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 Abstract 

Feedback on learning activities is one of the most important issues in achieving 
adaptive learning. In this study, we propose a mechanism for solving this problem 
by detecting the deadlock state of a learner during a learning activity and providing 
feedback to eliminate such a state. Feedback on the products of learning activities 
(we call it “after-process feedback”) has been implemented in numerous interactive 
and adaptive learning environments. However, feedback during an activity (we call 
it “in-process feedback”) has rarely been implemented. In-process feedback is 
considered to be much better than after-process feedback when learners have 
difficulty or become frustrated with the learning material during the learning 
process. The difficulty in implementing in-process feedback lies in the timing and 
content of the feedback. It has been pointed out that the detection of a deadlock 
must be achieved as early as possible; otherwise, it reduces the learning motivation 
of the learner. Therefore, we focused on electroencephalograph (EEG) data, which 
are difficult to cheat and can clearly detect the state of the learner. By combining 
EEG data with machine learning, we developed a model for detecting when a 
learner is stuck, allowing us to detect the timing. After that, we generate the proper 
feedback by estimating the knowledge state of the learner based on the knowledge 
structure and task response status. We implemented and evaluated the in-process 
feedback approach in a learning environment posing arithmetic word problems. 

Keywords: Problem-posing, In-process feedback, Knowledge structure, Affective 
computing, EEG, Wheel-spinning 

 

Introduction 

We have continued our research on the development and operation of a learning 

environment posing arithmetic word problems (Hirashima et al., 2015; Nakano et al., 2000; 

Yamamoto et al., 2012, 2014). The current version of the learning environment is called 
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Monsakun, which covers arithmetic word problems that can be solved through a single 

addition and/or subtraction, a single multiplication and/or division, or a total of four 

arithmetic operations (Hirashima et al., 2014). The system diagnoses the problem posed by 

the learner based on the knowledge structure of the arithmetic word problem. We focused 

on the practical use of this system in elementary schools and, based on the results, 

confirmed that the system is useful for promoting the acquisition of a knowledge structure. 

We verified that this effect can be obtained not only by students in a regular classroom but 

also by students in a special-needs classroom (Yamamoto & Hirashima, 2016). 

Several research efforts have focused on learning processes applied in learning 

environments. Beck et al. pointed out that even if a learning activity is persistent, it may 

not be equivalent to an activity that contributes to actual learning (Beck & Gong, 2013; Kai 

et al., 2018), which is a problem called wheel-spinning. Under this situation, although the 

learner works on a learning activity, the learner becomes stuck in the mastery learning loop 

without any actual learning occurring. The continuation of this situation will lead to 

frustration and a loss of motivation for learners (Matsuda et al., 2016; Sedek & Kofta, 

1990). Although some learners may persevere in their learning, it is unrealistic to expect 

this of all learners. Therefore, the early detection of wheel-spinning is an important issue 

in promoting effective learning in a learning environment. 

Monsakun can be used to diagnose the posed problem based on a model of arithmetic 

word problems and provide feedback to learners. This provides feedback on the results of 

the exercise. We called this “after-process feedback,” which is useful in helping learners 

learning. However, it has been observed that with this feedback alone, some learners 

become stuck and repeat the same exercises. The more difficult the task is, the greater the 

number of such learners. Therefore, even with Monsakun, to realize useful learning, it is 

important to implement feedback not only on the posed problem but also on the process of 

the problem-posing (e.g., feedback on a deadlock during learning), which we call “in-

process feedback.” The difficulty in realizing in-process feedback lies in the timing and 

content of the feedback. The purpose of this research is to develop a function that can detect 

the deadlock of a learner at the proper time and provide appropriate feedback. To achieve 

this purpose, it is necessary to detect whether the learner is in a wheel-spinning state from 

two aspects: a stationary point of “the knowledge state,” and the expression of negative 

emotions. 

To detect the occurrence of wheel-spinning, a method that estimates the learner’s state 

based on the learner’s response is often used in combination with machine learning, such 

as Bayesian knowledge tracing (Matsuda et al., 2016; Pelánek, 2017). Various methods 

have also been proposed to incorporate facial expression recognition and emotion 

estimation into the learning environment (Graesser et al., 1999). By detecting the emotions 

of the learners, such approaches promote learning and support teacher intervention from 
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an affective perspective. If wheel-spinning is a situation in which a learner is experiencing 

difficulty in learning, we believe it will be possible to detect wheel-spinning from this 

emotional perspective. Owing to the immediacy of deadlock detection and the fact that an 

electroencephalograph (EEG) is a primitive learner parameter, we used an EEG in building 

our prototype deadlock detector. 

As another unique aspect of our research, we previously conducted a model-based 

analysis of the problem-posing process (Hasanah et al., 2015; Supianto et al., 2017). Using 

this mechanism, it is possible to estimate the learner’s state of understanding and generate 

feedback for such understanding based on the knowledge structure and the exercise status 

of the learner. Thus, detailed feedback regarding a deadlock can be realized based on this 

estimation. However, only this approach, Monsakun cannot detect proper timing for 

feedback. Therefore, by combining this estimation with EEG-based deadlock detection, we 

believe that we can achieve our goal of in-process feedback. Thus, in terms of the wheel-

spinning problem, there is limited research approaching the problem from the perspectives 

of not only the detection of negative emotions (e.g., Beck & Rodrigo, 2014; Botelho et al., 

2019) but also the detection of the knowledge states of the learner. 

To realize in-process feedback, in this study, we developed two functions: an EEG-based 

deadlock detection function using a simple electroencephalograph, and a feedback 

generating function that points out the cause of the deadlock based on the problem-posing 

state and the knowledge structure of arithmetic word problems. In this paper, we report on 

the development of the Monsakun Affective and a preliminary evaluation conducted by 

university students to examine the feasibility of in-process feedback that combines these 

two functions. In Section 2, we describe related research and the position taken by the 

present study. In Section 3, we describe the current version of Monsakun, and in Section 4, 

we describe the design of the in-process feedback. Section 5 introduces the interface of the 

system used for implementing such feedback. In Section 6, we provide a simple evaluation 

and the limitations of this study, and finally, in Section 7, we provide some concluding 

remarks. 

