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 Abstract 

Several program visualization (PV) systems have been developed to support novice 
learners in understanding program behavior since last couple of decades. However, 
only a few have been introduced or continuously used in actual classes. One of the 
main obstacles to using PV systems in actual classrooms is the significant amount of 
time needed to integrate them into actual educational settings. We developed a PV 
system called Teacher’s Explaining Design Visualization Tool (TEDViT) and 
introduced it into several practical applications. Although programming learning 
with TEDViT had a noticeable effect, the time required for PV customization (i.e., 
the time consumed for interactions between teachers and PV content) was a non-
trivial problem. In this study, we describe three approaches to reduce the time cost 
of customizing by teachers; that is, we supported PV creation by (1) semi-
automatically arranging drawing objects oriented toward novice learners, 
(2) allowing menu operations with a dialog interface, and (3) providing visual 
information and visual operations using a WYSIWYG PV editor. We developed three 
individual systems based on each approach and evaluated their effortlessness by 
measuring the time required for actual PV creation. The evaluation results suggest 
that each of the three approaches has a certain effect on improving the 
effortlessness of PV creation. This study describes our three approaches and the 
system developed based on them and discusses the possibility of integrating them. 

Keywords: Programming education, Program visualization system, Program 
visualization design, Educational authoring tool 

 

Introduction 

Program visualization (PV) is a widely accepted approach for supporting novice learners 

who struggle to clearly understand program behavior. Several PV systems have been 

developed, and many positive learning effects have been reported (Pears et al., 2007). 

http://creativecommons.org/licenses/by/4.0/
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However, few PV systems have been continuously introduced in actual classes. One of the 

main obstacles to their continuous use is the time cost involved. Teachers who introduce 

PV systems into their classrooms must design, integrate, and maintain the PV generated by 

the system alongside their lesson plans. 

To address this issue, we developed a PV system, the Teacher’s Explaining Design 

Visualization Tool (TEDViT), and conducted several classroom practice sessions using it 

(Kogure et al., 2014). One distinctive feature of TEDViT is that it enables teachers to 

customize PVs based on their own instruction plans. Through this feature, teachers can 

design, integrate, and maintain PVs that reflect their intentions, thereby achieving positive 

evaluation results that suggest significant learning effects (Yamashita et al., 2016; 

Yamashita et al., 2017). However, compared to existing PV systems, this feature incurs 

additional costs for PV customization. Further research is required to reduce the cost of 

using PVs. 

While many factors may account for the high cost of PV creation, this study focused on 

PV customization, i.e., interactions between teachers and PV content, the most direct way 

to increase the learning effectiveness of PV systems. In this study, we describe three 

approaches for improving the effortlessness of PV creation: (1) support interaction by 

automatically arranging drawing objects oriented toward novice learners, (2) support it by 

menu operations with a dialog interface, and (3) support it visually with the WYSIWYG 

PV editor. We define the research questions in this study as follows: 

RQ1. To what extent can each of the three approaches developed to support PV 

customization reduce costs? 

RQ2. How can each of these three approaches be applied to reduce costs? 

We developed three individual systems based on each approach and evaluated their 

effortlessness by measuring the time required for actual PV creation. The evaluation results 

suggest that each of the three approaches has a certain effect on improving the 

effortlessness of PV creation. 

Related studies 

Existing PV systems 

Over the past few decades, several PV systems have been developed for novice learners, 

including Python Tutor (Guo, 2013), Jype (Helminen & Malmi, 2010), and PROVIT (Yan 

et al., 2014). These systems differ in several ways. For example, Python Tutor runs on a 

web browser and does not require local installation. Jype provides a learning environment 

that integrates the PV and automatic assessment systems for exercise assignments. 

PROVIT uses 3D graphics for visualization. However, all these systems are similar in that 
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they visualize the target program and its data structures in a uniform manner. Generally, 

these systems can visualize programs using a fixed visualization policy. They also allow 

learners to observe changes in data structure during the execution of each statement. This 

function is provided by a graphical user interface (GUI), such as next/previous buttons, for 

stepwise execution of the target program. Sorva et al. (2013) provided a comprehensive 

overview of more than 40 PV systems that share several similarities. 

PV systems demonstrate the runtime behavior of computer programs for novice learners 

by visually encoding data and showing how it is processed in a running program. Novice 

learners often find it difficult to trace program states and behaviors by using data structures. 

By bridging the gap between their reasoning and computational processes, PV systems can 

improve novice learners’ understanding of programs (Tudoreanu, 2003). 

However, as Sirkiä and Sorva (2015) pointed out, PV systems are not always effective. 

Learners may struggle to understand the meaning of visual elements, neglect important 

aspects, or focus on peripheral elements. We would argue that this reflects a failure to 

integrate with other materials or offer customizable systems. This also suggests a poor fit 

with the teachers’ personal pedagogical styles. Sorva et al. (2013) call this the “problem of 

dissemination.” In this study, teachers we are referring to are programming teachers. While 

learners’ reasoning is formed by the teacher’s in-class explanations, computational 

processes are visualized based on the designs of PV system developers. Hence, there is a 

gap between teachers’ explanations and their PVs. 

For example, a teacher might draw an array object in a horizontal layout when the 

instruction target is to sort an array, whereas the teacher might draw an array in the vertical 

layout for a stack. Changes in visualization policies, such as these, are derived by fitting 

the instruction content to the learners’ background knowledge. If learners sufficiently 

understand a stack, drawing either an object in a horizontal or vertical layout would be 

acceptable to them. Similarly, the teacher would not need to draw the temporary variable 

in a task that swaps the values of the two variables for non-novice learners. We call teachers’ 

responses to individual learning situations as intent of instruction. 

The simplest way for teachers to provide learners with a visual understanding of the 

computational process by incorporating their own intent of instruction is to use presentation 

software, such as PowerPoint. However, because this method can only offer PVs fixed to 

a specific processing target data, teachers and learners cannot flexibly change the target 

data on-the-fly to explain changes in the computational process and observe changes, 

respectively. We believe that a PV system that can customize PV based on the teacher’s 

intent of instruction is required to solve these problems. 

A few systems, such as Jsvee & Kelmu (Sirkiä, 2018) and ANIMAL (Rössling & 

Freisleben, 2002), can customize PVs. Jsvee & Kelmu is PV system consisting of two 

subsystems: Jsvee, which can automatically create PVs similar to many other existing PV 
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systems, and Kelmu, which allows teachers to annotate the PVs generated by Jsvee. Kelmu 

can generate annotations by text to explain program behaviors and quizzes that require 

learners to answer questions. As Naps et al. (2002) and Ihantola et al. (2005) pointed out, 

interaction between PVs and learners is a promising approach for improving learners’ 

engagement. However, Jsvee & Kelmu does not allow teachers to customize the drawing 

objects generated by Jsvee based on their intents of instruction. ANIMAL is a system that 

allows teachers to freely define PVs from scratch using a script called AnimalScript. 

