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Abstract

Research has demonstrated that people generally think both their knowledge and
performance levels are greater than they are. Although several studies have
suggested that knowledge and progress visualization offered by open learner
modeling (OLM) technology might influence students’ self-awareness in a positive
way, insufficient evidence exists to show that this is the case. This paper examines
the effects of open learner modeling and its extension with social comparison
features, known as open social learner modeling (OSLM), on students’ knowledge
monitoring abilities. We report the results of two semester-long classroom studies,
using subjects who were undergraduate and graduate students in Java
Programming and Database Management courses at the University of Pittsburgh.
During their studies, the students were able to use different versions of an online
practice system equipped with both OLM and OSLM. The students’ knowledge
monitoring abilities were examined in two ways: through absolute and relative
assessments. According to the results, although in both OLM and OSLM groups the
students’ absolute knowledge monitoring ability increased during the semester-long
study, relative self-assessment ability (i.e., their ability to compare their own
knowledge levels with the knowledge levels of their peers) only increased in the
OSLM group. The authors also traced relationships between the students’ academic
achievement and their absolute and relative knowledge monitoring abilities.

Keywords: Open social learner modeling, Open learner modeling, E-learning,
Knowledge monitoring ability

Introduction
Many studies have shown that people generally overestimate their knowledge, skills,

and/or performance. The ability to estimate one’s own knowledge has been explored in

different disciplines, using different terms such as knowledge monitoring ability, feeling

of knowing, metamemory, and self-awareness (Tobias and Fletcher, 2000; Koriat, 1993;

Nelson, 1990; Zimmerman, 2002). This ability is subject to a well-studied cognitive

bias, known as overconfidence or the Dunning-Kruger effect, which is characterized by

an overestimation of one’s actual abilities and chance of being successful, the belief

that others are worse than oneself, and lack of hesitation in professing the correctness
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of personal beliefs (Moore and Healy, 2008). Knowledge monitoring ability has import-

ant implications in a range of educational contexts, from the schooling process to train-

ing at workplaces (Tobias and Fletcher, 2000), because it allows students to know what

information and skills must be changed and/or improved (Clayson, 2005) to close the

gap between the current and desired performance (Sadler, 1989).

The ability to estimate one’s own knowledge or performance may be evaluated using

absolute and relative assessments. While an absolute assessment focuses on external cri-

teria, such as task requirements, a relative assessment depends on the distribution of the

scores of participants. An absolute assessment is very important to understand an individ-

ual’s knowledge/skill/performance levels that are necessary for successfully completing

any task or job. Tobias and Everson (2002) developed a widely accepted absolute know-

ledge monitoring assessment (KMA) method, which has been used in several studies in

various domains. This method is used to compute the differences between students’ actual

performance and their own confidence. In addition to criterion-based absolute methods,

people evaluate their knowledge and abilities by comparing themselves to other people

(Suls, 1977). Festinger (1954) pioneered the use of social comparisons to accurately assess

one’s abilities. Relative assessments are important to determine an individual’s eligibility

for specific tasks/training and/or to discover who performs better. Comparing students’

actual performances relative to others with their self-reported judgments is also consid-

ered to be an important relative knowledge monitoring assessment method (Kruger &

Dunning, 1999). The accuracy of both assessments is critical for students to be aware of

their learning needs, to set more realistic goals, and to make better decisions about what

topics to study (Somyürek & Çelik, 2018).

Since it is commonly believed that the ability to monitor one’s knowledge lies at the

very heart of self-regulated learning, supporting this ability is crucial in the design of

learning environments. This ability is more important in e-learning environments than

in face-to-face learning environments because while e-learning, the students must de-

cide where to go next, how to learn, and which learning strategies to use (Williams,

1996). Open learner modeling (OLM), in which the learner’s model is visible and ac-

cessible (Bull & Kay, 2010; Baker, 2016; Jivet et al., 2018), is considered as an important

mechanism in e-learning environments for increasing students’ self-awareness. One of

the recent extensions of OLM, known as open social learner modeling (OSLM), pro-

vides each student with the opportunity to examine their peers’ knowledge and pro-

gress, in addition to the opportunity to observe their own knowledge (Hsiao et al. 2013;

Loboda et al., 2014). Using OSLM, students can acquire a better assessment of their

performance or progress by comparing their capabilities with others.

