
The impact of annotation on concrete 
and abstract visual representations in science 
education: testing the expertise reversal effect
Robert Zheng1*  , Holly Cordner1 and Jeffrey Spears2 

Introduction
Research has demonstrated that visual resources, when optimally designed, can signif-
icantly improve learners’ understanding (Moreno & Mayer, 1999; Sweller & Chandler, 
1994). Evidence from empirical research further suggests that different forms of visual 
representation may differently influence learners’ cognitive information processes 
(Mason et  al., 2013). Studies also show that concrete visual representations can influ-
ence the way learners utilize their prior knowledge when processing science content 
(Moreno et al., 2011). Abstract visual representations, on the contrary, are likely to facili-
tate deep-level processing such as knowledge transfer in learning (Easterday et al., 2009; 
Kaminski et al., 2008). In addition, visual cues like annotation have been found to sig-
nificantly affect learners’ information processing in visual learning by redirecting their 
attention, reducing the search path, and alleviating the cognitive load (de Koning et al., 
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2010; Madsen et al., 2013). Despite these advances in the knowledge of the relationship 
between visual representations and visual cues, little research has been conducted to 
understand how visual cues like annotation may influence learners’ information process-
ing in abstract and concrete visual representations. Thus, the first goal of the current 
study was to examine the relationship between annotation and abstract/concrete visual 
representations in learning.

Studies have shown that the way visual representation is represented can have different 
effects on learners, depending on their level of expertise in knowledge domain (Gegen-
furtner et al., 2011). In their study on diagrams and expertise, Kalyuga et al. (2012) found 
that novices performed well in diagrams with text, whereas experienced learners worked 
better with diagrams only, resulting in an expertise reversal effect. Given this empirical 
evidence of the functional role of expertise in visual learning, it is evident that research 
on visual representation and annotation should also consider the mediating effect of 
expertise. Therefore, the second goal of this study was to investigate the impact of exper-
tise on visual learning by studying a 3-way interaction between visual representations 
(abstract vs. concrete), annotation (annotation vs. non-annotation), and prior knowl-
edge (high vs. low) in science learning.

To understand the complexity of visual representations and annotation and their 
impact on learners’ cognitive processes, the current study is informed by several theo-
ries and framework that include cognitive load theory, research in abstract and concrete 
visual representations, role of annotation, and expertise reversal effect in visual learning.

Cognitive load theory
Cognitive load theory (CLT), which was conceived in the 1980s by Sweller and col-
leagues, has become one of the most important theories in learning and psychology 
(Greenberg et  al., 2021; Kalyuga & Plass, 2018;  Plass & Kalyuga, 2019). According to 
CLT, three types of cognitive load can significantly influence learners’ cognitive pro-
cesses in learning (Sweller et al., 1998). They are intrinsic, extraneous, and germane cog-
nitive load. The intrinsic load refers to the difficulty of the learning material as defined 
by its element interactivity, that is, “the level of interconnectedness between the infor-
mation elements that need to be processed … to make sense of the learning tasks or 
materials” (Plass & Kalyuga, 2019, p. 342). For example, memorizing a list of random 
words requires a lot of effort but does not necessarily pose high intrinsic load. Read-
ing a dense paragraph of text, on the other hand, may induce high intrinsic load, since 
the learner needs to figure out the semantic structure among the words, the gram-
matical relationship between parts of speech, and so forth. All of this indicates a high 
level of element interaction. Thus, the higher the element interactivity is, the more dif-
ficult learning the material becomes, and the higher the intrinsic cognitive load will be 
(Sweller & Chandler, 1994). The extraneous cognitive load is caused by inappropriate 
design in instruction, such as redundancy or split attention in learning. For instance, 
teachers may unwittingly increase learners’ extraneous load by presenting materials that 
“require students to mentally integrate mutually referring, disparate sources of informa-
tion” (Sweller & Chandler, 1991, p. 353). Therefore, the extraneous cognitive load is con-
sidered a hindrance to learning and should be minimized. Finally, the germane cognitive 
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load is induced by learners’ efforts to process and comprehend material in order to con-
struct new knowledge. This type of cognitive load is relevant to learning and reflects 
learners’ cognitive engagement.

There has recently been a growing interest in the affective aspects in cognitive load 
research (Moreno & Mayer, 2007; Plass & Kalyuga, 2019; Plass & Kaplan, 2016). In an 
early study, Moreno (2010) stressed the importance of motivation in determining the 
cognitive resources allocated to learning tasks (the resources that are associated with 
germane load). Plass and Kalyuga (2019) argued that cognitive load, and germane load in 
particular, may be related to, or involve, affective processes. They contended that activat-
ing motivation would lead to effortful cognitive engagement during the learning process. 
In a study on cognitive load, motivation and prior knowledge in mathematics problem 
solving, Gupta and Zheng (2020) found germane load was significantly positively corre-
lated with the learner’s interest (r = 0.221, p < 0.01), confirming Plass and Kalyuga’s argu-
ment about the relationship between motivation and germane cognitive load in learning.