Generally, there is a trade-off between PV customizability and the cost of customization. 

The high degree of freedom in defining PVs using ANIMAL requires a great deal of prior 

knowledge and preparation for PV customization. The cost of learning AnimalScript is 

significant, and PV creation requires a non-trivial quantity of script code. The sample script 

for the bubble-sort algorithm bundled in ANIMAL consisted of 170 lines of script code. 

To address these issues, efforts to reduce the cost of PV creation are required. 

Effortless PV creation 

Several studies have investigated methods to reduce the cost of algorithm visualization 

(AV) and PV creation. AV systems visualize general algorithms, whereas PV systems 

visualize the execution processes of concrete programs. Sorva et al. (2013) pointed out that 

the difference between AV and PV systems is their levels of abstraction and that PV 

systems tend to provide visualizations at a lower level than AV systems. 

Malone et al. (2009) developed a pseudocode system in which the definition of 

visualization can be included in the pseudocode used to represent the target algorithm. 

Because the pseudocode interpreter automatically derives the AV from the algorithm 

implementations, they argue that the effectiveness and effortlessness of AV improved by 

their system. Velázquez-Iturbide et al. (2008) developed a system that allows teachers to 

select PVs from an automatically generated PV sequence in list format. Although they 

argued that their system improves effortlessness in PV creation, they did not present any 

experimental results to prove this objective. Rößling and Ackermann (2007) developed a 

framework that allows teachers to create AV content on-the-fly by adjusting variable 

values and attributes. Their framework was derived from a set of prepared templates that 

defined the visualization details of various algorithms. These definitions can be saved 

freely, thereby reducing the effort required to reuse the AVs. PV systems such as Jeliot 3 

(Moreno et al., 2004) are often considered effortless because they automatically generate 

PVs by providing target programs only, although the PVs generated in this manner cannot 

be customized. There are various approaches to effortless PV creation, but simple 

comparisons are difficult. 

Ihantola et al. (2005) defined a taxonomy to characterize effortlessness in AV systems. 

Based on a survey of computer science (CS) educators, they identified three main 
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categories—scope, integrability, and interaction—and evaluated several existing systems. 

The scope refers to the range of contexts in which the AV system can be applied, i.e., the 

various algorithmic domains for which the system can be adapted. Integrability refers to 

third-party effortlessness: how easy it is to integrate the AV system into educational setups. 

Interaction refers to the extent to which a system can be used in various cases. This factor 

is based not only on interactions between AV content and learners but also on interactions 

between teachers and content and the extent to which the content is customizable. 

These factors are applicable not only to AV creation but also to PV creation. Because 

one of the goals of PV systems is to help users understand the underlying algorithms by 

visualizing program behavior, we applied the three perspectives on effortless AV creation 

directly in the context of PV creation. While it is necessary to add new and different factors 

(e.g., supporting programming languages, language-specific features, etc.) in the context 

of PV creation, this study focuses on the cost of customizing the visualizations of program 

execution processes. In other words, we focused on the interaction between teachers and 

visual content. 

The reasons for focusing on this are mainly based on our previous classroom practices 

using TEDViT (Ihara et al., 2017; Kogure et al., 2014; Kogure et al., 2018; Yamamoto et 

al., 2017; Yamashita et al., 2016; Yamashita et al., 2017; Yamashita et al., 2020). TEDViT 

is a PV system that allows teachers to customize PV based on their own intents of 

instructions. The practice classes obtained positive learning effects from appropriate 

interactions between teachers and content (i.e., PV customization). We observed that 

customized PVs cultivated learners’ better understanding of programs (Yamashita et al. 

2017), allowing learners to use PV systems as a tool for discovery learning (Yamashita et 

al. 2016), and so on. Hence, the goal of this study was to improve the effortlessness of PV 

creation by developing a system that supports teachers’ PV customization. 

TEDViT 

The TEDViT system interprets each visualization policy by scanning the configuration file 

and visualizing PVs accordingly. Teachers can create PVs based on their intents of 

instruction by providing TEDViT with their configuration file in addition to the target 

program. Figure 1 shows a screenshot of the learning environment visualized using 

TEDViT. The configuration file comprises a set of drawing rules, each of which is a 

comma-separated value (CSV) entry consisting of a condition and an object. This condition 

defines the prerequisites required for firing the drawing rule. Teachers can use a conditional 

equation (consisting of a statement ID, variables in the target program, constant values, and 

comparison operators) to determine drawing timing. Here, the statement ID is a unique 

identifier automatically assigned to all the statements in the target program using TEDViT. 

The object defines the operation (“create,” “delete,” or “update”) used to edit the target 
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object and the attributes necessary for drawing it, which include object type, position, color, 

and corresponding variables. 

TEDViT generates execution history by actually executing the target program, which is 

used to judge the conditions for firing drawing rules and reading the values of drawing 

objects. The process of generating the execution history is illustrated in Figure 2. Currently, 

TEDViT supports only the visualization of C programs. Because the framework for 

generating execution histories is relatively simple, almost all functions that novice learners 

would learn are supported in the visualization by TEDViT. Several programs can be 

visualized, including the behavior of functions with recursive calls (Yamamoto et al., 2017), 

dynamic data structures (Yamashita et al., 2019) and pointer behavior (Yamashita et al., 

2020). On-the-fly visualization is also possible because the execution history is 

independent of the PV definitions, and the execution history can be easily updated if the 

input data to the program are changed (Yamashita et al., 2016). However, it cannot be used 

as a debugger for programs that contain compilation errors because execution history 

cannot be generated from programs that cannot be executed. 

 

 

Fig. 1 Screenshot of a learning environment generated by TEDViT 

 

Fig. 2 Process of generating execution history in TEDViT 
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Figure 3 shows an example of this drawing rule. This implies that when the statement 

with ID “10” in the target program is executed, TEDViT draws a circle object and assigns 

it the object ID “OBJ1.” The corresponding variable is the pointer variable “new”; hence, 

the value of new (the address of the variable it refers to) is drawn inside OBJ1. OBJ1 is 

placed at position (x1, y6) with black, white, and black as the line, background, and inner 

character colors, respectively, in accordance with the values indicated in the rule. Moreover, 

the pointer reference is visualized with red and solid arrows (see Figure 1). We consider 

that setting attributes such as object shapes, colors, and line thicknesses does not only mean 

drawing adjustments, but is also performed by the teacher as emphatic expressions to 

provide the focusing points in the PVs to the learners. 