Although some studies report the encouraging results that OLM can positively affect

students’ awareness, insufficient evidence exists to firmly draw this conclusion. For ex-

ample, Govaerts, Verbert, and Duval (2011) designed a visualization tool that contributes

to awareness and self-monitoring and conducted two case studies. They collected data on

the subjectively perceived usefulness of the tool from teachers. Their results indicate that

the teachers strongly claimed to be more aware of what their students were doing. Kerly,

Ellis, and Bull (2008); Mitrovic and Martin (2007); and Suleman, Mizoguchi, and Ikeda

(2016) have focused on the effects of OLM on learners’ self-assessment accuracy. How-

ever, these studies include neither a KMA assessment nor a relative assessment. None of

these studies examined an OSLM interface, and consequently, they could not compare
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the effects of both OLM and OSLM on knowledge monitoring. The purpose of this study

is to fill this gap by comparatively examining the effects of OLM and its extension, OSLM,

on students’ knowledge monitoring abilities in two separate but similar contexts.

Theoretical background
Delusion in subjective judgments is one of the most significant problems concerning

the reasoning process (Nickerson, 1998). This has been examined in many studies from

the perspectives of disciplines such as psychology, finance, and education (Somyürek &

Çelik, 2018). Psychology studies generally focus on why people overestimate their own

abilities and which factors affect their delusions. Financial studies address the role of

overconfidence in marketing, investing, or risky financial behaviors. In education, many

researchers have focused on measuring this cognitive bias in a more specific manner,

with an awareness of the extent and quality of the subjects’ knowledge, or investigated

it in relation to academic achievement. This cognitive bias is closely associated with

students’ ability to assess their own levels of knowledge; thus, understanding it is cru-

cial to the promotion of effective learning (Mitrovic & Martin, 2007). Expert learners,

who are characterized as strategic and self-regulated (Ertmer & Newby, 1996), are

aware of their strengths and weaknesses in the context of specific task requirements;

this helps them to choose and apply appropriate strategies to achieve their goals (Isaac-

son & Fujita, 2006). Effective learners may evaluate the quality of their work more fre-

quently (Lan, 1998), which will generally lead them to become more successful. Kruger

and Dunning (1999) demonstrated that in addition to the general tendency of people to

be overly optimistic about themselves, their exaggerated perceptions of their own per-

formance increase along with a decrease in actual performance. Kruger and Dunning

hypothesized that less skilled individuals have weaker metacognitive abilities, and as a

result, cannot realize the truly low levels of their actual knowledge and performance.

An important part of metacognitive knowledge is an individual’s awareness of her/his

own ability levels (Stankov & Crawford, 1996; Pintrich, 2002). Today, due to the con-

stant need to update knowledge and skills, it is even more important for individuals to

be responsible for their own learning and to have a requisite knowledge monitoring

ability (Somyürek & Çelik, 2018). This is also critical in distributed and open learning

environments due to the effects on students’ decisions and behaviors. Steiner, Götz,

and Stieglitz (2013) stated that students’ unrealistic optimism about their own know-

ledge leads to insufficient efforts and avoidance of using some e-learning components.

Because students may believe they already understand the content (although this is not

true), they might underestimate the time needed to study and ignore the self-

assessment questions that are frequently available in e-learning environments. As a re-

sult, imperfect knowledge monitoring abilities may cause several problems in the learn-

ing process.