Abstract and concrete visual representations
Visual resources play an important role in the formation and development of mental 
representations (Crisp & Sweiry, 2006). According to Crisp and Sweiry, there are a num-
ber of possible reasons for the apparent superiority of visual over non-visual represen-
tations in mental representation formation (Also see Greenberg et al., 2021, Greenberg 
& Zheng, 2022). First, processing visual material may require less cognitive effort. The 
learner can grasp the general meaning of an image in as little as milliseconds. Second, 
visual and non-visual materials may be processed in different cognitive systems. The 
dual-coding theory (Paivio, 1986) explains why memory for images may be better than 
memory for non-image information—it is a result of them being encoded both as images 
and verbal labels, while text is only encoded verbally.

Due to the above reasons, visual representations have been widely applied to learning 
across domains, especially in STEM education (Frey et al., 2016; Fuchsova & Korenova, 
2019; Rau, 2017; Soong et  al., 2020). Fuchsova and Korenova (2019) investigated the 
effects of visual representation on elementary school teachers’ human biology training. 
They noticed that by using augmented reality, the learners demonstrated deeper under-
standing, greater motivation, and more creativity in learning.

In addition, visual representations can be classified into abstract and concrete visual 
representations. Abstract visual representations refer to visuals that use conventional 
symbols (e.g., lines, nodes, boxes, etc.) to represent the relevant elements of a problem 
where concrete visual representations are those that depict the real-life objects corre-
sponding to a problem (Moreno et al., 2011). Figures 1 and 2 are examples of abstract 
and concrete visual representations, respectively. In the abstract visual representations, 
lines and symbols are used to represent the electric circuitry. In contrast, in the concrete 
visual representations, actual images (e.g., bulb, battery, wire, etc.) are used to represent 
the electric circuitry. 

Mason et al. (2013) differentiate the cognitive functioning between abstract and con-
crete visual representations by showing that concrete visuals “may make information 
more available in long-term memory,” whereas abstract visuals “may lead to more effi-
cient processing of learning material” (p. 377). In a separate study, Moreno et al. (2011) 
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looked at the differences between abstract and concrete visual representations in electric 
circuitry. They found that concrete visual representations promoted better comprehen-
sion and problem solving by depicting a close correspondence between the represen-
tations and the concrete objects that they intended to represent, which made concrete 
visual representations rely less on knowledge conventions for their interpretations. They 
claimed that concrete visual representations help build the connection between learners’ 

Fig. 1 Abstract visual representations of the electrical circuit with annotation

Fig. 2 Concrete visual representations of the electrical circuit with annotation
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prior knowledge and the information to be learned. Abstract visual representations were 
found to promote problem solving by focusing learners’ attention on structural rather 
than superficial problem information. In other words, abstract visual representations 
generalize the common underlying structure of the problems that are superficially dis-
similar. This knowledge of the general underlying structure of the problems is important 
in supporting transfer in learning. Moreno et al. therefore concluded that abstract visuals 
facilitate knowledge transfer while concrete visuals connect with schemata. However, de 
Bock et al. (2011) compared abstract and concrete visual representations in mathematics 
learning and came to the conclusion that there were no differences between abstract and 
concrete visual representations. They found both abstract and concrete visual represen-
tation groups performed equally well in knowledge transfer. They speculated that the 
non-significance in different visuals may be accounted for by learners’ abilities to derive 
the underlying structure in the mathematics problems in both groups regardless of the 
forms of visual representation. Given the equivocal findings from abstract and concrete 
visual representation research, further investigation on abstract and concrete visual rep-
resentations is warranted.

Role of annotation in visual learning
Research in neuroscience has demonstrated that visual stimuli like visual cues can sig-
nificantly influence brain functions in the domains of attention and executive function-
ing (Heinrich et al., 2007). Madsen et al. (2013) examined the effects of visually cued and 
uncued diagrams on learners’ cognitive processes in aerodynamics learning. They found 
that compared to the visually uncued condition, learners in the visually cued condition 
spent less time looking at “novicelike” areas of the diagram and more time at the “expert-
like” areas of the diagram in transfer problem solving.

As a visual cueing strategy, annotation has recently received significant attention 
among researchers and educators who view annotation as a way to augment the learn-
ing process—particularly in science education. Studies have shown that annotation 
provokes individuals to consider and weigh new perspectives. It supports critical think-
ing and augments deep processing in learning (Samuel et al., 2011; Wallen et al., 2005). 
Wallen et al. (2005) note that annotation aids the process of selecting relevant informa-
tion, organizing the information in memory, and integrating new information with prior 
knowledge. Moreover, it redirects learners’ attention and reduces their visual search, 
resulting in a reduced extraneous cognitive load in learning.

There are many ways to instantiate annotation in learning. The current study chose 
to provide an annotation tool with which learners could, for instance, review informa-
tion about electric circuit design and the formula for calculating electric resistance. They 
could then make annotations as he/she solves the problem. Figures 1 and 2 illustrate the 
annotations made by the learners as they calculate the electric resistance in a parallel 
electric circuit in both abstract and concrete visual representations.

Despite what is known about annotation in learning, little research has been con-
ducted to understand how it supports learners’ cognitive processes when different 
visual representations (e.g., abstract vs. concrete) are used. The current study aimed to 
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understand the differing roles of annotation in the context of abstract and concrete vis-
ual representations in science learning.