Literature review 

Learning environment and wheel-spinning 

A learning environment provides a place for learners to acquire various skills and 

knowledge. For example, systems such as Cognitive Tutor, ASSISTments, SQL-Tutor, and 

KERMIT, which are intelligent tutoring systems (ITSs), are useful for estimating the 

understanding of learners while providing useful learning interventions (Heffernan et al., 

2006; Mitrovic, 2003; Ritter et al., 2007; Suraweera & Mitrovic, 2002). For arithmetic and 

mathematics problems in particular, systems such as PAT Tutor have been proposed, their 
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main purpose is to promote the understanding of learners through “problem-solving” 

(Koedinger et al., 1997). Such a system is realized as a type of mastery learning, where the 

learner acquires the target ability through by repeatedly solving problems. It is therefore 

important for learners to be able to continue their exercises in an appropriate manner. 

By contrast, Kai et al. pointed out that both productive and unproductive exercise 

continuations occur (Kai et al., 2018). A non-productive continuation is a situation in which 

the learner is unable to update the target knowledge and is not making progress in learning. 

At this point, although the learner proceeds with the learning activity itself, the learner has 

not mastered anything. This situation is defined as wheel-spinning. Under this situation, 

learners become frustrated and are unable to maintain their motivation to learn. It is 

therefore important to detect this condition as soon as possible and provide appropriate 

support for learning (Beck & Rodrigo, 2014). Detecting the rotation of the wheel is often 

accomplished by using knowledge traces to derive the probability that the learner can solve 

the problem (Matsuda et al., 2016). In this case, various behaviors of the learner are used 

as parameter. With this approach, the model is built using data from several problem-

solving sessions of the learner. Reducing this number of sessions is one of the challenges 

to the immediacy of wheel-spinning detection. 

In contrast to these studies, Monsakun, which we are continuously developing, differs in 

that it is targeted at the “problem-posing” of the arithmetic word problem (Hirashima et al., 

2015; Nakano et al., 2000; Yamamoto et al., 2012, 2014). It has been recognized that 

learning to pose a problem can improve the ability to solve arithmetic word problems more 

than problem solving (Polya, 1945; Silver, 1994). However, because the problem space 

required to pose a problem is large for problem-posing learning, diagnosis is generally 

realized through an evaluation by peer learners or by targeting multiple-choice problems 

(Chang et al., 2012; Yu, 2011). By contrast, Monsakun requires learners to pose arithmetic 

word problems by integrating quantitative concepts that have a single meaning. In other 

words, Monsakun realizes problem-posing exercises in units of quantitative concepts to be 

understood. Monsakun can then diagnose the posed problems and generate feedback to the 

learner by comparing the posed problem to the constraints of the knowledge structure. In 

other words, Monsakun estimates the state of understanding about knowledge structure of 

the learner for each task and generates feedback. Monsakun has been used in a variety of 

schools and has produced results that promote the learners’ understanding of knowledge 

structures. However, wheel-spinning has been observed in some learners in the use of this 

system and therefore needs to be resolved. 

Affective computing intelligent tutoring system 

Affective computing improves the ability of computers to recognize human emotions and 

make decisions through emotional information processing (Picard, 2000). These concepts 
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have been incorporated into an intelligent tutoring system, and Ammar et al. proposed an 

affective tutoring system (Ammar et al., 2010). The system uses a camera to recognize the 

learner’s facial expressions and determine the agent’s actions for learning support. Hutt et 

al. used eye tracking to capture the moments when learners are distracted from a task and 

use this information to help their learning (Hutt et al., 2016). Graesser et al. used 

multifaceted physiological data to estimate human emotional states and applied them to 

inform the ITS behavior (D’Mello et al., 2007; Graesser et al., 2004). In this way, not only 

the structure of the target knowledge and the training log, but also the emotional aspects 

are useful for ITS design. 

Affective computing not only identifies the facial expressions of the learner through a 

camera, it also facilitates the acquisition of physiological information through recent 

advances in measurement technology. Therefore, attempts have been made to estimate the 

emotional aspects of learners using an electrocardiogram (Alqahtani et al., 2019) and an 

EEG (Xu et al., 2018). In addition, recent research has attempted to use deep learning 

algorithms to estimate the emotional state of learners using multidimensional physiological 

information from multiple devices (Matsui et al., 2019). Such physiological information 

reflects the emotions of the learners, and we believe that it is possible to extract the 

involuntary emotional states of the learner. In general, as mentioned in the previous section, 

in the field of knowledge tracing, the learner’s knowledge state is estimated for each (fixed) 

number of questions, and feedback is provided (Corbett & Anderson, 1994). Therefore, 

there is a time delay in detecting when a learner has reached a deadlock. By contrast, if we 

can detect physiological information reflecting the emotional state of a deadlock, we can 

generate immediate feedback to the learner, which we believe to be important for our 

research. 

Considering the various physiological information available, we focused on an EEG, 

which is widely used for emotion recognition (Li et al., 2019). In addition, an EEG can be 

easily acquired through recent technology, and the head is free to move during the 

measurement in comparison to other methods such as a Functional Magnetic Resonance 

Imaging (fMRI) or a near-infrared spectroscopy (NIRS) (Miyauchi, 1996). Because a 

learner who is stuck on a specific exercise may find learning difficult, such a learner may 

move their head when thinking, making the use of an EEG suitable in this respect. However, 

regular EEG meters have certain problems, including calibration, which can be difficult for 

the learner to deal with. In addition, wearing the EEG device may affect the learner’s 

emotional data. To minimize these effects, a simple EEG was used. 
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Monsakun for learning by problem-posing  

Learning by MONSAKUN 

A brief description of learning using Monsakun is provided in this section. The target 

domain of this study is a learning environment for problem-posing of arithmetic word 

problems that can be solved through a single addition or subtraction. This system works on 

tablets. The software implements three levels based on the understanding of the required 

knowledge structure, which are described in the next section. The learners start with the 

easiest levels and work their way up to higher levels. 