The applications or interfaces in e-learning environments that include personal inform-

atics, such as users’ knowledge and progress, could enhance students’ self-knowledge

(Jivet et al., 2018; Verbert et al., 2013). Adaptive e-learning systems are also important

learning environments that could potentially increase the self-knowledge of their users

(Somyürek & Brusilovsky, 2015). An essential part of every adaptive e-learning system is

the student model, which typically is an internal representation of a student’s knowledge.

The student model is maintained using up-to-date observation of a learner’s activities and
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performance and is used to provide various adaptation effects, for example, by adapting

content and navigation support in a system to the user’s current knowledge levels (Kay,

2000). While the majority of adaptive systems hide student models from the users and

employ them internally within the system for adaptive interventions, open learner model-

ing (OLM) refers to various approaches to make some parts of the student model visible

(Weber & Brusilovsky, 2001; Bull, Brna, & Pain, 1995; Bull & Kay, 2007). The popularity

of OLM is due to its strong pedagogical foundation and positive results reported by sev-

eral education studies (Ferreira et al., 2019). Existing studies indicate that OLM could pro-

vide substantial metacognitive support (Bull & Kay, 2013; Bull & Wasson 2016; Hsiao &

Brusilovsky, 2017). However, the effects of OLM on students’ knowledge monitoring abil-

ity have not been extensively examined.

There is a growing interest in open social learner modeling, which is used to make

peer models visible to students as well as the student’s own model. OSLM is based

upon Festinger’s Social Comparison Theory, which has been frequently researched in

social psychology studies (Corcoran, Crusius, & Mussweiler, 2011, pp. 119). According

to the Social Comparison Theory, “self-knowledge is fulfilled [by] not just getting infor-

mation about oneself but also comparing oneself to another” (Buunk & Gibbons, 2007).

OSLM researchers use ideas from the Social Comparison Theory to design and develop

e-learning systems and externalization methods for learner models (Guerra, Hosseini,

Somyurek, & Brusilovsky, 2016; Hsiao, & Brusilovsky, 2017).

The externalization of a learner’s own model, an aggregated group model, or peer

models is also employed in learning analytics dashboards. This research area is mainly

focused on visualizing (presenting) student information and sharing it with all stake-

holders such as instructors, teachers, peers, and parents through dashboards (Bodily

et al., 2018). These dashboards could contain various panels of visualized indicators for

monitoring knowledge (Bodily et al., 2018; Majumdar et al., 2019; Jivet et al., 2018; Ver-

bert et al., 2013). Although learning analytics do not necessarily feed a learner model,

nor offer inferences about unobserved knowledge or skill levels, this research area pro-

vides useful empirical evidence for OLM/OSLM usage.

Method
We explored the effects of OLM/OSLM on students’ knowledge monitoring abilities in

two different classroom studies. The studies were conducted in two domains (i.e., uni-

versity courses), one in Java Programming and the other in Database Management. A

pre-test/post-test control group design was used in both studies, and we collected the

same data to compute both absolute and relative knowledge monitoring abilities. Both

the Java Programming and Database Management classes were divided into two groups,

and the students were randomly assigned to one of the groups. Students in the first

group studied with an e-learning system that included only OLM functions, and the

second group studied with an e-learning system that also included OSLM functions.

The same instructors taught both groups within each class.

The participants

The participants in the first study (Java Programming) were undergraduate students,

and the participants in the second study (Database Management) were Masters-level
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students, who were taking regular semester-long courses in the School of Information

Sciences at the University of Pittsburgh. The e-learning system was introduced to them

as a free practice system, i.e., its use was not mandatory. Some of the students never

logged in, and some of them used the system only a few times. In study 1, we assigned

26 and 29 students to the OLM and OSLM groups, respectively. In study 2, we

assigned 49 and 53 students to the OLM and OSLM groups, respectively. However, six

students in study 1 and 14 students in study 2 never logged in to the system, so we ex-

cluded their data. Among the remaining 49 students in study 1 and 88 students in

study 2, only those who solved at least five problems (which we considered to be a suf-

ficient amount of practice with the system to be affected by its features) were included

in the analysis. After discarding those students with no or very low activity in the sys-

tem, there were 44 students in study 1 and 43 students in study 2. Table 1 displays the

descriptive statistics of the study participants.