Prior knowledge and expertise reversal effect
The expertise reversal effect pertinent to visuals in learning has gained attraction among 
the researchers over the past decade (Zheng & Greenberg, 2018, Zheng & Gardner, 
2020; Gupta & Zheng, 2020; Kalyuga et  al., 2012), largely because of the fascinating 
observations about how expertise may influence the outcome of visual learning (Gegen-
furtner et al., 2011). Kalyuga (2009) pointed out that learning procedures and techniques 
that are beneficial for low-prior-knowledge learners may become relatively inefficient for 
high-prior-knowledge learners. In a longitudinal study, Kalyuga et al. (1998) investigated 
the redundancy effect between high- and low-prior-knowledge learners. They found 
that when diagrams were embedded in the text, novices learned the content well. After 
the learners underwent intensive training, however, a reversal effect was observed: Dia-
gram-alone materials generated a higher level of performance on the subsequent tests. 
Kalyuga et al. explained that at the beginning, novices may not have constructed sche-
mata to understand the complex content. Therefore, the text with the diagram helped 
the novices comprehend the content. However, as the learners gained more knowledge, 
their learning actually became hindered when additional text was added, since it was 
then unnecessary and redundant in learning. Kalyuga et  al. (2012) argued that when 
this redundant information cannot be ignored, interference with learning occurs result-
ing in high extraneous cognitive load as well as a misalignment between learners’ effort 
and task difficulty. Lee et al. (2006) conducted a study on task complexity (high vs. low), 
visual representation (symbol vs. icon), and prior knowledge (high vs. low). An exper-
tise reversal effect was observed. Low-prior-knowledge learners performed better with 
symbolic and iconic visual representations, whereas high-prior-knowledge learners per-
formed better with symbolic visual representations only. Lee et  al. explained that the 
multiple visuals were necessary scaffolds for low-prior-knowledge learners who lacked 
adequate schemata. However, these same scaffolds became redundant to high-prior-
knowledge learners and consequently hindered their learning. The current study there-
fore investigated the role of expertise in visual learning.

Three predictions were made to guide the present study.
Prediction 1: Learners with annotation will outperform these without annotation as 

measured by learners’ comprehension, problem solving, and three types of cognitive 
load.

Prediction 2: There will be an interaction between annotation and abstract/concrete 
visual representations as measured by learners’ comprehension, problem solving, and 
three types of cognitive load.

Prediction 3: Learners’ performance in annotation and abstract/concrete visual rep-
resentations will be affected by their expertise in the domain area. Specifically, high-
prior-knowledge learners will perform better in the abstract visual representation with 
annotation (AA) condition, since abstract visuals facilitate the understanding of the 
underlying structure of the problems. In contrast, low-prior-knowledge learners will 
perform better in the concrete visual representation with annotation (CA) condition, 
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because the extra visual support from both concrete visuals and annotation will facilitate 
schema development for the novices.

Two studies were conducted to test the above predictions. Study 1 explored a two-way 
interaction between annotation and visual representation with a focus on the difference 
between annotation and non-annotation in abstract and concrete visual representations. 
Study 2 tested a three-way interaction between visual representation (abstract vs. con-
crete), annotation (annotation vs. non-annotation), and prior knowledge (high vs. low). 
The purpose was to understand how visual representation and annotation may be influ-
enced by learners’ prior knowledge.

Study 1

To test predictions 1 and 2, Study 1 investigated (a) the differences between annotation 
and non-annotation and (b) the relationship between annotation (annotation vs. non-
annotation) and visual representations (abstract vs. concrete) in science learning.

Methodology

Subjects and design Participants (N = 108) were recruited from a Research I university 
in the western USA. The average age of the subjects was 21.5 (SD = 1.60). Of 108 sub-
jects, 49% (n = 53) were males and 51% (n = 55) were females. About 57.4% (n = 62) were 
white, 4.6% (n = 5) were African American, 20.4% (n = 22) were Hispanic, 14.8% (n = 16) 
were Asian, and 2.8% (n = 3) were other. A 2 × 2 between-subjects factorial design was 
employed with visual representation (abstract vs. concrete) and annotation (annotation 
vs. non-annotation) as the independent variables, and comprehension, problem solving, 
and cognitive load scores (intrinsic, extraneous, and germane) as dependent variables. 
The pretest scores on learners’ prior knowledge of electrical circuitry were entered as 
a covariate. Four conditions were created. They included Abstract visual + Annotation 
(AA), Abstract visual + Non-annotation (ANA), Concrete visual + Annotation (CA), and 
Concrete visual + Non-annotation (CNA). Subjects were randomly assigned to one of the 
four conditions. A family-wise alpha level of 0.05 was adopted for all analyses.

Learning materials The learning materials were created with Adobe DX to support 
interactive computer-based learning in electrical circuitry. The content was adapted from 
a textbook by Herman (2016). The learning materials covered the concepts of electric 
circuit (e.g., parallel and multiple resistance in an electric circuit) with electric circuit 
problems requiring the learners to solve them with Ohm’s law. The learning materials 
had built-in annotation support where the participants were able to click the annotation 
button to get the resources (e.g., formula for calculating the resistance) and enter their 
own notes if needed.

