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Furthermore, for Learning Task 3 (corresponding to Figure 5(c) and Figure 4 support 

problem 5), only two students answered it correctly in the pre-test, whereas 62 answered it 

correctly in the post-test. We consider it a significant achievement that the correct response 

rate increased from 2.7% to 83.8% between the pre-test and the post-test. 

Force-by-force analysis of the test 

In the “Test results” subsection, each problem was scored on a problem-by-problem basis, 

but here we analyze each force individually and assess whether they promote greater 

understanding. In the problem-by-problem scoring, the correct answer was that in which 

all forces were drawn exactly. For example, if forces (1) and (2) were involved in a problem, 

then any answer in which one or both were omitted was considered incorrect. This made it 

impossible to determine whether the system enabled learners to draw the correct forces in 

the post- and delayed tests. By clarifying whether there are cases in which forces are drawn 

in problems with incorrect answers, and conversely, those in which forces are not drawn, 

we are able to examine which auxiliary problems were effective and which need to be 

improved. Therefore, in the next section, we present the results of a force-by-force analysis 

of the test results. 

Analysis of each problem 

First, the forces involved in the problems are numbered in Figures 5 and 6, and their scoring 

results are shown in Figures 8 and 9. From Figure 8, we can see that the percentage of 

correct answers is high for all forces in (a) learning tasks 1-3. Specifically, the percentage 

of correct responses in the post-test is high for all forces and does not differ from the results 

in the “Test results” subsection. 

 

Fig. 8 Percentage of correct answers for each problem by force (learning task) 
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Next, for learning task 4 in (b), forces (1)-(6) and (9) had high percentages of correct 

responses in the post-test, but forces (7) and (8) did not. Force (8) was particularly low in 

the delayed test at 12%, making it a primary factor in the low percentage of correct 

responses to that test. 

Next, Figure 9 shows that for transfer task 1 in (c), forces (1), (3), and (5) had high 

percentages of correct responses in both the post- and delayed tests, with force (5) having 

a high percentage of correct responses in the pre-test. On the other hand, the response rate 

for force (6) was only in the 30% range for both the post- and delayed tests. 

Finally, as shown in Figure 7, there were almost no correct answers for transfer tasks 2 

and 3 in (d) and (e), but correct answers for forces (1), (4), and (6) in transfer task 2 and 

forces (1), (4), (7), and (9) in transfer task 3 exceeded 80% in both the post- and delayed 

tests. 

Overall, the percentage of correct responses varied depending on the forces involved in 

the problem. Therefore, in the next section, we categorize the forces and analyze the 

percentage of correct responses. 

 

Fig. 9 Percentage of correct answers for each problem by force (transfer task) 
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Categorical analysis of forces 

The forces are categorized and the percentages of correct responses are summarized in 

Figure 10. The categories are (a) gravity, (b) the normal force, (c-1) the force exerted by 

an object above, (c-2) the force exerted by an external force, (d-1) the friction force with 

the ground resisting a pushing force, (d-2) the friction force with an object above resisting 

a pushing force, (d-3) the friction force propagating to the upper object, (d-4) the frictional 

force propagating to the lower object, (d-5) the frictional force with the ground resisting 

the force propagating to the lower object, and (e) the action and reaction between objects 

and between objects and walls. 

First, in Figure 10(a), gravity had a correct response rate of more than 80% for all 

problems in the post- and delayed tests. Next, (b) the normal force had a correct response 

rate of 80% or more in the post-test and 70% or more in the delayed test. 

 

Fig. 10 Percentage of correct answers for each category of force 
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Next, the percentage of correct answers for (c-1) the force exerted by an object above 

was less than 20% for all problems in the pre-test and more than 70% in the post-test. This 

indicates that the system effectively helped learners understand this force. On the other 

hand, the percentage of correct answers in the delayed test was lower than in the post-test. 

The percentage of correct answers for (c-2) the force exerted by an external force was more 

than 80% in both the post- and delayed tests, as high as the percentage of correct responses 

for gravity and the normal force. 

Next, let us look at the frictional forces. The response rate for (d-1) the friction force with 

the ground resisting a pushing force was generally good, but those for the other frictional 

forces were generally low. The response rate for (d-3) the friction force propagating to the 

upper object was higher than that for the other frictional forces. 

Discussion of test results 

The correct response rates were high for (a) gravity, (b) the normal force, (c-2) an external 

force, and (d-1) the friction force with the ground resisting a pushing force. These forces 

are included in the series of links among support problems 2, 3, and 7 in Figure 4.  