The e-learning system

Both studies used an e-learning practice system called Mastery Grids (Loboda et al.

2014), which was developed by the Personalized Adaptive Web Systems (PAWS) Lab in

the School of Information Sciences at the University of Pittsburgh (Fig. 1). This system

has been used and evaluated in several studies that have proved its usability, efficiency,

and effectiveness (Loboda, Guerra, Hosseini, & Brusilovsky, 2014; Brusilovsky et al.,

2016; Guerra et al., 2016). The system offers access to practice-oriented learning con-

tent in the form of work examples and problems, and it includes adaptive navigation

functions which can support learners by informing them about their learning process/

performance. In study 1, the learning content was Java programming language. In study

2, the learning content was related to SQL programming, which is a considerable part

of the Database Management course.

Two versions of the Mastery Grids interface were used to study the effects of OLM/

OSLM. The first version, referred to as OLM, provides a learning dashboard that in-

cludes only OLM functions, which visually present to a student a model of their corre-

sponding Java or SQL knowledge. In addition to its role as an OLM, this visual

representation (Fig. 2) is also used for navigation to the learning content. In this inter-

face, each cell in the top row represents one of the content topics. The color of the cell

indicates the current knowledge level of the target student for this topic. If the student

has no knowledge of the topic, the grid color is grey. With increases in student’s know-

ledge, the color becomes greener and progresses from light to dark green. Students can

also view their progress in terms of percentiles for each topic by mousing over the grid

cells. A click on a topic cell “opens” the topic and provides access to practice content

for the topic, which is shown in two or more rows of slightly smaller cells grouped by

Table 1 Descriptive statistics of the participants

Study 1 Study 2

f % f %

OLM 22 50 12 27.91

OSLM 22 50 31 72.09

Total 44 100 43 100
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content type (see the square with rows of “Examples” and “Quizzes” in Fig. 2). In each

topic, there are several work examples that provide solutions for the given problems

and several problems to practice. The color of the content cells reflects the progression

of the student’s knowledge for a specific portion of the content. A click on a content

cell opens this item for practice.

The design of Mastery Grids is based on both self-regulated learning and the Social

Comparison Theory. The OLM functions were designed to reflect the main ideas of the

Self-regulated Learning Theory, which defines the learner as an active participant who

can monitor her/his learning process and can find a way to succeed when s/he encoun-

ters obstacles (Zimmerman, 1990). The OLM interface includes self-monitoring tools

to enable students to recognize when they have mastered content, and it shows the

progress of the user across different learning content (solved examples and questions)

in each topic (shown in Fig. 2).

The second version of the interface, called OSLM, provides access to the full Mastery

Grids, which combine OLM with social comparison functions that are based on the So-

cial Comparison Theory. According to the Social Comparison Theory, “people seek

Fig. 1 The e-learning system interface To access a learning activity (a question or a work example), the
students click on one of the content cells inside the selected topic. The figure shows a work example from
a general constraints topic, which was opened by a student who is now examining comments in its
second line. All activities can be opened in a separate frame on the top of the OLM/OSLM interface

Fig. 2 The OLM interface
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accurate knowledge of [the] self, and to find it they compare themselves with others”

(Krueger, 2000, p.323). As seen in Fig. 3, the OSLM interface offers two additional rows

in the topic grid. The third row is the Group row, which shows the average progress of

the peer group (which in our studies was the whole class) for each topic. In this row,

the topic color progresses from gray (no group progress for the topic) to blue. With in-

creases in group progress, the topic colors become more intense (darker). The second

row of the grid, called “Me vs. Group,” is used to compare a student’s own knowledge

progress with the group’s progress. The color gradient in the second row represents the

difference between the user and the group and ranges from dark blue to dark green. If

the average progress of the class is higher than the student’s progress, the grid color be-

comes blue; the more intense it is, the more a student lags behind the class. If the user

is ahead of the class average for this topic, the comparison color is shown as green; the

more intense the color is, the further ahead is the student. This representation of the

difference was designed to maintain consistency with the color coding of the first and

third rows.