Measurement The measurement for Study 1 included prior knowledge test (PKT), the 
posttest, and cognitive load questionnaire (CLQ), the details of which are described as 
follows.

Prior knowledge test (PKT) The PKT consisted of 10 items aiming to test learners’ 
prior knowledge in electric circuitry. The test included basic concepts from elements of 
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electric circuit (e.g., current, voltage) to the types of electric circuits (e.g., series, paral-
lel). The maximum score one could obtain was 10 points. The PKT was adapted from a 
screen test in Herman’s (2016) textbook. The items were reviewed by a panel of experts 
whose feedback was incorporated in the finalization of the instrument. The internal con-
sistency for the current study for the PKT was α = 0.806, suggesting good reliability for 
measuring the prior knowledge on the subject.

The posttest The posttests consisted of a comprehension test and problem-solving 
test. The comprehension test had ten questions assessing learners’ understanding of 
the concepts and principles related to electrical circuit such as explaining the differ-
ence between parallel and multiple resistance in electric circuit. The maximum score 
one could obtain on the comprehension test was 10 points. The problem-solving test 
included five near transfer problems with a maximum of 10 points possible for the entire 
test. In the problem-solving test, learners were asked to solve a problem based on a given 
condition. The learner would calculate, for example, the level of resistance in the elec-
tric current using Ohm’s law and then find a solution for the proper functioning of the 
electric circuit. The inter-item reliabilities for comprehension and problem solving were 
α = 0.812 and α = 0.721, respectively, showing medium to high reliabilities. Figure 3 pro-
vides an example of a problem-solving test item.

Cognitive load questionnaire (CLQ) A self-report questionnaire that evaluates the cog-
nitive load in learning was used. The 11-point Likert-scale questionnaire (N = 10) was 
adapted from Leppink et  al. (2013) to measure three types of cognitive load: intrinsic 
load (IL) items 1–3, extraneous load (EL) items 4–6, and germane load (GL) items 7–10. 
Examples of the questions include "The topic covered in the electric circuit material was 
very complex" (IL), "The instruction and explanation during the learning were very inef-
fective" (EL), and "The annotation with visuals really enhanced my understanding of the 
content covered" (GL) (see Appendix for the whole questionnaire).

The instrument reports medium to high reliabilities with intrinsic load α = 0.81, 
extraneous load α = 0.75, and germane load α = 0.82. The current study reported 

Fig. 3 A sample of problem-solving item
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similar reliabilities with intrinsic load α = 0.81, extraneous load α = 0.76, and germane 
load α = 0.84, all indicating good reliability.

Procedure Participants were informed of the nature of the study and completed the 
consenting process before participating in the study. They were then randomly assigned 
to one of the four learning conditions: AA, ANA, CA, and CNA. The participants com-
pleted a demographic survey and a prior knowledge test. They were then told to log onto 
the computer to start the learning session that included the electrical circuitry materials 
followed by a practice session. At the end of practice session, the participants were asked 
to complete a posttest that consisted of comprehension and problem-solving subtests. 
Finally, the CLQ was administered. The entire study took about one and a half hours. The 
data were aggregated for final analyses.

Results

Statistical assumptions were evaluated and met. The MANCOVA was performed using 
SPSS v. 26 with annotation (annotation vs. non-annotation) and visualization (abstract 
vs. concrete) as independent variables and comprehension, problem solving, and three 
cognitive load scores as dependent variables. As the raw scores for the three cognitive 
load measures varied due to the differing number of questions in each load category 
(IL = 3, EL = 3, GL = 4), Z-scores were calculated to allow for meaningful comparisons 
among the outcomes. Prior knowledge scores were entered as a covariant in the final 
analyses. Table 1 presents the descriptive statistics with means and standard deviations.

The results of multivariate tests show prior knowledge as a covariant was signifi-
cant λ = 0.59, p < 0.001, ƞ2 = 0.40. Main effects were observed for annotation λ = 0.69, 
p < 0.001, ƞ2 = 0.30 and visual representation λ = 0.70, p < 0.001, ƞ2 = 0.29. The follow-
up between-subjects tests revealed that there was a significant difference in annotation 
measured by problem solving F(1, 107) = 7.38, p < 0.01, ƞ2 = 0.06, but not by comprehen-
sion F(1, 107) = 3.33, p = 0.07.

It was found that learners who studied in the AA condition generally outperformed 
these in the CA condition (Fig. 4). There was a significant interaction between visual rep-
resentation and annotation λ = 0.76, p < 0.001, ƞ2 = 0.23 as measured by comprehension 
F(1, 107) = 11.73, p < 0.001, ƞ2 = 0.10, problem solving F(1, 107) = 6.41, p < 0.05, ƞ2 = 0.05 
and germane cognitive load F(1, 107) = 8.89, p < 0.01, ƞ2 = 0.07, but not by intrinsic cog-
nitive load F(1, 107) = 1.56, p = 0.213 and extraneous cognitive load F(1, 107) = 3.83, 
p = 0.053, suggesting a connection between germane cognitive load and performance.