The customizability of PV with TEDViT is provided by a high degree of freedom to 

define these drawing rules. Although the customizability of PVs based on drawing rules is 

somewhat limited compared to the customizability of ANIMAL, which allows teachers to 

freely define PVs from full scratch, the number of definitions required to generate PVs is 

smaller than that in AnimalScript. Yamashita et al. (2016) reported that TEDViT requires 

only 56 lines of drawing rule definitions to generate PVs comparable to the bubble-sort 

PVs bundled in ANIMAL, which is defined as 170 lines of AnimalScript. TEDViT 

provides buttons for the stepwise control of the target program execution, similar to the 

GUI in typical PV systems. When a learner clicks on the “previous” and “next” buttons, 

TEDViT finds the corresponding program-execution status, fires the rule for which the 

condition is satisfied, and visualizes the corresponding drawn objects. 

We conducted several classroom practices sessions incorporating TEDViT into actual 

classes to evaluate its learning effects (Kogure et al., 2018; Yamashita et al., 2016; 

Yamashita et al., 2017; Yamashita et al., 2020). To allow teachers to reflect on their intents 

of instruction in their PVs, our targeting use style of TEDViT was the same as in previous 

practice sessions, where the teacher provides it to the learners as a learning environment to 

explain program code during classroom exercises. In classroom practice sessions with 

TEDViT, the use of PVs that reflected the teacher’s intent of instruction led to positive 

learning effects. However, the customizability of PV in TEDViT also creates a burden for 

teachers, who must define drawing rules. According to Yamashita et al. (2016), it took 

approximately 30 min to define the drawing rules for a single-sample selection-sort code 

consisting of approximately 30 statements. Although teachers rated this as an acceptable 

class preparation cost, we considered it a significant burden. 

 

Fig. 3 Example of a TEDViT drawing rule 
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TEDViT is a browser-based PV system that does not require separate installations. 

Moreover, as it can provide PVs in accordance with teachers’ intents of instruction, it is 

considered to have a sufficient level of integrability on the effortlessness discussed by 

Ihantola et al. (2005). In addition, because TEDViT supports most of the grammatical 

targets learned by novice learners of C programming, it can be evaluated as a system with 

a wide scope. Some studies have shown that TEDViT supports object-oriented languages 

such as Java (Kogure et al., 2019); hence, TEDViT can be regarded as not only a course-

specific PV system but also a domain-specific system. However, TEDViT does not provide 

sufficient support for interaction, which is the focus of this study. Therefore, by adopting 

TEDViT as a PV system, effortless PV creation can be achieved if the cost of interactions 

is reduced by supporting them. 

Ihantola et al. (2005) call an interaction between AV/PV and learners a visualization-

consumer interaction (VC interaction) and an interaction between the AV/PV system and 

teachers a producer-system interaction (PS interaction). While we have also extended 

TEDViT to include features of VC interaction, such as automatic assessment for self-study 

(Kogure et al., 2018), the goal of this study is to help teachers to reflect their intents of 

instruction in their PVs. Therefore, in this study, effortlessness for PV creation was 

considered only from the perspective of PS interaction, and VC interaction was not 

considered. This study was an attempt to improve the effortlessness of PV creation by 

adopting TEDViT as a PV system and reducing the cost of PS interaction. 

Effortless PV creation based on semi-automatic arrangement of drawing 

objects 

Approach 

The editing of CSV files in TEDViT brings a high degree of freedom in PV definition to 

teachers (i.e., PV creators), but this high degree of freedom places excessive cognitive 

loads on teachers, which is one of the reasons for the cost of PV creation. However, the 

importance of a high degree of freedom can decrease if the system is limited to 

programming education for novice learners. The visual representations used to explain data 

structures in several textbooks for novice programmers are similar, and teachers’ 

explanations are considered to be influenced by those representations. For example, the 

visual representation of an array structure is almost always a sequence of adjacent squares 

with internal values regardless of whether the layout is vertical or horizontal. In many cases, 

the visual representations that teachers use to explain array structures in the classroom are 

similar. 

If visual representations for novice learners have a certain similarity, an approach in 

which the system supports PV creation by suggesting drawing objects as typical 
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visualizations for novice learners could be considered. The system can have a certain level 

of customizability by providing a dialog interface to input some parameters, such as the 

coordinates of the drawing objects. Although visualization based on a dialog interface is a 

widely accepted approach (as seen in Atemezing and Troncy (2014) and Roth et al. (2013), 

etc.), it is mostly used to visualize some data and has not been applied in many cases to 

targets with dynamics, such as PV. TEDViT generates PVs based on a configuration file 

consisting of a set of drawing rules. This approach can be used to generate drawing rules 

and does not directly generate visualization content. Hence, in the case of TEDViT, 

effortlessness can be improved without a loss of customizability by editing the PV 

definitions generated by the system. Because TEDViT visualizes PVs according to a ruleset, 

this approach generates drawing rules to visualize all data structures declared in the target 

program as typical PV objects. Because novice learners are the main users of PV systems, 

it is expected that the cost of PV creation could be significantly reduced compared with 

creating rulesets by editing CSV files from scratch. 

Based on this consideration, we developed a system that generates rules to draw variables 

and arrays declared in the target program in a uniform manner, and implemented a dialog 

interface to input parameters for drawing PV objects. Figure 4 shows a screenshot of the 

dialog interface. Our system requires the input of a file “history.js” instead of the target 

program code, which is the execution history file automatically outputted by TEDViT 

when parsing the target code to generate PV (see Figure 2). 

When “history.js” is entered, the interface changes from Figure 4 to Figure 5, showing 

available parameter forms. In this interface, input forms are provided to specify the 

coordinates of each drawing object and to determine whether the variable is used as an 

index for the array element. The indexer form was implemented because indexers are PV 

elements that are frequently used in classroom practices using TEDViT. All the input forms 

 

Fig. 4 Screenshot of our dialog interface 
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for the coordinates of the drawing object and whether it is an indexer are given initial values 

automatically estimated by our system, and the teachers update the values only when it is 

necessary to change them. After specifying parameters, the ruleset file in CSV format can 

be obtained by clicking the “Download” link. 

Evaluation experiment 

To evaluate the effectiveness of PV creation using our system, we conducted an experiment 

to measure the actual time required to create PVs. A survey by Naps et al. (2002) found 

that more than 90 percent of participants at the ITiCSE 2002 conference cited the time 

required for PV creation as a factor in their reluctance to use animation (i.e., PV sequences). 