(a) Gravity and (b) the normal force are intended to be learned in support problem 7, and 

(c-2) the force exerted by an external force is intended to be learned in the link between 

support problems 7 and 3. The link between support problems 3 and 2 is used to teach  

(d-1) the friction force with the ground resisting a pushing force. We believe that linking 

this series of problems in this way effectively helped learners understand these forces. 

On the other hand, the response rates for the frictional forces other than (d-1) the friction 

force with the ground resisting a pushing force were generally low. Of these, (d-2) the 

friction force with an object above resisting a pushing force is the one intended to be 

learned in the link between support problems 2 and 1 in Figure 4. Therefore, we can 

conclude that force (8) in the original problem was not learned well because of the large 

difference between the support problems at both ends of this link. 

The correct response rate was low for (d-2) the friction force with an object above 

resisting a pushing force, but that for (d-3) the friction force propagating to the upper object 

was comparatively high. This is the force that we aimed to have the students learn in the 

link between support problems 7 and 4 in Figure 4. 

Furthermore, (d-4) the frictional force propagating to the lower object and (d-5) the 

frictional force with the ground resisting the force propagating to the lower object appeared 

only in the transfer problems. The percentage of correct answers to these problems was 

particularly low, suggesting that they were difficult for learners to understand using this 

problem graph. 

Additionally, the correct response rate for (c-1) the force exerted by an object above 

increased in the post-test but decreased in the delayed test. This is the force that is intended 
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to be learned in the link between support problems 7 and 6 in Figure 4. However, it is not 

only this link but also the link up to support problem 5 that is influential. This series of 

links was used by the system, but there were problems in the delayed test with the 

assignment corresponding to support problems 7 and 5, but not to support problem 6. 

Therefore, we conclude that solving the series of auxiliary problems from support problems 

7 to 5 was effective. 

Questionnaire 

The results of the questionnaire are presented below. The questions were asked using a six-

point scale, with 1 corresponding to “not at all agree” and 6 corresponding to “very much 

agree,” and the average was calculated. For the sake of clarity, the system was referred to 

as “application” and the auxiliary problems as “support problems” within the questionnaire. 

We asked (No. 1) “Do you feel that the support problems helped you solve the original 

problem?” and (No. 2) “Did you feel that the support problems were pertinent to your 

errors?” 

The results showed that No. 1 received a high score of 5.46 and No. 2 received a high 

score of 5.06. These suggest that learners are positive that the auxiliary problem framework 

facilitates self-overcoming. 

Log analysis 

Analysis of self-overcoming 

We evaluated the system logs from the learning activity to evaluate the students’ 

understanding. Some of the results from same class practice session are reported in Aikawa 

et al. (2022), and the results for the delayed test and force-by-force analysis are reported in 

Aikawa et al. (2023). In this paper, we added an analysis of the impasse by analyzing the 

system logs. First, the completion rate of the exercises was 70.3% (52/74), meaning that 

70.3% of the students were able to solve the original problem after failing to do so initially. 

Thus, we conclude that the 64 minutes of system practice time was sufficient for 70% of 

the students to complete the original problem after solving the auxiliary problems. 

To better enable self-overcoming, a strategy was proposed that simplifies the unsolvable 

problems by partializing or specializing them. This allows a learner to find problems that 

can be solved on their own, before then revealing the differences between the solvable and 

unsolvable problems. The usefulness of this strategy was previously evaluated (Hayashi et 

al., 2014). 

In this study, we attempted to support self-overcoming by presenting auxiliary problems 

with EBS. We investigated the degree to which our system promoted self-overcoming by 

analyzing its usage log. Specifically, we extracted a learner’s errors to the original problem 
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from their answer history and compared them to the answers given once they were able to 

solve the original problem after working through the auxiliary problems. If one error in the 

previous answer history was eliminated in the next answer history, it was counted as 1 and 

repeated. 

After solving several problems, the system analyzed the errors and presented additional 

auxiliary problems accordingly. Ultimately, a learner solves the same problem multiple 

times before moving on to another problem (unless it is answered correctly the first time), 

and we refer to the history of multiple solutions to a single problem as an “answer series” 

(Figure 11). For this study, only the answer series of the original problem was extracted 

and analyzed to calculate the number of times self-overcoming occurred. 