As expected, learners experienced higher extraneous cognitive load without annota-
tion than with annotation F(1, 107) = 39.11, p < 0.001, ƞ2 = 0.27. A significant differ-
ence in intrinsic cognitive load was observed for visual representation F(1, 107) = 5.48, 
p < 0.05, ƞ2 = 0.05 where learners experienced higher intrinsic load in concrete visual 
representation than in abstract visual representation conditions. Finally, germane cog-
nitive load was significant for annotation F(1, 107) = 8.17, p < 0.01, ƞ2 = 0.07. The inter-
action between annotation and visual representation was significant F(1, 107) = 8.89, 
p < 0.01, ƞ2 = 0.07.
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Table 1 Descriptive statistics with means and standard deviations for study 1 (N = 108)

Annotation Visual representation Mean SD N

Comprehension Annotation Abstract 6.92 0.68 26

Concrete 5.11 1.57 27

Total 6.00 1.51 53

Non-annotation Abstract 4.78 1.60 27

Concrete 5.75 1.11 28

Total 5.27 1.44 55

Problem Solving Annotation Abstract 7.27 0.72 26

Concrete 5.15 1.56 27

Total 6.19 1.61 53

Non-annotation Abstract 4.89 1.21 27

Concrete 5.43 1.26 28

Total 5.16 1.25 55

Z_Intrinsic Annotation Abstract − 2.86 0.72 26

Concrete − 1.31 0.73 27

Total − 0.20 0.72 53

Non-annotation Abstract − 0.39 0.92 27

Concrete 0.21 0.90 28

Total − 0.08 0.95 55

Z_Extraneous Annotation Abstract − 0.41 0.35 26

Concrete − 0.71 0.82 27

Total − 0.57 0.65 53

Non-annotation Abstract 0.26 0.81 27

Concrete 0.75 1.17 28

Total 0.51 1.03 55

Z_Germane Annotation Abstract 0.47 1.04 26

Concrete 0.23 0.78 27

Total 0.35 0.92 53

Non-annotation Abstract − 0.21 0.63 27

Concrete 0.22 0.56 28

Total 0.01 0.63 55

Fig. 4 The interaction between annotation and visual representation as measured by comprehension and 
problem solving
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As expected, learners experienced higher extraneous cognitive load without annota-
tion than with annotation F(1, 107) = 39.11, p < 0.001, ƞ2 = 0.27. A significant differ-
ence in intrinsic cognitive load was observed for visual representation F(1, 107) = 5.48, 
p < 0.05, ƞ2 = 0.05, indicating learners experienced higher intrinsic load in concrete visual 
representation than in abstract visual representation conditions. Finally, germane cogni-
tive load was significant for annotation F(1, 107) = 8.17, p < 0.01, ƞ2 = 0.07 revealing the 
relationship between germane load and annotation. There was a significant interaction 
between annotation and visual representation F(1, 107) = 8.89, p < 0.01, ƞ2 = 0.07 sug-
gesting that the types of visual representation were related to the presence of annotation 
in science learning.

Regardless of the significant interaction between visual representation and annota-
tion, the results, however, remained inconclusive. As Kalyuga (2007) noted, the effects of 
instructional strategies may differ relative to learners’ prior knowledge. Given the signifi-
cance of prior knowledge as a covariant in Study 1, a follow-up study that examined the 
impact of prior knowledge on visual representation and annotation was called for.

Study 2

Two hundred and twenty-seven participants were recruited from the same university. Of 
227 participants, 59% (n = 135) were females and 41% (n = 92) were males. The average 
age of the subjects was 22.5 (SD = 1.72). About 63% (n = 143) were white, 7% (n = 16) 
were African American, 9.7% (n = 22) were Hispanic, 15% (n = 34) were Asian, and 5.3% 
(n = 12) were other.

Methodology

The design and measurement in Study 2 were similar to these in Study 1. The materials 
in learning and practice sessions were the same as these in Study 1.

Procedure The procedure in Study 2 was almost the same as Study 1 except that the par-
ticipants were divided into high- and low-prior-knowledge groups based on the pretest 
and then randomly assigned to one of the AA, ANA, CA, and CNA conditions.

Defining high- and low-prior-knowledge learners Two different methods were consid-
ered when defining high- and low-prior-knowledge learners. They were: median split 
method and tri-split method. The median split method finds the median point and splits 
a continuous variable like prior knowledge into half (Rucker et al., 2015). The drawback 
of median split method is that it arbitrarily defines the participants who are one posi-
tion above and below the median point as high- or low-prior-knowledge learners which, 
as Liu and Reed (1994) point out, may significantly skew the results. McClelland et al. 
(2015) warn that median-split method is likely to increase Type II error. In contrast to 
median split method, Liu and Reed (1994) proposed a tri-split method that divided the 
participants into upper-third quarter, middle-third quarter, and lower-third quarter. It 
eliminates the middle-third quarter and keeps only the upper and lower third quarters in 
its final analysis. Since the tri-split method eliminates middle one-third sample, it clearly 
creates the high and low categories by retaining top and bottom one-third samples, 
thus avoiding artificially labelling the samples as high or low and minimizing the risk of 
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Type II error. Based on the results of the pretest (N = 227, M = 5.54, б = 1.56), the par-
ticipants were divided into high-, low-, and middle-prior-knowledge groups with those 
who scored one standard deviation above the mean as high-prior-knowledge learners 
(n = 81, m = 7.35, s = 0.50) and those scored one standard deviation below the mean 
as low-prior-knowledge learners (n = 82, m = 3.84, s = 0.37). The middle group (n = 64, 
m = 5.45, s = 0.53) were eliminated from the final analysis.