Figure 1 shows the interface of Monsakun, through which the learner poses problems. 

When posing the problem, the learner is given a “calculation” and a “story” as constraints, 

as shown in the upper-left part of the figure. As shown on the right side, the learner is given 

multiple simple sentence cards in order to pose a problem. 

The learner can pose a problem by selecting three correct cards from the given simple 

sentence cards and arranging them in the proper order. When the learner finishes arranging 

the cards within the black blank area at the center left, the diagnostic button below it 

becomes active. When the learner taps this button, Monsakun diagnoses the problem posed 

and feeds the results back (Figure 2). This feedback is called after-process feedback. 

Learners receive the result and deepen their understanding of the knowledge structure by 

repeating the problem-posing through trial and error. 

 

Fig. 1 Interface of Monsakun used for problem-posing 
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Knowledge structure of MONSAKUN  

Figure 3 shows the knowledge structure of one-step addition and subtraction arithmetic 

word problems (Hirashima et al., 2014). Arithmetic word problems that can be solved 

through a single summation/difference consist of three quantitative concepts. Further, one 

problem is composed of two independent quantitative sentences expressing the existence 

of the quantitative concept and one relative quantitative sentence expressing the 

relationship between them. Each quantitative concept is expressed based on the quantity 

(value), what the object of the quantity (object), and what kind of property it has (predicate). 

We call a sentence that expresses this single concept of quantity a simple sentence. For 

example, in the case of “There are two apples,” “two” is the quantity, “apple” is the object, 

and “there is” is the predicate. This simple sentence is an example of an independent 

quantitative sentence because “there is” indicates existence. 

In addition to the number of independent and relative quantitative sentence, there are two 

other constraints. The first is object correspondence. For example, “Seven green flowers 

 

Fig. 2 Interface of feedback window 

 

Fig. 3 Triplet structure of arithmetic word problem by solving one-step summation/difference 
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are blooming. Five green flowers have died. There are several green flowers in bloom.”, 

the object correspondence in the problem is correct. However, if one of the sentences is a 

“red flower,” the problem is not valid by the constraint of object correspondence. The 

second is the quantity relation. In relation to the above example, the quantity relation is 

“7 - 5 = ?” is established. However, when the number of the second simple sentence 

becomes eight, the result of the quantity relation becomes negative, “7 - 8 = ?” the result 

becomes negative and the quantity relation is not established. There are four story types in 

a problem that can be solved using one-step addition or subtraction, that is, combining, 

increasing, decreasing, and comparing. These stories share that the number of independent 

and relative quantitative sentences must be two and one, respectively. However, the relative 

quantitative sentence is expressed differently in each story. For example, a “decreasing” 

story would be “Eight apples are eaten.” If it is a “combining” story, it would sound like, 

“There are eight apples and oranges altogether.” Moreover, the conditions for the problem 

to be valid the object correspondence and quantity relations are different in each story. 

Therefore, relative quantitative sentences, quantity relationships and object 

correspondences are defined for each story. Therefore, for each story, relative quantitative 

sentences, as well as quantity relationships and object correspondences, are defined. These 

change the expression of the predicates of the relative quantitative concept and the 

combination of the quantitative concepts. 

Level of assignment by knowledge structure 

In addition, Monsakun has tasks with a difficulty level of 1–3 based on the knowledge 

structure. Table 1 shows this list. In each assignment, a story and a computation are 

presented as constraints to be satisfied by the problem to be posed by the learners. The 

story also has recalled operations; comparing and decreasing evoke subtraction, while 

combining and increasing are stories that evoke addition. Level design is based on these 

features. In Level 1, the calculation that recalls the story required in the assignment and 

 

 

Table 1 Examples of each level design 

 Formula for assignment The Story of the problem Correct answer example 

Level 1 4 + 5 = ? Increase There are four apples. 

Five apples have fallen. 

There are several apples. 

Level 2 4 + ? = 9 Increase There are four apples. 

Several apples have fallen. 

There are nine apples. 

Level 3 9 - 5 Increase There are several apples. 

Five apples have fallen. 

There are nine apples. 
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the calculation given in the assignment are the same. For example, the learner is required 

to pose an “Increase” story problem that can be solved by calculating “4 + 5 = ?.” This is 

a story in which the “Increase” story recalls an addition, and the given calculation is also 

added. Level 2 has the same conditions, but the calculation presented is “4 +? = 9,” where 

the quantity to be sought is the left-hand side. Level 3 is an assignment in which the 

calculation of the story and calculation of the mathematical formula are different. For 

example, the learner is required to pose an “Increase” story problem that can be solved by 

calculating “9 - 5.” These assignments require a proper understanding of the structure 

because the calculations recalled by the story and the calculations presented in the 

assignments are different. Therefore, the difficulty of each task is defined based on the 

knowledge structure of the arithmetic word problems to be understood. See Hirashima et 

al. (2014) for details. 

After-process feedback generation by knowledge structure 

In this section, we describe the current feedback (after-process feedback) based on a 

knowledge structure. After-process feedback using this knowledge structure is generated 

based on whether the problem posed by the learner satisfies the constraints of the above 

structure. For learners, the learning goal is to acquire these constraints in arithmetic word 

problems that can be solved in a single addition or subtraction. There are a total of five 

errors that are fed back to the learner. The constraint violations regarding the establishment 

of the problem, also described in Monsakun’s knowledge structure, as follows: “object 

correspondence,” “quantity relation,” and “number of independent quantitative sentences 

and relative quantitative sentence.” In addition, because “calculation” and “story” are given 

as assignments in Monsakun as previous research, there is also a constraint violation of 

“difference in mathematical formula” and “difference in story.” Monsakun can diagnose 

these constraint violations by identifying the quantity relation and story of the posed 

problems based on Monsakun’s knowledge structure. These errors are generated when the 

learner poses a problem and presses a diagnostic button. 