The log of one learner who solved the original problem during the system practice time 

is given in Table 2 as an example of self-overcoming. This table summarizes the errors in 

the student’s answer for each problem transition. The “problem number” is the problem 

that the student worked on, and this line contains the information for a single answer series. 

The “correct/incorrect” answer is the last correct or incorrect answer in the answer series 

for that problem (this is related to the next problem presented by the system), and “error” 

indicates which force in the answer series for that problem was missing and how many 

times. For example, the first row indicates that the original problem was being worked on, 

the answer was incorrect, and the system moved on to the next problem. The student made 

three mistakes for force (3), three for force (7), three for force (8), and three for force (9) 

in the answer series for the original problem. Note that in the actual exercise, students who 

were able to solve the original problem within the exercise time were asked to work on the 

 

Fig. 11 An answer series 
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system again, but they were not included in the log analysis since they had to work on the 

correct answer once after the second attempt. 

We can also see from Table 2 that when the students worked on the first original problem 

presented to them, they made three errors each for forces (3), (7), (8), and (9) as they 

repeated their answers. The system then presented support problems 7 and 6 in sequence 

for them to learn the highest priority force, force (3), since they all had the same number 

of exclusions in the answers. The student answered support problem 7 correctly but was 

unable to do so for support problem 6, so they worked on support problem 7 again, 

following the priority order of the errors. They then answered the problem correctly and 

moved on to support problems 6 and 5, in accordance with the sequence shown in the 

problem graph. However, when they failed to answer support problem 5 correctly, the 

system again referred to the error and presented support problems 7 and 6 corresponding 

to the most frequently missed force, force (3). The student answered support problems 7 

and 6 correctly, then answered support problem 5 correctly, and again worked on the 

original problem. Here, the student’s answers are missing the arrows for forces (7), (8), and 

(9), but force (3), which was missing at the beginning, no longer is. This suggests that they 

learned force (3) through the auxiliary problems. 

However, they were still incorrect regarding forces (7), (8), and (9), so support problems 

7 and 4 were presented in sequence, which allowed them to learn forces (7) and (8) in the 

order of highest priority. They answered each problem correctly, then worked on the 

original problem again according to the problem graph. In this case, the student’s answers 

 

 

Table 2 System logs of students who answered the original problems correctly 

 Problem No. Correct/incorrect Error 

1 Original problem Incorrect (8): 3 times, (3): 3 times, (9): 3 times, (7): 3 times 
2 Support problem 7 Correct (4): 1 time, (5): 2 times 
3 Support problem 6 Incorrect (3): 1 time, (4): 1 time, (5): 1 time 
4 Support problem 7 Correct  
5 Support problem 6 Correct (3): 1 time, (4): 1 time, (5): 2 times 
6 Support problem 5 Incorrect (3): 9 times, (2): 8 times, (1): 1 time 
7 Support problem 7 Correct  
8 Support problem 6 Correct  
9 Support problem 5 Correct  
10 Original problem Incorrect (8): 13 times, (9): 8 times, (7): 13 times 
11 Support problem 7 Correct  
12 Support problem 4 Correct (7): 1 time 
13 Original problem Incorrect (8): 10 times, (9): 1 time, (3): 1 time, (7): 1 time 
14 Support problem 2 Correct  
15 Support problem 1 Incorrect (8): 9 times, (3): 8 times, (9): 3 times 
16 Support problem 2 Correct (8): 6 times, (3): 2 times 
17 Support problem 1 Correct  
18 Original problem Correct  
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were missing the arrows for forces (3), (7), (8), and (9), but since force (8) was wrong 10 

times while the other forces were only wrong once each, we can infer that they did not 

understand force (8). Consequently, the system presented support problems 2 and 1 in that 

order. They answered support problem 2 correctly and made a mistake in support problem 

1. They were then presented with these problems again, and this time they answered both 

correctly. The student then completed the exercise by correctly answering the last original 

problem presented. 

When the system logs of 74 students were analyzed, self-overcoming was noted to have 

occurred 533 times for errors that were made more than once. It is possible that an error 

that occurred only once could have been due to a careless mistake. Therefore, for the sake 

of convenience, we counted the number of self-overcoming attempts for errors that were 

made three or more times. The number of instances of self-overcoming, then, was 424. 