Results

To test Prediction 3, a three-way ANOVA was performed using SPSS v. 26 with anno-
tation (annotation vs. non-annotation), visual representation (abstract vs. concrete), 
and prior knowledge (high vs. low) as independent variables and comprehension, 
problem solving and CL scores as dependent variables. Table 2 presents the descrip-
tive statistics with means and standard deviations for Study 2.

The multivariate tests revealed a main effect for the interaction among prior knowl-
edge, annotation, and visual representation λ = 0.695, p < 0.001, ƞ2 = 0.31. The fol-
low-up analysis showed a significant main effect for annotation λ = 0.569, p < 0.001, 
ƞ2 = 0.43, visual representation λ = 0.707, p < 0.001, ƞ2 = 0.29, and prior knowledge 
λ = 0.848, p < 0.001, ƞ2 = 0.15. Prior knowledge was significantly interacted with vis-
ual representation λ = 0.678, p < 0.001, ƞ2 = 0.32 and annotation λ = 0.906, p < 0.05, 
ƞ2 = 0.09. The interaction between annotation and visualization was significant 
λ = 0.729, p < 0.001, ƞ2 = 0.23.

The results of between-subjects tests revealed that high-prior-knowledge learners 
performed better in the AA condition, whereas low-prior-knowledge learners per-
formed better in the CA condition with a significant 3-way interaction by compre-
hension F(1, 162) = 14.77, p < 0.001, ƞ2 = 0.08 and problem solving F(1, 162) = 7.37, 
p < 0.01, ƞ2 = 0.04. Prior knowledge significantly interacted with visual representa-
tion by comprehension F(1, 162) = 24.32, p < 0.001, ƞ2 = 0.13 and problem solving F(1, 
162) = 6.57, p < 0.05, ƞ2 = 0.04. However, it significantly interacted with annotation by 
problem solving only F(1, 162) = 5.02, p < 0.05, ƞ2 = 0.03 (Fig. 5).

Regarding cognitive load, a significant 3-way interaction was observed as measured 
by extraneous F(1, 162) = 39.40, p < 0.001, ƞ2 = 0.20 and germane load F(1, 162) = 6.19, 
p < 0.05, ƞ2 = 0.04. Noticeable differences were found between high- and low-prior-
knowledge learners in terms of conditions. The high-prior-knowledge learners 
showed a lower intrinsic load in the AA condition than in the CA condition. In con-
trast, the low-prior-knowledge learners had a higher intrinsic load in the AA condi-
tion than in the CA condition. In terms of extraneous load, the high-prior-knowledge 
learners had low extraneous load in both AA and CA conditions, whereas the low-
prior-knowledge learners showed a high extraneous load in the AA condition and a 
low extraneous load in the CA condition. Finally, the high-prior-knowledge learners 
showed a higher germane load in the CA condition compared to the AA condition. 
For low-prior-knowledge learners, the germane load was high in the CA condition 
but very low in the AA condition (Fig. 6).

Both intrinsic F(1, 162) = 12.24, p < 0.01, ƞ2 = 0.07 and extraneous load F(1, 
162) = 31.86, p < 0.001, ƞ2 = 0.17 was significant for the interaction between prior 
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Table 2 Descriptive statistics with means and standard deviations for study 2 (N = 163)

Prior knowledge Visual 
representation

Annotation Mean SD N

Comprehension High Abstract Annotation 7.55 0.88 20

Non-annotation 5.35 1.13 20

Total 6.45 1.50 40

Concrete Annotation 5.28 1.38 21

Non-annotation 5.45 1.57 20

Total 5.36 1.46 41

Low Abstract Annotation 6.38 1.43 21

Non-annotation 5.23 0.99 21

Total 5.80 1.34 42

Concrete Annotation 7.33 0.85 21

Non-annotation 5.73 0.80 19

Total 6.57 1.15 40

Problem Solving High Abstract Annotation 7.60 1.14 20

Non-annotation 4.85 0.87 20

Total 6.22 1.71 40

Concrete Annotation 5.90 1.89 21

Non-annotation 4.45 1.46 20

Total 5.19 1.83 41

Low Abstract Annotation 5.76 1.04 21

Non-annotation 5.09 1.17 21

Total 5.42 1.15 42

Concrete Annotation 6.28 1.48 21

Non-annotation 4.63 1.34 19

Total 5.50 1.63 40

Z_Intrinsic High Abstract Annotation − 0.45 0.66 20

Non-annotation − 0.26 1.20 20

Total − 0.35 0.96 40

Concrete Annotation 0.27 0.92 21

Non-annotation 0.20 0.84 20

Total 0.24 0.87 41

Low Abstract Annotation 0.42 1.05 21

Non-annotation 0.22 0.89 21

Total 0.32 0.96 42

Concrete Annotation − 0.36 0.70 21

Non-annotation 0.25 0.67 19

Total − 0.07 0.75 40

Z_Extraneous High Abstract Annotation − 0.19 0.87 20

Non-annotation 0.08 0.38 20

Total − 0.05 0.67 40

Concrete Annotation − 0.21 0.75 21

Non-annotation 0.11 0.66 20

Total − 0.05 0.72 41

Low Abstract Annotation 1.80 0.34 21

Non-annotation 0.17 0.52 21

Total 0.99 0.93 42

Concrete Annotation − 0.60 0.86 21

Non-annotation 0.34 0.41 19

Total − 0.15 0.83 40

Z_Germane High Abstract Annotation 0.04 0.22 20
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knowledge and visual representation. Finally, extraneous load was significant for the 
interaction between prior knowledge and annotation F(1, 162) = 10.60, p < 0.01, ƞ2 = 0.06.