Research question 

Through practical use in a variety of schools, we have already confirmed that Monsakun 

can provide useful feedback promoting learner understanding. Monsakun, the previous 

study, is only implements after-process feedback based on the diagnosis of the posed 

problem. However, we observed that some learners tend to get stuck, particularly at 

Level 3, at which they stop learning. These learners are stuck in an exercise loop of the 

same problem through superficial trial and error. For example, they might try to randomly 

choose different cards for the same problem. Moreover, some learners with a slow learning 

progress might face difficulty with problem-posing and thus be unable to continue to pose 
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the problem. This type of confusion often occurs not the result of thinking, but the process 

of thinking. Therefore, it is crucial to provide appropriate feedback at the right time when 

learners become confused (i.e., are in a negative emotional state), for example, when they 

face a deadlock. Appropriate feedback provides learners with “feedback based on the 

identification and resolution of the cause” at “the timing when learners feel stuck during 

the exercise.” Therefore, the following two points that fall under these categories are the 

research questions for this study. 

RQ1. How can Monsakun detect when the learner is stuck? 

RQ2. How to identify the cause of learner’s deadlock on Monsakun? 

To resolve this issue, we begin with RQ2, which is relevant to the previous research. We 

previously conducted a model-based analysis of the process of problem-posing, but were 

unable to generate timely feedback (Supianto et al., 2017). If one card is set up to blank 

area, a process analysis can be applied. Based on this analysis, each time a learner pulls a 

card out of a blank area, the possible reason of error at that point can be identified. However, 

it is unrealistic for the system to provide feedback to the learner at this frequency. 

Next, to approach RQ1, we attempted to detect negative emotional states from the EEG 

data to detect the appropriate timing described above as deadlock. The instrument used to 

acquire the EEG data is a simple electroencephalograph. Machine learning can estimate 

outputs from complex inputs; however, it is difficult to interpret. Specifically, it can extract 

deadlocks; however, it cannot estimate their causes. Therefore, the relationship between 

identifying the causes of deadlocks and generating feedback to resolve them is using the 

knowledge structures described in “Knowledge Structure of Monsakun” section. Thus, the 

disadvantages of each method are compensated for by the advantages of each. We call such 

feedback in-process feedback. This study proposes an in-process feedback mechanism that 

combines these methods. 

 

 

 

 

 

Fig. 4 Overview of in-process feedback 
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Methodology (design of in-process feedback) 

Objective 

The developed function is shown in Figure 4. The machine learning model we want to 

create is a classifier that divides the data obtained from a simple EEG into two states: “the 

exercise is progressing effectively” and “the exercise is not progressing well (deadlock).” 

Then, if the exercise is “not progressing well,” the system will provide feedback on the 

probable cause of the deadlock based on the knowledge structure and the current answer 

status. In this case, the cause of the deadlock is the constraints that the learner needs to 

understand. If we can estimate these constraints and help the learner to think about them, 

we believe that we can realize in-process feedback to solve the deadlock during learning. 

Therefore, in this section, we describe the design of a deadlock detector and an estimator 

of its cause. 

Design of machine learning for affective detection 

Learning data 

Applying Monsakun to three university students in the engineering field, we measured the 

learning data using a simple EEG, i.e., a MindWave Mobile 2 by NuroSky, Inc., which 

provides an SDK for system development. EEG data can be acquired from the MindWave 

Mobile 2, as well as values of a low alpha wave, low beta wave, low gamma wave, high 

alpha wave, high beta wave, medium gamma wave, theta wave, and delta wave. We 

focused on the frequency spectrum, such as alpha, beta waves and so on, assuming that 

they encode information in the temporal direction as relatively global information, rather 

than each data point in a fine time interval (i.e., sampling rate). 

For the output data, we used the Achievement Emotions Questionnaire (AEQ) proposed 

by Pekrun et al. (2011). The AEQ is a classification of nine basic emotions during learning. 

These emotions include “enjoyment,” “hope,” “pride,” “anger,” “anxiety,” “shame,” 

“hopelessness,” “boredom” and “other emotions.” In addition, the emotional response also 

converted positive emotions, such as enjoyment, hope, and pride, into “a state in which the 

exercise is proceeding smoothly.” We also transformed the negative emotions anger, 

anxiety, shame, hopelessness, and boredom into “a state in which the exercise is not 

proceeding smoothly (deadlock).” The other emotions are none of the above, and thus they 

have been removed from the learning data. The actual output value for “The exercise is 

progressing” is 1, and the actual output value for “feeling stuck” is 0. Therefore, the training 

data are shown in Table 2 (output values are written as n/p; negative values, as 0; and 

positive values, as 1). 
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Table 2 Example of training data for affective estimation on Monsakun 

Delta High 
alpha 

High 
beta 

Low 
alpha 

Low 
beta 

Low 
gamma 

Mid 
gamma 

Theta n/p 

207,877 6,426  7,024 12,333  14,276  1,040 1,094   56,468 0 

74,278 15,553  2,553 8,419  7,101  3,227 580   18,357 1 

 

 

In this experiment, the following were explained to the subjects and their consent was 

obtained before the start of the experiment: (1) EEG data will be obtained, (2) this data will 

be used to estimate the learner’s deadlock state (or to construct a system for this purpose), 

and (3) sufficient care will be taken to ensure that EEG data will not be leaked outside the 

system for use in this system only. In addition, the report of this emotional state was based 

on the learner’s subjective evaluation, and extreme caution was exercised to avoid forced 

exposure to the emotional state by the experimenter. 

The next section describes the procedure for acquiring training data. The learner wore a 

MindWave Mobile 2 device and worked on Level 1–3 exercises of Monsakun in turn. 

Learner exercises were recorded on a video. Next, the learner answered which of the nine 

emotions the learner felt every 10 seconds while watching a video of the exercise. In 

addition, we asked them to answer whether the emotion was caused by the “exercise,” 

“software UI (User Interface),” or “others.” If it was caused by “software UI” or “others,” 

it was deleted from the learning data. Therefore, the above output data are only those 

caused by the “exercise.” 