The number of self-overcoming errors was calculated by categorizing the errors based on 

force (Table 3). The number of errors was counted in the same way, and we also calculated 

the percentage of self-overcoming errors. Force (3) was found to have the highest self-

overcoming frequency having occurred 80 times, followed by the frictional forces (7), (8), 

and (9) with a frequency of 60% (~70 times). Forces (1), (2), (4), (5), and (6) had relatively 

few self-overcoming instances, but they all had a high percentage of self-overcoming errors 

(over 40%), while forces (3), (7), (8), and (9) had relatively low percentages. 

The students were divided into two groups, those who completed the exercises and those 

who did not. The results show that the mean number of self-overcoming attempts by 

students who completed the exercises was 5.88 with a standard deviation of 2.14, while for 

students who did not complete the exercises it was 5.36 with a standard deviation of 2.16, 

indicating that there was little difference. Additionally, when the mean of the number of 

self-overcoming instances for each force was calculated (Figure 12), it was found that those 

who completed the exercise exhibited self-overcoming less frequently for forces (1), (2), 

(4), and (5) and more frequently for forces (3), (7), (8), and (9). Conversely, the participants 

who did not complete the exercises were more likely to exhibit self-overcoming for forces 

(1), (2), (4), and (5), and less likely for forces (3), (7), (8), and (9). 

 

 

 

Table 3 Percentage of self-overcoming instances and error times for each force 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Number of self-
overcoming instances 

29 38 80 24 28 23 71 69 62 

Number of errors 63 96 209 55 63 49 283 302 174 

Percentage of self-
overcoming (%) 

46 40 38 44 44 47 25 23 36 
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Discussion of log analysis results 

The total number of self-overcoming instances by the 74 students during the use of the 

system was 424 (based on errors made more than three times), giving an average of 5.7 

self-overcoming attempts per student. 

We will focus on the two groups, those who completed the exercises and those who did 

not, separately for the rest of this discussion. The average number of self-overcoming 

occurrences did not change between them. 

However, from the “Analysis of self-overcoming” subsection, we found that the forces 

for which learners exhibited self-overcoming tended to differ between the groups. Those 

who completed the exercises tended to exhibit self-overcoming for forces (1), (2), (4), and 

(5) less frequently, but more frequently for forces (3), (7), (8), and (9). The opposite was 

true for the participants who did not complete the exercises. 

Forces (1), (2), (4), and (5) correspond to gravity and the normal forces. Force (3) is the 

force exerted by the lower object on the upper object when they are stacked on top of each 

other, and forces (7), (8) and (9) correspond to frictional forces. From the “Categorical 

analysis of forces” subsection, the percentage of correct answers for forces (1), (2), (4), and 

(5) was high, while that for forces (3), (7), (8), and (9) was low by comparison, suggesting 

that the difficulty level for the students was similar. The fact that the number of errors for 

forces (1), (2), (4), and (5) was less than 40 while that for forces (3), (7), (8), and (9) was 

more than 60 supports the idea that those forces were more difficult for learners to 

understand. 

 

  

 

Fig. 12 Comparison of the average number of self-overcoming attempts per ability between 
those who completed the exercises and those who did not 



Aikawa et al. Research and Practice in Technology Enhanced Learning   (2024) 19:26 Page 22 of 28 

Discussion 

Comparison of results of force-by-force analysis against tests and self-

overcoming analysis against logs 

We now summarize and discuss the results of the test analysis and the log analysis. We 

focus on common problems that were handled in the test and in the system, especially 

learning task 4 in the test (the original problem in the system). 

We compare the results of the force-by-force analysis for the test to the self-overcoming 

analysis for the log. First, we calculated the correlation between the percentage of correct 

answers per task in the pre-test and the number of errors per task in the log analysis for 

learning task 4. The results showed a strong negative correlation with a correlation 

coefficient of r = −.85. This indicates that a lower score in the pre-test corresponded to 

more errors being made in the system, which reflects the difficulty level of the associated 

force. 

Next, we analyzed the test results to look for a correlation with self-overcoming. We 

differentiate between the self-overcoming count and the self-overcoming percentage. The 

self-overcoming count is the number of times that self-overcoming occurred, calculated in 

the manner specified in the “Analysis of self-overcoming” subsection. A high number for 

the self-overcoming count indicates that the learner was able to overcome many errors, 

thus leading to an increase in test scores. However, there is a caveat: since the number of 

errors was not considered, the same value was obtained whether the number of errors was 

high (high difficulty) or low (low difficulty) if the number of self-overcoming errors was 

the same. Consequently, we hypothesized that there was likely a correlation between the 

number of self-overcoming occurrences and test growth (which would be reflected in the 

difference in scores between the pre- and post-tests). 