Thus, the evaluation of effortlessness based on the time required for PV creation was 

considered valid. 

Twelve participants were involved in this experiment: two teachers with over 10 years of 

experience in teaching programming at university, two 23-years-old CS master’s students 

with experience as programming teaching assistants, and eight 22-years-old undergraduate 

students with the same level of programming experience as the teaching assistants. We 

prepared three sample programs and sample PVs as PV creation targets: linear-search, 

binary-search, and bubble-sort programs. Each participant received two sample programs 

and PVs, and was asked to create the same PVs as the sample PVs. We asked the 

participants to create PVs with and without our system for each sample program; hence, 

the participants performed the task four times. To reduce the order effects, we first specified 

 

Fig. 5 Screenshot of our dialog interface after providing the execution history file 
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whether each participant would use our system. Table 1 summarizes the conditions of each 

participant. In Table 1, items with “+” at the end of the target program indicate the tasks 

using our system. Figure 6 shows the sample program we prepared for bubble-sorting, and 

Figure 7 shows a sample PV. We also prepared sample sets of similar complexity for linear- 

and binary-searches; however, we omit them here. 

We began this experiment by explaining to the participants (for 15 min) the specification 

of the TEDViT drawing rules and how to use our system. Next, we gave them two sample 

programs and sample PVs without disclosing the drawing rules and asked them to “define 

drawing rules to reproduce the same PV as the provided sample PV.” We controlled the 

participants’ use of the system by asking “use (or do not use) our system to perform the 

 

 

Table 1 Conditions per each participant (“+” means task with our system) 

Participants # 1st task 2nd task 3rd task 4th task 

1 Linear-search Bubble-sort Linear-search+ Bubble-sort+ 
2 Bubble-sort Linear-search Bubble-sort+ Linear-search+ 
3 Binary-search Bubble-sort Binary-search+ Bubble-sort+ 
4 Bubble-sort Binary-search Bubble-sort+ Binary-search+ 
5 Bubble-sort Linear-search Bubble-sort+ Linear-search+ 
6 Binary-search Bubble-sort Binary-search+ Bubble-sort+ 
7 Linear-search+ Bubble-sort+ Linear-search Bubble-sort 
8 Bubble-sort+ Linear-search+ Bubble-sort Linear-search 
9 Binary-search+ Bubble-sort+ Binary-search Bubble-sort 

10 Bubble-sort+ Binary-search+ Bubble-sort Binary-search 
11 Bubble-sort+ Linear-search+ Bubble-sort Linear-search 
12 Binary-search+ Bubble-sort+ Binary-search Bubble-sort 

 

 

Fig. 6 Sample program we prepared for the bubble-sort 

#include <stdio.h> 

 

int main(void) { 

  int sort[10] = {1, 7, 4, 10, 9, 8, 2, 5, 3, 6}; 

  int i, j, length = 10, temp; 

 

  for(i = 0; i < length; i++) { 

    for(j = length–1; j > i; j--) { 

      if (sort[j] < sort[j-1]) { 

        temp = sort[j]; 

        sort[j] = sort[j-1]; 

        sort[j-1] = temp; 

      } 

    } 

  } 

 

  return 0; 

} 



Yamashita et al. Research and Practice in Technology Enhanced Learning   (2023) 18:33 Page 12 of 31 

task” for each task of each participant. In the tasks with our system, the participants 

generated drawing rules using our system and then manually modified them. They adjusted 

the drawing positions of arrays and variables being processed by each program, confirmed 

the specification of the use of each variable as an indexer with our system, and then 

highlighted expressions such as changing the color of drawing objects by modifying the 

rule file generated by our system. In the non-system tasks, participants manually defined 

the drawing rules from scratch. We measured the time taken by each participant to define 

the appropriate drawing rules. We provided the participants with two tasks at a time and 

set a maximum of 60 min to complete the two PV creations. Participants who had not 

completed the two tasks after 60 min were asked to terminate the task at that point. After a 

10-min interval, the participants were asked to create another two PVs again for a 

maximum of 60 min. As shown in Table 1, each subject used our system for either of the 

60-min PV creation tasks. 

Evaluation results 

The experimental results are presented in Table 2. The numbers in each column indicate 

the time required to complete the PV-creation task for each target program. “N/A” means 

the task was not completed within 60 min. The underlined values indicate the time required 

to complete the task using the proposed system. The results revealed that, for participants 

who performed the task without the system followed by the task with the system, the times 

for PV creation were reduced appreciably. We set up 24 pairs of data points, each pair 

consisting of the time taken to complete two tasks for the same target program, i.e., the 

time taken to complete a task with the proposed system and the time taken to complete a 

task without it. Except for two pairs of data points that include the time taken to complete 

tasks that were not completed in 60 min, the respective times on each pair of data points 

can be considered to follow a normal distribution. We conducted a paired 

t-test for the 22 paired data points and found a significant difference between the time taken 

to complete the tasks with and without the proposed system (t(21) = 4.23, p < 0.001). It 

suggests that our system has a certain effect on improving the effortlessness of PV creation. 

 

Fig. 7 Sample PV for the bubble-sort 
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Table 2 Measured times (s) for PV creation with and without our system 

Participants # 1st task 2nd task 3rd task 4th task 

1 1890 1018 277 316 
2 3600 N/A 474 317 
3 1194 812 313 441 
4 2035 922 662 422 
5 3527 N/A 1005 279 
6 1969 1061 730 317 
7 1026 478 1536 600 
8 1244 231 1693 272 
9 1623 570 1526 632 

10 1650 570 1583 649 
11 1886 326 2625 975 
12 1592 750 3038 562 

 

However, the decrease in task time for participants who performed the task using our 

system was generally small. Participants #9 and #10 completed the non-system task for the 

first program (1st task) in less time than the system task (3rd task). Similarly, participant 

#12 completed the non-system task for the second program (2nd task) in less time than the 

system task (4th task). These participants performed the system tasks prior to the non-

system tasks; hence, it is considered that experience with the PV definitions could affect 

these results. That is, the earlier the preceding task, the more unfamiliar the participants 

tended to use our system, and the later the task, the more familiar they tended to be with 

defining drawing rules. These results indicate that the proposed system does not have a 

sufficient effect when the same PV creations are repeated. 

Effortless PV creation based on menu operations for PV definitions 

Approach 

Following the results described in the previous section, we extended the dialog interface to 

further improve the effectiveness of our system for effortless PV creation. The basic 

approach of the extension is to allow more attributes of drawing objects to be given as 

parameters by elaborating on the interface that can only input the coordinates of the 

drawing objects and whether it is an indexer. In accordance with this basic idea, we 

extended our system to allow the following parameters to be input. 