To offer a more detailed social comparison, the OSLM version offers a “Load the rest

of the learners” button. A click on this button opens a detailed student-by-student pro-

gress visualization, in which the students are listed in descending progress order (see

Fig. 4). Neither names nor identifiers are shown. The student’s exact position in the list

is also shown in this interface in green.

The data collection tools

An assessment tool was used to measure the students’ academic achievement and

knowledge monitoring abilities in each study. In the first study, this tool consists of 12

questions about Java Programming, which are administered as both a pre-test and a

post-test. In these 12 questions, we asked the students to write short answers for the

given Java codes, as shown in the following example:

public class MyTester {

public static void main(String[] args) {

int i = 14;

Fig. 3 The OSLM interface
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int j = 20;

int k;

k = j / i * 7 % 4;

}

What is the final value of the variable k: _________

For each question in the Java pre- and post-tests, the students were asked to report

their confidence. This was done by asking them whether they were able to solve the

question with a yes/no prompt. The last question in this tool was used to ask the stu-

dents to estimate their test results percentile, which indicates how many students have

scored lower than the target student on the given test. This tool was used in both the

pre-test and the post-test. To evaluate the students’ knowledge monitoring ability

scores, the knowledge monitoring assessment (KMA) method developed by Everson

and Tobias (1998) was used. This measurement method can be used in various do-

mains to evaluate the differences between a student’s actual performance and his/her

confidence regarding each question. According to this method, the following four

scores (a, b, c, d) were generated (Everson and Tobias, 1998).

In Table 2, the a and d scores represent the correct estimates of whether or not the

questions were answered correctly. The b and c scores show that the student incor-

rectly estimated that s/he was giving the right or wrong answers to the questions. With

these four scores, the KMA score was computed using the following formula:

KMA = ((a + d) − (b + c))/total questions

The KMA score ranges from 1 to − 1, where 1 indicates perfect knowledge monitor-

ing and − 1 shows that the student has no idea about her/his performance.

In addition to absolute knowledge monitoring with KMA scores, we also focused on

relative knowledge monitoring. To assess their relative knowledge monitoring ability,

we compared the actual positions of the students in the class (measured in percentiles

and computed using the number of other students that performed lower in the pre-

and post-tests) with the position estimated by the learners in the pre- and post-tests.

Fig. 4 The student list in the OSLM interface

Table 2 Scores generated according to the KMA method

Actual
performance

Student’s confidence

Solved Did not solve

Solved a b

Did not solve c d
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In the second study, the data collection tools and procedures were similar to those in

the first study. The pre- and post-tests were similar in form but were composed of SQL

programming questions. This test also included an estimation of correctness for each

question and the students’ percentiles.

Procedure

The procedure was very similar in both studies. First, the e-learning system was intro-

duced to both groups (assigned to either the OLM or the OSLM e-learning interfaces). In

study 1, the procedure started in the first week of the Object-Oriented Java Programming

course. In study 2, it began in the 3rd week of the Database Management course, right be-

fore the introduction of the SQL content. The research study was explained to the stu-

dents, and then they signed consent forms if they wished to participate in the study. The

participants were presented with an introduction to the e-learning system using a live

demonstration accompanied by an explanation of how to use it. They were then given the

pre-test. The use of the system was not mandatory in the course. However, one extra

credit point was offered to students who solved at least 10 problems in the system, in

order to motivate them to enter and explore it. All the user interactions with the system

were recorded in a database. The descriptive statistics for the students’ interactions are

presented for study 1 and study 2 in Tables 3 and 4. The post-test was administered at

the end of the 8-week period of the study.