The self-overcoming rate is the number of self-overcoming occurrences divided by the 

number of errors. A high self-overcoming rate indicates that the learner was able to 

overcome most of their errors, allowing them to achieve a high post-test score. However, 

the values for the self-overcoming rate are the same regardless of whether the number of 

self-overcoming errors and the total number of errors are both high or low. Consequently, 

we suspected that there was a correlation between the self-overcoming rate and the correct 

response rate in the post-test. We looked for a few correlations: one between the difference 

in the pre- and post-tests and the number of instances of self-overcoming, one between the 

post-test and the percentage of self-overcoming occurrences, and one between the delayed 

test and the percentage of self-overcoming occurrences. 

The correlation between the difference in the pre- and post-tests and the number of 

instances of self-overcoming was positive, r = .43. This indicates that a greater number of 
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self-overcoming occurrences in the system log corresponded to a greater increase in the 

test scores. The correlation between the post-test and the self-overcoming rate was strongly 

positive, r = .94. This indicates that a higher self-overcoming ratio in the system logs 

corresponded to a higher score in the post-test. The correlation between the delayed test 

and the self-overcoming rate was strongly positive at r = .90. This indicates that a higher 

self-overcoming ratio in the system logs corresponded to a higher score on the delayed test. 

This suggests that the results for instances of self-overcoming are reflected in the 

percentage of correct responses in the test. 

We will now look at each force in detail for learning task 4. Forces (1), (2), (4), and (5) 

correspond to gravity and the normal forces, and they have a self-overcoming ratio of more 

than 40%. Force (6) had a similar tendency. The self-overcoming rate was high, but the 

number of instances of self-overcoming was less than 40. This is because the number of 

errors was low to begin with and the difficulty level was low. The three forces correspond 

to (a) gravity, (b) the normal force, and (c-2) the force exerted by an external force, 

respectively (see the “Categorical analysis of forces” subsection for further details), and all 

of them were answered correctly in the delayed, post-, and pre-tests. 

Force (3) corresponds to (c-1) the force exerted by an object above. It had a self-

overcoming rate of 38%, but it also had the highest number of associated instances of self-

overcoming (80 times). The number of errors was also high (209 times), suggesting that it 

was more difficult for learners to understand than (a) gravity, (b) the normal force, and  

(c-1) the force exerted by an object above. These results are not very different from those 

for (c-1) the force exerted by an object above, for which the correct response rate was low 

for the pre-test and high for the post- and delayed tests. 

Force (9), corresponding to (d-1) the friction force with the ground resisting a pushing 

force, also showed a similar trend. 

For forces (7) and (8), the percentages of self-overcoming were low at 25% and 23%, 

respectively. On the other hand, the number of instances of self-overcoming for these 

forces were 71 and 69, which were higher than those for (a) gravity, (b) the normal force, 

and (c-1) the force exerted by an object above. This suggests that the number of errors was 

high, as was the difficulty level. Forces (7) and (8) correspond to (d-3) the friction force 

propagating to the upper object and (d-2) the friction force with an object above resisting 

a pushing force. These results were consistent with a lower percentage of self-overcoming 

and lower results for the post- and delayed tests than the other forces, and with a higher 

number of self-overcoming occurrences and a higher improvement in scores between the 

pre- and post-tests. 

This suggests that the results for the instances of self-overcoming during the use of the 

system are reflected in the percentage of correct answers on the test. 
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Analysis of the pre-test divided into upper and lower groups 

Since the mean score of the pre-test was 0.67, we divided the learners into two groups: an 

“upper group” (above average, 1 or more points on the pre-test) of 31 learners and a “lower 

group” (below average, 0 points on the pre-test) of 43 learners. The results are summarized 

in Table 4. The results of the t-test show that there is a significant difference between the 

two groups for the three tests. The results in Table 3 also varied between the groups, as 

shown in Table 5. The higher groups had higher percentages of self-overcoming for each 

force, but the lower groups also had high percentages, with (1), (4), (5), and (6) at 40% or 

higher. Those with relatively low percentages, (7) and (8), were almost identical to those 

of the upper group. This indicates that the system encourages self-overcoming regardless 

of individual differences in ability, and that it has the potential to encourage self-

overcoming at an even higher rate for high-performing learners, which is also reflected in 

the test results. 

Implications 

First, our results suggest that self-overcoming occurs when using this system. Additionally, 

70% of the students were able to correct the original problem after using it, which is a 

promising result. 