 Conditional expressions in the conditional part 

 Label object creation in PV 

 Border line colors, background colors, and inner character colors of drawing objects 

 Margin sizes in drawing object arrangement 

 Layout of array objects (vertical or horizontal) 

 Shape of the connector objects representing an indexer (arrow or line) 
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This approach provides more elaborate support for defining drawing rules in PV creation 

with TEDViT compared to the system described in the previous section, which suggests 

drawing objects as typical visualizations for novice learners. By allowing teachers to select 

expressions that can be described in ruleset files with combo boxes and by limiting the 

range of possible descriptions to input forms, this approach provides certain parts of rule 

definitions in TEDViT as interactions using a dialog interface rather than by editing ruleset 

files. The extended dialog interface can be considered a guide for PV creation. This is 

expected to reduce workload by mouse operations and cognitive load by the guide and be 

more effective in improving effortlessness. 

Figures 8 and 9 show screenshots of the extended dialog interface. The screen size of the 

 

Fig. 8 Screenshot of the extended dialog interface (general settings) 
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extended interface was larger than that of the interface described in the previous section 

because more detailed parameters were available. Therefore, we implemented a tab 

function to switch between general settings for the entire PV (Figure 8) and advanced 

settings for individual drawing objects (Figure 9). In general settings, a function to set the 

attribute values of all the drawing objects of variables and arrays simultaneously is included. 

 

Fig. 9 Screenshot of the extended dialog interface (advanced settings) 
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Because many parts of the rule definitions can be completed using our extended interface, 

we implemented a PV preview area in which teachers could check the PV with current 

parameter settings. A preview of the PV corresponding to the current setting was visualized 

in the preview area by clicking the “OK” button at the bottom of the interface screen. 

Evaluation experiment 

To evaluate the effectiveness of PV creation using our extended interface, we conducted 

an experiment to measure the actual time required to create PVs using the extended system, 

as described in the previous section. Nine participants were involved in this experiment: 

two teachers with over 10 years of experience in teaching programming at university, four 

23-years-old CS master’s students with experience as programming teaching assistants, 

and three 22-years-old undergraduate students majoring in CS with the same level of 

programming experience as the teaching assistants. Although two teachers and one 

teaching assistant participated in the experiment described in the previous section, we 

consider that their participation had little influence in both experiments because the interval 

between the experiments was more than 10 months. We prepared two sample programs 

and sample PVs as PV creation targets: a binary-search program and a selection-sort 

program. Each participant underwent two sample programs and PVs and was asked to 

create the same PVs as the samples. We asked them to create PVs with the extended system 

and the system described in the previous section for each sample program; hence, the 

participants performed four tasks in total: binary-search with the extended interface, 

selection-sort with the extended interface, binary-search with the previous interface, and 

selection-sort with the previous interface. The extended interface was developed to avoid 

replacing the system described in the previous section but aimed to improve effortlessness 

by allowing more PV customizations to be completed on the dialog interface than on the 

system described in the previous section. For this reason, we set up an experiment in which 

the time required for PV creation was compared between the extended interface and the 

system described in the previous section, thereby clarifying the effectiveness of our 

extension. 

We specified the order of the tasks for each participant differently. A list of conditions 

for each participant is presented in Table 3. In Table 3, items with “+” at the end of the 

target program indicate tasks using previous interface and items with “++” indicate tasks 

using the extended interface. Figure 10 shows the sample program prepared for the binary-

search, and Figure 11 shows a sample PV for it. We also prepared sample sets of similar 

complexity for the selection-sort; however, we omit them here. 
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Table 3 Conditions per each participant in the experiment with the extended interface (“+” means a 

task with the dialog interface described in the previous section and “++” means a task with the 

extended interface) 

Participants # 1st task 2nd task 3rd task 4th task 

1 Binary-search+ Selection-sort++ Selection-sort+ Binary-search++ 
2 Selection-sort+ Binary-search+ Binary-search++ Selection-sort++ 
3 Selection-sort++ Binary-search++ Binary-search+ Selection-sort+ 
4 Binary-search++ Selection-sort+ Selection-sort++ Binary-search+ 
5 Binary-search+ Selection-sort++ Selection-sort+ Binary-search++ 
6 Selection-sort+ Binary-search+ Binary-search++ Selection-sort++ 
7 Selection-sort++ Binary-search++ Binary-search+ Selection-sort+ 
8 Binary-search++ Selection-sort+ Selection-sort++ Binary-search+ 
9 Binary-search+ Selection-sort++ Selection-sort+ Binary-search++ 

 

 

 

 

Fig. 10 Sample program we prepared for the binary-search 

 

 

 

 

Fig. 11 Sample PV for the binary-search 

 

#include <stdio.h> 

 

int main(void) { 

  int a[7] = {1, 2, 5, 7, 10, 11, 15}; 

  int low = 0, mid, high = 6, value = 11; 

 

  while(low <= high) { 

    mid = (low + high) / 2; 

    if (a[mid] == value) { return 0; } 

    else if (a[mid] < value) { low = mid + 1; } 

    else { high = mid - 1; } 

  } 

 

  return 0; 

} 
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We began this experiment by explaining to the participants (for 10 min) the specification 

of the TEDViT drawing rules and how to use our extended and previous interfaces. Next, 

we gave them two sample programs, sample PVs, and a dialog interface to use without 

disclosing the drawing rules and asked them to “define drawing rules to reproduce the same 

PV as the provided sample PV with the provided interface.” The participants generated 

drawing rules using the provided interface and then manually modified them. In the tasks 

with the previous interface, the participants adjusted the drawing positions of arrays and 

variables being processed by each program, confirmed the specification of the use of each 

variable as an indexer, and then modified the rule files generated by the previous interface 

to create PV, as in the previous section. In the tasks with the extended interface, the 

participants adjusted further attributes, including highlighting expressions, such as 

changing the color of each drawing object on the interface. They modified the rule file 

generated by the extended interface after specifying as many attributes as possible on the 

interface. Although each PV used in the experiment could be completely defined only with 

the specifications on the extended interface, all the participants obtained the rule with some 

of the specifications missing and hence required some manual modifications of the rule 

files because of their unfamiliarity with the extended interface. We measured the time taken 

by each participant to define the appropriate drawing rules. The participants worked on the 

four tasks in the order listed in Table 3, where the maximum time for each task was 30 min. 

Evaluation results 

Table 4 summarizes the measured times. The numbers in each column indicate the number 

of seconds required to complete each PV-creation task. The underlined values indicate the 

time required to complete the task using the extended interface. 