The data acquired were from the EEG data taken every 1 second, and the response data 

of the experimental participants were recorded every 10 seconds. In other words, the 

granularity of the measurement time of the EEG data used for input and the response data 

used as output data do not match. We therefore interpolated the data for the response data 

obtained every 10 seconds, assuming that the emotional state of the learner persists until 

the next time the data are obtained, and matched it with the temporal granularity of the 

EEG data. 

As a result, the number of data points is 572 for Level 1, 557 for Level 2, and 1079 for 

Level 3. The number of data points for each emotion acquired is also shown in Table 3 for 

each level. At all levels, the number of positive and negative emotions was approximately 

the same. In Level 3, there were slightly more negative emotions and more dead ends. 

Model generation by deep learning 

In this section, we describe the construction of a model for deadlock estimation based on 

an EEG, created using the learning data described in the previous section. Deep learning 

was used for machine learning because it was assumed that the activation of human 

emotions is closely related to the movement shown in the EEG. The learner of machine 
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Table 3 Number of each emotion in the adopted data 

 Positive Negative 

 Enjoy Hope Pride Anger Anxiety Shame Hopelessness Boredom 

Level 1 100  129  109 30     104 20     80        0 

Level 2 89  99  150 20     159 0     40        0 

Level 3 106  280  113 130     240 50     160        0 

 

 

learning was set to 3 hidden layers and 10 nodes for each layer. Thus, it is a three-layer 

deep neural network. In addition, the dropout rate was set to 20% to prevent an overfitting. 

Next, the activation function was set to tanh because the activation of human emotions was 

gradual, and the loss and evaluation functions were set to the mean square error. These 

settings were used in the experiment. The batch size is a standard value of 32, and the data 

were divided into 95% training data and 5% test data because few learning data were 

prepared in this study. 

Next, parameters examined for the optimal model construction are described. In this 

study, we verified the model accuracy by changing the gradient method, number of epochs, 

and learning rate. Seven gradient methods were examined, i.e., SGD, Adadelta, Adagrad, 

Adam, Adamax, RMSprop, and Nadam. When the epoch was examined experimentally 

using each gradient method, an overfitting occurred at 1000 epochs or more; thus, we 

decided to examine four numbers of epochs: 100, 300, 500, and 800. The learning rates 

were select from 0.1, 0.05, and 0.01, which were determined experimentally. 

The procedure used for building the model is as follows: After using the above learner, 

the learning rate was first examined by fixing the number of epochs to 300 using each 

gradient method. Next, using the most accurate learning rate, we examined the model with 

100–800 epochs. At this time, the epoch with the highest accuracy in each gradient method 

was used as the representative value. Finally, the gradient method with the highest accuracy 

using decided learning rate and epoch was adopted. 

The above operations were carried out at each level of 1–3, and a deadlock detection 

model for each level was created. Table 4 lists the data adopted for each level of 1–3. 

 

 

 

 

 

Table 4 Results of machine learning in levels 1–3 

 Learning rate Epoch Gradient method Accuracy Loss 

Level 1 0.10 500 Adadelta 0.778 0.134 

Level 2 0.05 100 RMSprop 0.778 0.183 

Level 3 0.01 300 Nadam 0.704 0.152 
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Design of feedback based on posing problem and knowledge structure 

The design of the feedback applied during an exercise using the knowledge structure is 

described. The system generates feedback when a learning deadlock is detected using the 

deadlock detection model based on the EEG and machine learning described in the 

previous section. Therefore, the system should assess the in-process problem rather than 

the after-process problem. This is based on a model-based analysis of the problem-posing 

process that has already been implemented (Supianto et al., 2017). 

Monsakun can detect a constraint violation based on the triplet structure model if some 

of the cards are answered by the learners. Table 5 shows the correspondence between this 

 

 

Table 5 Correspondence between type of answered cards, constraint violations and feedback 

sentences 

Number of 
answered 
cards 

Kind of card Given 
story 

Condition Feedback sentence 

1 Relative 
quantitative 
sentence 

Irrelevant Difference from given 
story 

Be careful about the type 
of story. 

Same as given story You’re doing good. 

Independent 
quantitative 
sentence 

Irrelevant Set cards not used for 
assignments 

Be careful about the 
objects shown in story. 

Set cards used for 
assignments 

You’re doing good. 

Irrelevant Irrelevant Set cards not contained 
correct value 

Be careful about the 
values shown in story. 

Set cards contained 
correct value 

You’re doing good. 

2 Two 
independent 
quantitative 
sentences 

Combine 
and 
Difference 

Each card’s objects are 
same 

Be careful about the 
objects shown in story. 

Each card’s objects are 
different 

You’re doing good. 

Increase 
and 
Decrease 

Each card’s objects are 
same 

You’re doing good. 

Each card’s objects are 
different 

Be careful about the 
objects shown in story. 

Relative and 
independent 
quantitative 
sentences 

Irrelevant Relative quantitative 
sentence is not correct 
card 

Be careful about the type 
of story. 

Objects of relative and 
independent 
quantitative sentences 
are different 

Be careful about the 
objects shown in story. 

Not applicable (n/a) You’re doing good. 

Irrelevant Irrelevant Set cards contained 
incorrect value 

Be careful about the 
values shown in story. 

Set cards contained 
correct value 

You’re doing good. 
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constraint violation and feedback. Such feedback is only generated when the EEG 

diagnosis detects a deadlock, and when there are fewer than two cards answered. First, the 

system checks the number of cards answered by the learner when the EEG detects a 

deadlock. The type of simple sentence card answered is detected. The system then confirms 

the story provided in the assignment because the feedback sentence may change depending 

on the given story. Finally, whether the answered card satisfies the conditions for feedback 

generation is detected, and the feedback shown in the feedback sentence of Table 5 is 

generated. For example, suppose one card, which is a relative quantitative sentence, has 

been answered. If the answered card is different from the given story based on the 

assignment, the learner will receive feedback that states, “Be careful about the type of story.” 

Multiple feedback may be generated as a result of these estimations. 