 

 

Table 4 Test results divided into upper and lower groups. Values outside and inside the parentheses 

are mean values and standard deviations, respectively 

 n Pre-test Post-test Delayed test 

Upper group 31 1.58 (0.83) 3.90 (0.89) 2.29 (1.14) 
Lower group 43 0.00 (0.00) 3.07 (1.04) 1.44 (1.39) 

 

Table 5 Percentage of self-overcoming instances and error times for each force divided into upper 

and lower groups 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Upper group 

Number of self-
overcoming instances 

7 11 35 6 6 9 31 30 21 

Number of errors 14 26 81 12 10 14 121 129 55 

Percentage of self-
overcoming (%) 

50 42 43 50 60 64 26 23 38 

Lower group 

Number of self-
overcoming instances 

22 27 45 18 22 14 40 39 41 

Number of errors 49 70 128 43 53 35 162 173 119 

Percentage of self-
overcoming (%) 

45 39 35 42 42 40 25 23 34 
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One of the novelties of this study is the force-by-force analysis. This suggests that 

learners learn at the conceptual level of “gravity” and “vertical drag” through the 

framework of EBS and auxiliary problems. Prior research has not gone so far as to discuss 

the acquisition of this concept of force. 

This also made it possible to discuss each force in the problem. In this study, the system 

developer designed the auxiliary problems, but we believe that the design of problem 

graphs is a major issue for practical use. Therefore, as directions for future research, we 

believe that it is necessary to develop a function by which the system can automatically 

generate auxiliary problems, and we believe that the above data for the number of errors 

and the number of self-overcoming instances for each force will enable us to create more 

effective auxiliary problems. 

In addition, we believe the framework in this study can be applied to other subjects and 

instructional activities. First, EBS is not limited to mechanics, and has been developed in 

other fields (Kurokawa et al., 2018). EBS keeps rules for generating simulations inside the 

system and adds to or modifies them based on the learner’s incorrect answers, thus 

generating strange simulations. These are the constraints in the target problem and the rules 

of the domains: in the case of physics, they describe the forces acting on each object and 

the relationship between forces and motion. This method would cover various well-defined 

fields in which such rules can be explicitly described. Therefore, it is thought that the rules 

for the domain will be described similarly in other fields covered by EBS, and therefore, 

auxiliary problems can be created by decomposing those rules. Furthermore, self-

overcoming analysis can also be performed by analyzing the relationship between errors 

and overcoming the components of rules in the target domain. 

We also believe that the generation of auxiliary problems and the analysis of self-

overcoming can be adapted to systems with domain models other than EBS. However, 

since we consider self-overcoming to be a result of auxiliary problems and trial-and-error, 

whether it is possible depends on whether the target learning support environment can 

provide trial-and-error. 

Conclusions 

EBS visualizes errors in learners’ answers and is effective at helping them correct those 

errors. There are instances, however, in which learners will get stuck during the learning 

process. In this study, we developed an EBS system that presents auxiliary problems to 

learners who get stuck during exercises, problems that are specifically adapted to the areas 

where they are having the most difficulties. We then conducted an evaluation experiment 

in a junior high school to assess the system’s effectiveness, demonstrating that it is effective 

for helping that demographic. The results from analyzing the test answers and system logs 

indicated that a lot of self-overcoming occurred during the use of the system. 
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In future work, we would like to extend the problem graph by implementing other 

problems, and to assess the effectiveness of those problems through further experiments. 

One shortcoming of using the system log to assess self-overcoming is that it is difficult to 

distinguish between intentional actions and errors due to guessing and simple mistakes 

from the log data. However, these kinds of errors can be eliminated to some extent by 

counting the ones that were made more than three times as errors retained by the learner. 

There are cases, though, in which a learner repeatedly answers a problem while forgetting 

to input the correct answer, and we are not able to accurately distinguish between this and 

intentional actions. We would like to address this in the future. As for accidental correct 

answers, the probability of describing the correct answer from the available forces in the 

problem is less than 0.01%, so it is highly unlikely that a learner will reach the correct 

answer if they do not understand the problem. It is also necessary to examine whether the 

30% of learners who could not solve the original problem in the 64-minute system practice 

time failed to do so because they did not have enough time or because they could not have 

even if they did. Additionally, the current problem graph was manually generated by 

focusing on each force individually, but we plan to adopt a method for automatically 

generating auxiliary problems from original problems (Aikawa et al., 2021). 
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