This result reveals that the time required for PV creation with the extended system tends 

to be less than that with the previous system. While almost all participants additionally 

edited the CSV file generated by the previous system in the case of tasks using the previous 

interface, many of the participants completed PV creation using only the interface in the 

tasks using the extended interface. The shorter time for PV creation with the extended 

 

Table 4 Measured times (s) for four PV creation tasks 

Participants # Binary-search+ Binary-search++ Selection-sort+ Selection-sort++ 

1 1621 189 1724 572 
2 556 275 1528 150 
3 733 199 623 397 
4 577 549 1381 322 
5 607 259 998 263 
6 735 299 1783 250 
7 432 337 947 486 
8 559 737 1222 331 
9 923 227 751 332 



Yamashita et al. Research and Practice in Technology Enhanced Learning   (2023) 18:33 Page 19 of 31 

interface is considered to derive from this tendency in task performance; thus, this result 

suggests that the extended interface further improves the effortlessness of PV creation. We 

conducted a paired t-test for the time spent on the tasks with the previous interface and the 

time spent on the tasks with the extended interface and found a significant difference 

between conditions (t(17) = 5.38, p < 0.0001). Participant #8 spent more time on PV 

creation for a binary-search using the extended interface. We consider that this was derived 

from his experience with PV creation: PV creation using the extended interface was his 

first task, and PV creation using the previous interface was his last task. We conducted a 

brief interview survey of the participants after the experiment and asked them which 

function was most useful in the extended interface. Six participants indicated that the PV 

preview function was the most common. This suggests that visual support is necessary for 

PV creation, in addition to the support provided by dialog interfaces, where the attributes 

of the drawing objects are provided as values. 

Effortless PV creation based on the WYSIWYG PV editor 

Approach 

To support the interaction between teachers and PV content, some existing systems have 

functions that design PVs using a GUI. Based on the WYSIWYG AV editor 

implementation, Karavirta et al. (2002) evaluated the effortlessness of the existing AV 

systems. Using TEDViT, Tezuka et al. (2016) developed a GUI system that visually 

defines the positions and attributes of drawn objects to reduce the cost of defining the 

drawing rules. Hereafter, this study refers to their system as the Tezuka GUI, and Figure 

12 is a screenshot of this system. 

 

Fig. 12 Screenshot of the Tezuka GUI 
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The Tezuka GUI has functions that visually specify the positions of drawn objects, list 

their available attributes (line color, background color, character color, etc.), specify the 

values in a combo-box style, and highlight grammatical errors in drawing rules. Tezuka et 

al. (2016) evaluated the extent to which the Tezuka GUI improved effortlessness (measured 

using the time needed to create drawing rules for TEDViT) and found that the measured 

times for rule creation were approximately 40% less with the Tezuka GUI than without. 

However, the Tezuka GUI and existing WYSIWYG PV editors support only single PV 

drawings. In general, PV systems change the drawing content during the program 

execution process. This allows learners to understand the function of each statement in the 

target program by observing the differences between PVs. Hence, we regard PVs as 

visualizations of the target domain world. The meaning of each statement in the program 

is defined by the extent to which executing the statement changes the target domain world. 

Importantly, PVs are not simply drawings of data structures but the sequences of drawings 

linked to program-execution processes. In other words, a single PV is not sufficient for 

program understanding. A PV would have a certain effect when multiple PVs are 

sequenced along a time series during the program execution process. 

PV dynamics are a direct representation of computer program dynamics that reveal the 

trajectory of changes in a computer’s internal state, such as continuous changes in data 

structures. By showing these changes directly, dynamic visualizations can offload a 

learner’s cognitive working memory, potentially enabling deeper cognitive processes. 

Dynamic visualizations can also facilitate cognitive processes that would otherwise require 

considerable effort (Kühl et al., 2011; Schnotz & Rasch, 2005). In other words, the learning 

effect of PV systems can be attributed to their dynamic nature. However, PV editors only 

support the creation of static visualizations. We believe that PV creation cannot be fully 

supported by single PV drawings. Instead, a function that helps capture the time-series 

sequence of the PVs is required. 

Based on this consideration, we aim to support PV creation more effectively by 

developing a GUI system that includes PV time-series information. Figure 13 shows a 

screenshot of the proposed GUI system. Our GUI system consisted of nine display areas, 

as shown in Figure 14. 

PV creators (i.e., teachers) can arbitrarily change the current PV within a time-series PV 

sequence by dragging the seek bar. PV thumbnails can make creators aware of the PV 

continuity. PV creators also visually confirmed the differences between adjacent PVs in a 

time series. The seek bar not only helps PV creators navigate the execution process but also 

helps them grasp the approximate position of the current PV in a time series. We intend to 

improve PV creation efficiency using this feature. 
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Evaluation experiment 

To evaluate the effectiveness of PV creation using our GUI system, we conducted an 

experiment, as described in the previous sections, to measure the actual time required to 

create or modify PVs. The present experiment measured the time required for PV creation 

using the Tezuka GUI and evaluated the degree of improvement in the effortlessness of our 

system. Ten participants were involved in this experiment: two teachers with over 10 years 

of experience in teaching programming at university, five 23-years-old CS master’s 

 

Fig. 13 Screenshot of our GUI system 

 

Fig. 14 Nine display areas in our GUI system 
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students with experience as programming teaching assistants, and three 22-years-old 

undergraduate students majoring in CS with the same level of programming experience as 

the teaching assistants. We prepared two sample programs and sample PVs as PV creation 

targets: a linear-search program and maximum-value derivation program. Each participant 

received a sample program and was asked to either create the same PV as the sample or 

modify the provided PV to reproduce the same PV as the sample. To reduce order effects, 

we first specified whether the participants would use the Tezuka GUI or the proposed 

system. Table 5 summarizes the conditions of each participant. Figure 15 shows the sample 

program prepared for a linear-search. We also prepared a sample program of similar 

complexity for the maximum-value derivation, but we omit it here. 