Feedback based on constraint violations can be considered directive feedback because it 

encourages the learner to become aware of the constraints being violated. We are currently 

generating feedback for all constraint violations, which the learner caused. In addition, if 

the learner is feeling stuck on an exercise but is satisfying the constraints that need to be 

satisfied, feedback such as “You’re doing good” can be generated. This type is called 

encouraging feedback. These two types of feedback help learners who feel stuck make 

smooth progress in their learning. Because both types of feedback are generated based on 

the knowledge structure and its constraints, we believe that they are effective in promoting 

learning. 

Monsakun Affective 

System overview 

Figure 5 shows an overview of the system. We refer to this system as Monsakun Affective. 

The system is divided into an EEG-based deadlock estimation part and an exercise part. 

The EEG-based deadlock estimation was developed as a Web API (Application 

Programming Interface) using Python. Here, a model generated by machine learning is 

implemented. The exercise part was also developed in Python, with Kivy as the Graphical 

 

Fig. 5 Framework of Monsakun Affective 
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User Interface (GUI). As the reason for separating the EEG-based deadlock estimation part 

from the exercise part, MindWave library (NeuroPy) is stopped by an old version of Python, 

and it is difficult to combine with machine learning models. 

Monsakun Affective monitors the brain wave data sent from MindWave Mobile 2 every 

second and sends the data to the Web API sequentially. The Web API uses the data to 

provide feedback to Monsakun Affective on whether the learner has become stuck. If the 

learner is diagnosed as such, Monsakun Affective will then generate feedback from the 

learner’s answers. If the learner is diagnosed as not being stuck, an empty string is 

generated. These will be displayed on Monsakun Affective. 

Several interface and exercise  

Here, we describe the exercise procedure for Monsakun Affective. First, learners select their 

grade, pair, and number, and if their username is correct, they enter their password to log 

in. After logging in, they are presented with the level selection interface shown in Figure 

6. In the level selection interface, there is an icon in the lower-right corner of the screen 

confirming the connection of MindWave Mobile 2. Here, the learner can confirm the 

connection of a simple EEG. The connection can be checked by connecting the device to 

the Personal Computer (PC), attaching it, and selecting the appropriate port on Monsakun 

Affective. Once the exercise is ready, learners will work on the assignments in order starting 

from Level 1. The implemented levels and assignments, which are the same as those 

introduced in Section 3, are those used to generate models for the machine learning. 

After selecting a level, the main interface shown in Figure 7 is displayed. This screen is 

essentially the same as Monsakun described in the above sections. The difference is the 

 

Fig. 6 Interface of level selection 
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callout displayed in the upper-right corner, which is always visible. When the Monsakun 

Affective detects a deadlock, in-process feedback is displayed here. When the learner has 

solved all assignments of the selected level, the system will automatically return to the 

level selection interface. In this way, the learner solves the assignments for all levels. 

Preliminary evaluation 

Procedure 

The purpose of this experiment was to confirm whether the in-process feedback was 

properly generated using the developed prototype system. Specifically, about each research 

question, the timing of the feedback and the content generated as feedback (i.e., pointers 

based on the reason for the impasse) require to be evaluated for appropriateness. The 

subjects were five engineering college students who differed from students who acquired 

the learning data. The reason we selected university students were chosen as the subjects 

for this study is that they must have metacognitive abilities to evaluate the content and 

timing of the feedback, which is the purpose of the evaluation. We have also confirmed 

that there is no significant difference in the analysis of processes based on knowledge 

structures between the university students and elementary school students (Hasanah et al., 

2015). Therefore, the intended evaluation can be conducted even with university students 

as subjects. 

 

Fig. 7 Interface of Monsakun Affective for in-process feedback 



Yamamoto et al. Research and Practice in Technology Enhanced Learning   (2023) 18:28 Page 18 of 26 

First, each subject was instructed on how to use Monsakun Affective and the experiment 

procedure. Next, the subject used the developed prototype system to work on the 

assignment of Levels 1–3. The exercise was recorded on video. Next, the subject was asked 

to answer whether the timing and content of the feedback implemented were appropriate 

while watching the video. There were four answers regarding the timing: “appropriate,” 

“early,” “slow,” and “not necessary.” There are two types of content answers, “appropriate” 

and “inappropriate.” Finally, the subjects answered the questionnaire. 

Evaluation of timing and contents 

Table 6 shows various exercise logs of the system. All values are the averages for all 

subjects by level. If we check the exercise time, Level 3 is overwhelmingly large. The 

feedback is divided into after-process feedback and in-process feedback. The feedback 

amount is only for mistakes and does not include the feedback for correct answers. More 

feedback is given for Level 3 than for Levels 1 and 2. Ten questions are assigned for each 

level of 1–3. The number of problems posed for Levels 1 and 2 is almost the same as the 

number of assignments. However, the number of posed problems for Level 3 is 

approximately three times the number of assignments. The number of steps is the number 

of times the card is placed in and taken out of the blank area. It takes a minimum of three 

steps to pose the correct problem. Therefore, the minimum number of steps for each level 

is 30. The number of steps in which the learner conducts various thinking activities other 

than giving the correct answer, which is described as the number of search steps. The 

number of steps was the lowest at Level 2 and highest at Level 3. Therefore, because the 

subjects were university students, Levels 1 and 2 were relatively easy for them, and the 

difficulty of Level 3 was appropriate for applying in-process feedback. 

Moreover, more in-process feedback was given than after-process feedback. Monsakun 

Affective assessed that a large amount of feedback is required for the in-process timing, in 

addition to the after-process feedback. 