Discussion
The goal of the present study was to assess the impact of annotation on abstract 
and concrete visual learning in the context of learners’ expertise. Two studies were 
conducted to understand (a) the role of annotation, (b) the relationship between 

Table 2 (continued)

Prior knowledge Visual 
representation

Annotation Mean SD N

Non-annotation − 0.18 0.20 20

Total − 0.07 0.23 40

Concrete Annotation 0.09 0.13 21

Non-annotation 0.03 0.15 20

Total 0.06 0.15 41

Low Abstract Annotation − 0.04 0.22 21

Non-annotation − 0.02 0.18 21

Total − 0.03 0.20 42

Concrete Annotation 0.33 0.15 21

Non-annotation 0.04 0.17 19

Total 0.04 0.16 40

Fig. 5 The interaction among annotation, visual representation, and prior knowledge by comprehension 
and problem solving
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annotation and visual representation, and (c) the effects of prior knowledge on anno-
tation and visual representation in science learning.

The role of annotation and the relationship between annotation and visual representation

The results confirmed, in general, Predictions 1 and 2 that (a) participants who learned 
with annotation outperformed these without annotation in science learning and (b) 
there was a significant interaction between annotation and visual representation. Addi-
tionally, learners who studied with annotation did better on comprehension and prob-
lem solving than these who studied without annotation, suggesting that annotation 
provides additional cognitive support to learning (Fig. 4). Also, learners in the AA con-
dition performed better than these in the CA condition, which seems to contradict the 
literature, since concrete visuals are generally more favored in learning given that they 

Fig. 6 The interaction among annotation, visual representation, and prior knowledge by intrinsic, 
extraneous, and germane cognitive load
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“make information more available in long-term memory” (Mason et al., 2013, p. 377). 
However, when examining the abstract and concrete visuals from the lens of annotation, 
it makes sense to see why abstract visuals with annotation are more effective than con-
crete visuals with annotation. The former supports the understanding of the underlying 
structure of the problem, where the latter directs learners’ attention to superficial details 
(Moreno et al., 2011). In situations where learners did not have adequate schemata of the 
content domain, learning via concrete visual with annotation helped build the learners’ 
schemata, but did not aid their ability to solve problems. Given the potential influence of 
schema in concrete- and abstract-annotation processing, a follow-up study (Study 2) was 
called for to further investigate the effects of prior knowledge on annotation and visual 
representations.

The effects of prior knowledge on annotation and visual representations in science 

learning

The results of Study 2 revealed a significant 3-way interaction among prior knowledge, 
annotation, and visual representation, showing an expertise reversal effect. It was found 
that the learners’ performance in annotation and abstract/concrete visual represen-
tations were affected by their expertise in the domain area. For example, high-prior-
knowledge learners performed better in the AA condition than in the CA condition in 
terms of comprehension and problem solving (Fig. 5). They tended to have lower intrin-
sic and extraneous load when learning in the AA condition than they did in the CA 
condition (Fig. 6a–d). The opposite was true about low-prior-knowledge learners who 
performed better in the CA condition than in the AA condition as measured by compre-
hension and problem solving. The low-prior-knowledge learners tended to have lower 
intrinsic and extraneous cognitive loads in the CA condition than in the AA condition. 
The above findings confirmed Prediction 3 that high-prior-knowledge learners would 
perform better in the abstract visual representation with annotation (AA), since abstract 
visuals facilitated the understanding of the underlying structure of the problem and that 
low-prior-knowledge learners would perform better in the concrete visual representa-
tion with annotation (CA) because the extra visual support from both concrete visuals 
and annotation would facilitate the schema development for the novices.

There are a couple of points from this study that warrant further attention. First, it was 
found that high-prior-knowledge learners performed better in the AA condition com-
pared to the ANA condition. However, this difference was washed out in the CA and 
CNA conditions as measured by comprehension (Fig.  5a). This is probably due to the 
redundant effect of concrete visual representation with annotation. High-prior-knowl-
edge learners who already have the schemata for the subject might find annotation with 
concrete visual representations redundant. On the other hand, low-prior-knowledge 
learners found the CA condition beneficial (Fig. 5b) and experienced low intrinsic and 
extraneous load in learning (Fig. 6b, d). The finding suggests that teachers and profes-
sional trainers should be aware of the critical role of prior knowledge in affecting learn-
ing outcomes when implementing instructional strategies like visual representations and 
annotation in learning.