We began this experiment by giving a 45-min explanation to the participants on the 

specification of the TEDViT drawing rules and how to use the two GUI systems. The 

reason this approach had a longer explanation time than the evaluation procedures in the 

previous two sections is that functions provided by GUIs are more complex than the dialog 

interface, and we had to explain how to use both the Tezuka GUI and our GUI. To explain 

the two interfaces, we used a binary-search program that differed from the sample programs 

 

Table 5 Conditions for each participant in the experiment with the GUI interface 

Participants # Target task Operation First use Second use 

1 Linear-search Creation Tezuka GUI Our GUI 
2 Linear-search Modification Tezuka GUI Our GUI 
3 Finding Maximum Creation Tezuka GUI Our GUI 
4 Finding Maximum Modification Tezuka GUI Our GUI 
5 Linear-search Creation Our GUI Tezuka GUI 
6 Linear-search Modification Our GUI Tezuka GUI 
7 Finding Maximum Creation Our GUI Tezuka GUI 
8 Finding Maximum Modification Our GUI Tezuka GUI 
9 Linear-search Creation Tezuka GUI Our GUI 

10 Finding Maximum Creation Our GUI Tezuka GUI 

 

 

Fig. 15 Sample program we prepared for the linear-search 

 

#include <stdio.h> 

 

int main(void) { 

  int list[5] = {1, 2, 3, 4, 5}; 

  int key = 4, i; 

 

  for(i = 0; i < 5; i++) { 

    if (key == list[i]) { printf(“found”); return 0; } 

  } 

  printf(“not found”); 

 

  return 0; 

} 
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used in the experiment. Figure 16 shows the program code used in the explanations, and 

Figure 17 shows a screenshot of the GUI provided to the subjects during the explanations. 

The same program was used to explain the Tezuka GUI. 

 

 

Fig. 16 Binary-search program used in the explanations of the interfaces 

 

 

Fig. 17 Screenshot of our GUI provided in the explanations of interfaces 

#include <stdio.h> 

 

int main(void) { 

  int search[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11}; 

  int min = 0; 

  int max = 9; 

  int middle; 

 

  int a = 1; 

  while(min <= max) { 

    middle = (min + max) / 2; 

    if (search[middle] == a) { 

      return 0; 

    } else if (search[middle] < a) { 

      min = middle + 1; 

    } else if (search[middle] > a) { 

      min = middle – 1; 

    } 

  } 

  return 0; 

} 
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Next, for the participants assigned to PV creation, we provided a sample program and 

sample PV that differed from the program used in the explanations of interfaces, without 

disclosing the drawing rules, and asked them to “define drawing rules to reproduce the 

same PV as the sample PV.” For the participants assigned to the modification, we provided 

a sample program, sample PV, and a set of drawing rules for the sample PV that included 

some errors and asked them to “modify the provided drawing rules to reproduce the same 

PV as sample PV.” These procedures were repeated twice for each subject, and the GUI 

system was changed according to the order listed in Table 5. The participants manipulated 

the provided GUI system until the PV creation task was complete, specifying the layout of 

drawing objects, highlighting, and rule-firing conditions to create the rule file. In contrast 

to the experiments described in Sections “Effortless PV creation based on semi-automatic 

arrangement of drawing objects” and “Effortless PV creation based on menu operations for 

PV definitions,” in these experiments, none of the participants performed any manual 

modifications of the rule files obtained from the system. 

We measured the time taken by each participant to define appropriate drawing rules for 

each task. Subsequently, we conducted a questionnaire survey on the effectiveness of the 

seek bar and PV thumbnail functions using a five-point grading system. We also conducted 

brief interviews to ascertain participants’ opinions regarding the two systems. 

Evaluation results 

Table 6 lists the experimental results. Regardless of the order in which they used the GUI 

systems, target programs, and task operations, all participants took less time to complete 

the task with our system than with the Tezuka GUI system. The reduction rate based on 

the average time spent by all participants was 41.3%. We conducted a paired t-test for the 

time spent on the task with Tezuka GUI and the time spent on the task with our GUI, and 

found a significant difference between conditions (t(9) = 3.84, p < 0.01). These results 

suggest that PV creation using our GUI system significantly improves effortlessness. The 

 

 

Table 6 Measured Times (s) for PV Creation/Modification with GUI systems 

Participants # Time with Tezuka GUI Time with our system 

1 1136 925 
2 421 249 
3 1935 989 
4 1360 320 
5 914 834 
6 523 416 
7 1355 845 
8 520 377 
9 2022 1015 

10 1383 819 
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questionnaire survey on the effectiveness of the seek bar and PV thumbnail functions 

produced an average score of 4.2, suggesting that the participants gave the function a 

positive rating. In the interview survey, some participants commented that providing PV 

continuity alongside the time series made it easier to identify errors. Dividing the task times 

into two groups based on participant operations reduced the average time needed for PV 

creation and modification by 37.9% and 51.8%, respectively. This suggests that our GUI 

system supports the task of error correction more effectively. 

Discussion 

Hierarchical integration of our three approaches 

As Ihantola et al. (2005) pointed out, effortlessness in the context of AV/PV is a highly 

subjective matter that includes many factors. Hence, simple comparisons of various 

approaches are difficult. In this study, we examined three approaches to improve the 

effortlessness of PV creation: (1) supporting PV creation by semi-automatically arranging 

drawing objects oriented toward novice learners, (2) supporting it with menu operations 

with a dialog interface, and (3) supporting it visually with a WYSIWYG PV editor. 

Although we evaluated these approaches based on the time required for PV creation, it is 

difficult to discuss the superiority or inferiority of each approach based on the time required 

for PV creation because the participants and target programs were different. 

However, because these three approaches are not mutually exclusive, it is expected that 

their integration could provide more effective support for PV creation. In particular, the 

findings from the experimental results described in the previous section may provide some 

insight into integrating the three approaches; for example, a dialog interface could be used 

to create general PVs, and a graphical interface could be used to modify and compensate 

for their shortcomings. Such an integrated approach to support PV creation can be modeled, 

as shown in Figure 18. The three approaches described in this study do not support PV 

creation independently and exclusively but can provide hierarchical support by being 

integrated. 

This style of support for PV creation is constructed not only by incorporating the 

approaches described in this study as layers, but various approaches can also serve as layers 

constituting hierarchical support. For example, teachers could create PVs from PV 

 

Fig. 18 Layer structure of support for PV creation 



Yamashita et al. Research and Practice in Technology Enhanced Learning   (2023) 18:33 Page 26 of 31 

templates for various algorithms described in (Rößling & Ackermann, 2007) and then use 

the WYSIWYG PV editor to visually modify those PVs. Therefore, to achieve effortless 

PV creation, it is necessary to consider not only various support approaches independently 

but also the hierarchical integration of support. 

We are currently developing a system that allows CSV files generated by the extended 

dialog interface described in Section “Effortless PV creation based on menu operations for 

PV definitions” to be directly input to the graphical interface described in Section 

“Effortless PV creation based on the WYSIWYG PV editor.” We plan to develop PV 

template collections by investigating various teaching materials for novice programmers. 