Table 7 provides answers regarding the adequacy of the in-process feedback timing and 

content. The subjects judged that the timing of the in-process feedback was appropriate 

approximately 70% of the time. Although there is a possibility of overfitting with machine 

 

 

Table 6 Logs of exercise using Monsakun Affective (N=5) 

 
Exercise 

time 

Amount of feedback Number of 
posed 

problems 

Number of steps 

After-process In-process Total 
Exploring 

steps 

Level 1 4m48s 1.4          15.4 11.4 55.8     25.8     

Level 2 4m43s 1.0          16.8 11.0 44.6     14.6     

Level 3 16m28s 17.4          40.8 27.4 156.6     126.6     
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Table 7 Result of timing and content of in-process feedback in Levels 1–3 

 Timing Content 

Appropriate Early Slow Not necessary Appropriate Inappropriate 

Level 1 0.66 0.14 0.01 0.18 0.87 0.13 

Level 2 0.70 0.19 0.00 0.11 0.87 0.13 

Level 3 0.77 0.15 0.01 0.07 0.91 0.09 

 

 

learning, the possibility of an overfitting is low because the subjects are not students who 

have acquired the learning data, and logs of multiple learners are combined into learning 

data. Although 10% to 20% of the feedback was deemed “unnecessary,” this level 

decreased to less than 10% as the difficulty increased. 

Next, we considered the answers to the feedback content. Approximately 90% of the 

feedback content was considered appropriate. The feedback deemed the most inappropriate 

was “Think about the values and objects shown in the story.” It is possible that the subject 

did not consider this to be an error because they merely overlooked the objects and values. 

It was shown that in-process feedback not only determined that Monsakun Affective 

required it, but that the learner also determined it to be meaningful. 

Next, we consider the answers to the feedback content. Approximately 90% of the 

feedback content was considered appropriate. The feedback that was deemed the most 

inappropriate was “think about the values and objects shown in the story.” It is possible 

that the subject did not consider it an error because they merely overlooked objects and 

values. It was shown that in-process feedback not only determined that Monsakun Affective 

needed it, but that the learner also determined it to be meaningful. 

Questionnaire 

The contents and results of the questionnaire are presented in Figure 8. There are six 

answers: “strongly agree,” “agree,” “somewhat agree,” “somewhat disagree,” “disagree,” 

and “strongly disagree.” However, in Q2 to Q4, there are six answers: “Very difficult,” 

“Difficult,” “Somewhat difficult,” “Somewhat easy,” “Easy,” and “Very easy.” In       

 

Fig. 8 Contents and results of questionnaire (N = 5) 
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Figure 8, the graph is drawn by replacing “very difficult” with “strongly agree.” Questions 

Q5 through Q7 also asked the subjects to give reasons for their answers. 

First, from the answer to Q1, all learners were able to concentrate on the exercises, and 

the simple EEG device was not a distraction. For Q2 to Q4, most of the participants 

answered that Levels 1 and 2 were easy, but Level 3 was difficult, even for college students. 

This is consistent with the results of the exercise log. In addition, Q5 is a question regarding 

the usefulness of the after-process feedback, and the participants gave positive feedback. 

Moreover, Q6 and Q7 are questions regarding the usefulness of in-process feedback. The 

responses to this question included “I was too focused on the assignment and didn’t notice 

(the feedback) much” and “I did not read (the feedback) much and answered the 

assignment.” These answers indicate that it is difficult to notice in-process feedback. This 

led to negative answers for Q6 and Q7. We received positive comments regarding the 

learning process in the system, such as “I was able to gradually approach the answers” and 

“The information I wanted at the time was concisely displayed.” They also suggested the 

usefulness of encouraging feedback, such as “It gave me confidence because it came up 

early when I was worried for a moment whether (the learning activity) was actually right.” 

These statements indicate the usefulness of both directive and encouraging feedback. 

Discussion 

We were able to develop a system that can detect a deadlock in a learner and return 

feedback by using the knowledge structure and affective detection. Detecting a deadlock 

based on EEG data using a simple electroencephalograph is considered to be sufficiently 

practical, with approximately 70% of the results showing an appropriate timing. An 

overfitting may have occurred as a result of machine learning. However, the learning data 

used was a combination of data from multiple learners, and the test subjects were different 

from the learners who collected the learning data. Therefore, we believe that the possibility 

of an overfitting is low. This model should be verified in future studies. In addition, we 

considered that the simplification of the model by making the objective variable binary 

also contributed to the outcome. The objective variable could be simplified because the 

system has a sufficient knowledge structure and can estimate the error of the learner during 

an exercise. Thus, even if the system cannot detect detailed emotions, meaningful feedback 

can be generated that will resolve the deadlock of the learner. 

From the exercise log, it was found that the subjects were conducting problem-posing 

activities for arithmetic word problems through trial and error. In particular, Level 3 is 

remarkable. In Monsakun, a number of steps greater than the shortest number of steps 

possible indicates exploratory thinking rather than answering correctly. Therefore, all steps 

can be the target of feedback. Although it is possible to provide feedback through all steps, 

however, doing so hinders the exercise and is unrealistic. In this experiment, an average of 
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167 instances of feedback were generated per person for the 30 questions. By contrast, 

in-process feedback was generated an average of 73 times per person, which is a reduction 

of approximately 40%. In the other hands, the number of instances of after-process 

feedback is too small. In this experiment, the average is 19.8 per person. Considering that 

approximately 70% of the in-process feedback was valid, this means that Monsakun 

Affective generated approximately 30 additional feedback instances needed for smooth 

learning. Therefore, it is considered that sufficient feedback for smoothly learning is 

realized. 

The above results confirm the feasibility of in-process feedback, which can be realized 

using machine learning based on simple EEG data to estimate the timing of deadlock in 

RQ1 and knowledge structure-based estimation of the cause of deadlock in RQ2. Therefore, 

to contribute to the field, we proposed one of the solutions to wheel-spinning, also 

mentioned as an issue of the study. This study also uses machine learning and knowledge 

structures to solve the timing and content of in-process feedback. This method generates 

feedback for each learner’s action in the exercise using knowledge structures. Because this 

is too much feedback, the feedback generation is narrowed down to an appropriate number 

of times (timing) using a biometric-based machine learning model. Therefore, we believe 

that the proposed method of combining symbolic and statistical models to solve learners’ 

deadlock during exercises is different from many wheel-spinning solutions and provides 

novel findings. This study was a preliminary evaluation of the specific domain of 

arithmetic word problems. However, since the in-process feedback framework itself is a 

general framework, similar effects can be expected if the system to which it is applied has 

a significant knowledge structure. 