Second, there was a shift of germane cognitive load from the AA condition to the CA 
condition by high-prior-knowledge learners, which is contradictory to the literature. 
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High-prior-knowledge learners performed well in the AA condition in both comprehen-
sion and problem solving (Fig. 5a, c) with lower intrinsic and extraneous load (Fig. 6a, 
c). However, their germane load in the AA condition was lower than in the CA condi-
tion (Fig. 6e). While it is not quite certain what exactly caused this shift, it is speculated 
that since the high-prior-knowledge learners had already developed relevant schemata 
as shown by their low intrinsic load (Fig.  6a), the abstract visual representation with 
annotation may not incentivize them enough to engage in further learning. Rather, their 
attention was diverted to the surface features of the learning material in the CA condi-
tion, resulting in a failure of substantial learning gain as measured by comprehension 
and problem solving (Fig. 5a, c). The take-away message from this finding is that teachers 
and professional trainers should pay attention to individualization of learning content. 
Experienced learners may become distracted if the content is not challenging enough to 
meet their Zone of Proximal Development (Vygotsky, 1978).

Conclusion
The findings of this study have demonstrated that learners’ prior knowledge can signifi-
cantly influence the effectiveness of visual and annotation strategies in science learning. 
High-prior-knowledge learners learn better when annotation is used along with abstract 
visual representations than with concrete visual representations. This is because annota-
tion with abstract visual representations may better support the structuring of problems 
(Moreno et al., 2011) for high-prior-knowledge learners. In contrast, low-prior-knowl-
edge learners performed better with annotation and concrete visual representations. 
This is because concrete visuals with annotation provide the necessary cognitive support 
for developing their schemata in learning.

The present study has significant theoretical and instructional implications. At the 
theoretical level, the study has contributed to the understanding of relationship between 
annotation and visual representations, particularly the differences between abstract and 
concrete visual representations in the context of prior knowledge. Previous research 
was limited to the individual roles of abstract vs. concrete visuals or annotation vs. 
non-annotation. The present study extends previous work by revealing the interaction 
between annotation and visual representations. Moreover, the study has demonstrated 
the learning benefits for high- and low-prior-knowledge learners in terms of the inter-
action between annotation and type of visual representations. This contributes to the 
understanding of the expertise reversal effect framework through the lenses of annota-
tion and visual representations. At the instructional level, the study reveals the critical 
role of learners’ prior knowledge in the design of visual representations with annota-
tion. High-prior-knowledge learners learn better with annotation and abstract visuals, 
whereas low-prior-knowledge learners learn better with annotation and concrete visu-
als, since annotation with concrete visuals provides necessary support to novices for 
schema construction.

As with any empirical research, this study is not without limitations. Firstly, the study 
may suffer from an imbalance in gender (e.g., Study 2) that could introduce some noise 
to the results. Secondly, the self-report questionnaire for cognitive load measurement 
may suffer from response bias and/or lack of introspection on the part of participants. 
One such problem may have been that learners may not be able to tell “a learning task 
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was imposing a heavy cognitive load because it was intrinsically difficult or because 
the instructional procedures used were deficient” (Sweller, 2018, p. 6). Future research 
should explore the affective factor like motivation, self-efficacy, etc., along with cognitive 
factors to better understand the roles of annotation and visual representation in learn-
ing. Following that line, the study of germane load needs to be placed in the context of 
motivation, as germane load reflects the learners’ desire to learn. Thus, a knowledge of 
learner motivation will add explanatory power to how germane load is related to per-
formance (Gupta & Zheng, 2020; Moreno & Mayer, 2007; Plass & Kalyuga, 2019; Plass 
& Kaplan, 2016). Future studies may consider a “convergent approach” (Zheng & Cook, 
2012) in cognitive load measurement by combining self-report measure with psych-
physiological measures like eye-tracking and bodily sensors, as well as motivational 
measures like facial expression detection to better gauge various types of cognitive load 
in learning. Finally, future research should look into the relationship between learner 
working memory capacity (WMC) and cognitive load when considering annotations 
and visual representations, because WMC can significantly influence learners’ level of 
cognitive load in science learning (Greenberg et al., 2021, Greenberg & Zheng, 2022).

Appendix
CLQ Questionnaire. Intrinsic Load (Items 1, 2, and 3), Extraneous Load (Items 4, 5, and 
6), and Germane Load (Items 7, 8, 9, and 10). Liker Scale: 0 1 2 3 4 5 6 7 8 9 10 (0 mean-
ing not at all the case and 10 meaning completely the case) (Adapted from Leppink et al., 
2013).

 1. The topic covered in the electric circuit material was very complex.
 2. The topic covered the electric circuit material that I perceived as very complex.
 3. The topic covered the electric circuit concepts and definitions that I perceived as 

very complex.
 4. The instruction and explanation during the learning were very unclear.
 5. The instruction and explanation during the learning were very ineffective.
 6. The instruction and explanation were full of unclear verbal and visual information.
 7. The annotation with visuals really enhanced my understanding of the content cov-

ered.
 8. The annotation with visuals really enhanced my knowledge and understanding of the 

content.
 9. The annotation with visuals really enhanced my understanding of the principles in 

electric circuits.
 10. The annotation with visuals really enhanced my understanding of the concepts and 

definitions in electric circuits.
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