With these plans, we aim to develop a framework to hierarchically improve effortlessness 

in PV creation by providing various options for support layers. We plan to introduce this 

framework into actual educational setups to evaluate the long-term effortlessness of PV 

creation. 

Limitations of our study 

In this study, we developed three approaches to reduce the cost of PV creation and 

evaluated the degree of cost reduction by measuring the time required for PV creation based 

on each approach. One of the limitations of this study is that the time reduction rates 

derived from each evaluation experiment were not sufficiently reliable owing to the low 

sample size. However, we believe that the sample size problem will decrease as we 

continue our studies, including conducting the same evaluation experiments as in this study. 

Moreover, as discussed below, it is not clear how general our three approaches are; hence, 

we consider that it is not important to obtain the exact time reduction rates. We plan to 

study other approaches for reducing the cost of PV creation by integrating various 

approaches in layer structures in the future, rather than finding exact time reduction rates, 

and examining the superiority or inferiority of each approach. 

This study did not discuss the general attributes of teachers who benefit from the three 

approaches in PV creation tasks. The evaluation experiments in Sections “Effortless PV 

creation based on semi-automatic arrangement of drawing objects,” “Effortless PV creation 

based on menu operations for PV definitions,” and “Effortless PV creation based on the 

WYSIWYG PV editor” were conducted with the participation of teachers with sufficient 

experience in teaching programming to novice students but were not designed to clarify 

the extent to which differences in teaching experiences correlate with differences in the 

cost reduction rates of PV creations. In general, teachers with more teaching experience 

tend to have more explicit intentions of instruction than those with less experience; hence, 

we expect a positive correlation between teaching experience and cost-reduction effects. 

Although examining this hypothesis is difficult because it would require cooperation from 
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many teachers, we hope to accumulate empirical knowledge about our hypothesis by 

continuing our efforts. 

Furthermore, we must pay attention to the fact that all the approaches described in this 

study are strongly dependent on the customizability of TEDViT, which is one of the 

limitations of our study. In other words, all three approaches are based on the use of 

TEDViT, and the effects of using other PV systems are not clear. Indeed, a few PV systems 

are known to have the same level of customizability as TEDViT, and it is unclear how 

much generality each of three approaches have. However, the supporting targets of our 

three approaches are the PV customizations that are considered to lead to the positive 

learning effects of TEDViT, and we believe that a certain degree of generality can be 

recognized in those targets. Our approaches mainly support customizations of the layout 

of drawing objects, shapes, and colors of each object, and time-series management of PVs. 

These are the targets for which teachers’ customization would improve learning 

effectiveness in general PVs generated by other existing systems. Although it is difficult 

to apply the implementations in our three approaches as is, we believe that adopting 

approaches similar to the ones described in this study in existing PV systems will contribute 

to improving the program understanding of novice learners and reducing teachers’ efforts 

required to create and customize PVs for novices’ understanding. 

Conclusion 

In this study, we describe three approaches for improving the effortlessness of PV creation 

in TEDViT, a PV system we have developed that allows teachers to define PVs based on 

their intents of instruction and have introduced it in several practical classes. We have 

observed that program learning using TEDViT has a high learning effect on learners in 

practical classes (Ihara et al., 2017; Kogure et al., 2018; Yamamoto et al., 2017; Yamashita 

et al., 2016; Yamashita et al., 2017; Yamashita et al., 2020). Based on these experiences, 

we believe that the customizability of PVs, including limited approaches such as Jsvee & 

Kelmu, is a necessary requirement for cultivating learners’ understanding of a program. 

However, PV customization is a time-consuming task for teachers. The high time cost of 

preparation is considered one of the main obstacles to the continuous use of PV systems in 

actual classrooms; hence, effortless PV creation is required. 

To address this issue, we developed a system that supported PV creation by semi-

automatically arranging typical drawing objects as PVs for novice learners. The system has 

a dialog interface that specified parameters such as the coordinates of the drawing objects 

and generated PV definition files to allow further PV customizations. Therefore, it is 

expected to improve the efficiency of PV creation without any loss of customizability. An 

evaluation experiment was conducted to measure the time required to create PVs using the 
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proposed system. The experimental results revealed that our system reduced the average 

task time by at least 48.1%. 

Next, we extended the dialog interface and developed an extended system that provides 

certain PV definitions in TEDViT as menu operations. We expected that our extended 

interface would reduce the workload of teachers by allowing them to select expressions 

that can be described in a ruleset file with combo boxes and by limiting the range of 

possible descriptions to input forms. The evaluation experiment to measure the PV creation 

time revealed that, compared with the previous system, our extended system reduced the 

average task time by 65.1%. In addition, the interview survey suggested a need for visual 

support for PV creation. 

Finally, we developed a system that supports PV creation using a WYSIWYG PV editor. 

Many existing systems, including the Tezuka GUI, support only the drawing of PVs, even 

though PVs are not simply drawings of data structures but sequences of drawings alongside 

a program-execution process. Therefore, we developed a PV creation support system that 

incorporates time-series information into a GUI that considers the continuity of the 

drawings. We conducted an evaluation experiment to measure the time required to create 

PVs by using the Tezuka GUI and our GUI. The results revealed that our GUI system 

reduced the average time by 41.3% compared with the Tezuka GUI. 

The evaluation results suggested that each of the three approaches in this study improved 

the effortlessness of PV creation to a certain degree. Although the time reduction rates 

obtained from the three evaluation experiments have a limitation in that the sample size is 

insufficient to provide reliable evaluation results, they are useful because they provide 

insight into the effect size of each approach. However, we considered that the individual 

effect size of each approach was not that important. Because there were various 

perspectives on effortlessness in PV systems, and it was difficult to define effortless PV 

creation, the effect size expressed in terms of time reduction rate did not have much 

generality. 

The main finding of this study was that several possible approaches that are not mutually 

exclusive are available, suggesting a certain degree of effectiveness in improving 

effortlessness. Non-exclusive support for PV creation can be combined in a layered 

structure, which can further improve effortlessness. It is also possible to add more support 

layers using various approaches such as PV templates. The integrability defined by Ihantola 

et al. (2005) was mainly considered between the PV system and educational environment. 

We conclude that it is necessary to include the integrability between several systems, as 

has been partially observed in Jsvee & Kelmu. 

Future studies will include the investigation of new support layers for PV creation and 

long-term large-scale evaluation experiments of the integrated support environment. In 

particular, PV template collections based on various teaching materials for novice 
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programming learners are expected to be a promising support layer that will improve the 

effortlessness of PV creation. By continuing these efforts, we aim to develop an 

environment in which a PV system can be continuously introduced into actual classrooms. 
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