From a practical standpoint, we also believe that such a framework would contribute to 

solving the deadlock in online learning that has become popular due to COVID-19. It is 

sometimes difficult to ask questions promptly to a teacher online, and teachers also take 

time to grasp the learner’s learning situation. Under these circumstances, in-process 

feedback can care for more learners than after-process feedback alone. This method can be 

used in actual classes to provide effective learning for learners who can learn to some extent 

but do not fully understand. However, since it requires a simple electroencephalograph, 

further consideration of a device is required. This point is also described in the limitations. 

Limitation 

The limitations of this study are described from two aspects: the limitations of the proposed 

method and those of its preliminary evaluation. Because this study proposes a method 

called the in-process feedback, the following limitations should be addressed in the future, 

and we believe that the significance of this study didn’t detract from. 
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As for the limitation of the proposed method, this method assumes a learning 

environment that generates feedback based on the knowledge structure of the learning 

target. Therefore, for a learning environment such as a simple multiple-choice question, 

this method may not be entirely successful because the causes of the learner’s errors cannot 

be extracted. However, we believe that the in-process feedback framework, i.e., estimation 

of deadlock from non-verbal information by machine learning and estimation of its error 

causes using knowledge structures, has generality. 

Examining the detailed quality of feedback is also an important issue. Although we have 

confirmed that useful feedback can be generated to facilitate learning, the breakdown of its 

effectiveness is unknown. There are two types of in-process feedback: those pointing out 

violations of the constraints and those pointing out the satisfaction of the constraints. The 

former points out errors, whereas the latter points out the correct answer, which encourages 

the learner. Therefore, there may be differences in their effects. It is also important to 

consider the difference in learning gains between the after-process and in-process feedback. 

Another limitation is the accuracy of the deadlock detection model using machine 

learning. We must consider the small number of training data and their representativeness 

and comparability. In addition, a more rigorous examination of the distribution of the 

acquired EEG data and of the distribution of each mental state is needed in order to more 

scientifically examine the relationship between physiological data and mental states. About 

the collection of training data, it is difficult to verify that the introspection report at the time 

of acquisition of the learning data was correct (D’Mello et al., 2007) because, in the case 

of this study, it takes time from the end of the exercise to the introspection report to be 

created. Learners must recall their feelings during the exercise. Moreover, it is also 

necessary to understand that learners occasionally do not report honestly about their 

affective states. 

Furthermore, in this study, we experimentally adjusted the hyperparameters of machine 

learning. By contrast, Young et al. proposed a method using a genetic algorithm to adjust 

the hyperparameters of a convolutional neural network consisting of three layers. We plan 

to use this method to determine the appropriate hyperparameters in the future (Young et 

al., 2015). Comparison with other methods such as long short-term memory (LSTM) may 

be required. 

The interface presenting the in-process feedback is inappropriate. It is therefore necessary 

to consider how to present new feedback. 

Thereafter, we discuss the limitations of the preliminary evaluation results. Because this 

study examines the realization of in-process feedback, we believe that the results described 

above were achieved among university students who could evaluate their activities, 

indicating this method’s validity. However, the small number of subjects did not guarantee 

the generality of the results, and future studies with more subjects are needed. In addition, 
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the application to elementary school students, based on previous research, needs to be 

addressed in future studies, considering ethical issues because the machine learning model 

(i.e., obtaining training data from students) must be constructed again. 

Finally, the in-process feedback proposed in this study has a variety of possible 

applications. It may be possible to combine it with Bayesian knowledge tracing and deep 

knowledge tracing using the parameters of the various response situations of learners to 

achieve more flexible and rich support. In addition, a simple electroencephalograph could 

also be considered to use camera images can also be considered in place of a simple EEG 

device. This is because there is a precedent for estimating emotional states by facial 

expression estimation using camera images (Calvo & D’Mello, 2010). Such an approach 

can lead to immediate use in the field, as chromebooks and other devices have become 

widely available due to COVID-19. It is also conceivable that a framework similar to this 

system could be realized in various domains by using different knowledge structures. 

Conclusion and future works 

We studied the realization and verification of in-process feedback used to resolve 

deadlocks during the learning process through problem-posing. This feedback function 

detects a deadlock in a learner based on emotion detection using brain wave data and 

machine learning and identifies the cause of the deadlock based on the knowledge structure 

and state of the problem-posing. 

The existing system realizes the assessment and feedback of a posed problem based on 

the knowledge structure. This is feedback on the posed problem and can be said to be a 

post-process feedback, which is useful for learners to modify their errors. However, when 

using such a system, if the learner becomes confused while working on an exercise, this 

feedback will not work properly. 

Therefore, we aimed to develop in-process feedback for learners who find themselves in 

a deadlock during an exercise. Previously, we were able to analysis the problem-posing 

process, and thus generating feedback at the right time is a significant challenge. We used 

EEG-based affect detection to address this challenge. The accuracy of the developed 

deadlock detection system was approximately 70%, and the appropriateness of the 

feedback sentence was approximately 90%. Overall, the accuracy was approximately 70%. 

This result shows that in-process feedback can be effectively realized to resolve the 

deadlock of a learner. Hence, we believe that the feasibility of in-process feedback has 

been demonstrated by estimating when deadlock occurs by machine learning based on 

simple EEG data in RQ1 and by estimating the cause of deadlock based on knowledge 

structures in RQ2. We believe that this will also provide insight into solving the wheel-

spinning problem in an ITS. 
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However, we must consider how to provide such feedback. A learner pointed out that it 

was difficult to notice the suggested feedback during the exercise. Furthermore, 

development of machine learning models should also be considered. For example, it is 

necessary to consider the accuracy of the introspection report of learners when acquiring 

learning data. We also plan to improve the values of the hyperparameters. In future work, 

we plan to verify (1) the difference in learning gain between in-process and after-process 

feedback and (2) the difference in the effect of each feedback when the EEG is replaced 

with another device. 
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