In the Java Programming context (study 1), the system included a total of 19 topics, 74

examples, and 94 questions. The log data for the OLM group shows that the students on

average covered 55.74% of the topics, attempted 49.50 problems, explored examples 30.05

times, clicked 26.68 times in the interface, clicked 109.23 content cells in Mastery Grids,

and spent 12,281 s in the system. In the OSLM group, the log data shows averages of

52.90% of the topics covered, 77.09 problems attempted, examples explored 46.64 times,

the Mastery Grids interface clicked 28.50 times, content cells in Mastery Grids clicked

124.23 times, and 9570 s spent in the system. These numbers show a very similar overall

usage of the OLM and OSLM interfaces by the two groups in study 1.

Table 3 System usage by the OLM and OSLM groups in study 1

Variable OLM, mean OSLM, mean

Sessions 7.36 5.36

Topic coverage (distinct topics viewed within MG) 55.74% 52.90%

Total attempts for the problems 79.91 77.09

Correct attempts for the problems 55.95 53.00

Distinct problems attempted 49.50 46.64

Distinct examples viewed 30.05 34.45

Views of the example lines 180.32 225.41

MG loads 8.05 6.45

MG clicks on the topic cells 26.68 28.50

MG clicks on the content cells 109.23 124.23

Total time in the system (s) 12,281.74 9570.05

Time on the problems (s) 4148.89 3169.67

Time for MG (navigation) (s) 3641.03 3170.89
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In the Database Management context (study 2), the system included a total of 11 topics,

47 examples, and 64 questions. On average, the students in the OLM group covered

59.09% of the topics, attempted to solve problems 90.33 times, explored examples 48

times, clicked the Mastery Grids interface 55.75 times, clicked content cells in Mastery

Grids 130,92 times, and spent 14,527 s in the system. In the OSLM group, the students on

average covered 76.27% of the topics, attempted to solve problems 147.65 times, explored

examples 54.13 times, clicked the Mastery Grids interface 88.77 times, clicked content

cells in Mastery Grids 171,55 times, and spent 13,538 s in the system. These results show

that the OSLM interface was more actively used by the participants in study 2.

To ensure that the students had ample opportunity to observe their absolute and

relative (for the OSLM groups) progress, we explored their interactions with the con-

tent cells of the Mastery Grids interface. Mastery Grids was designed to serve as both a

progress visualization tool and a content access tool. On the one hand, the main grid of

the system displays the detailed progress of the learner over the whole course and for

each topic. On the other hand, the students must click on the grid cells to access learn-

ing content for each topic and to select a question or an example to practice. The stu-

dents become continually engaged with the system to observe their progress

information, even if their original motivation is merely to access the content. The num-

ber of clicks on the grid cells provides an estimate of how frequently the students ob-

serve their progress. In study 1, the mean number of clicks was 118, the median was

92, and the minimum number of clicks was 9. In study 2, the mean usage was 160.21,

the median was 151, and the minimum was 31. This data provides good evidence that

the students had ample opportunity to view their progress visualizations.

Results
Study 1

Knowledge monitoring ability

Table 5 displays the mean, median, and standard deviations of the KMA scores for both

the OLM and OSLM groups in the Java Programming course. Of the 22 students in the

Table 4 System usage by the OLM and OSLM groups in study 2

Variable OLM, mean OSLM, mean

Sessions 6.75 7.48

Topic coverage (distinct topics viewed within MG) 59.09% 76.27%

Total attempts for the problems 90.33 147.65

Correct attempts for the problems 51.00 91.13

Distinct problems attempted 26.83 35.39

Distinct examples viewed 48.00 54.13

Views of the example lines 243.58 297.42

MG loads 9.25 12.32

MG clicks on the topic cells 55.75 88.77

MG clicks on the content cells 130.92 171.55

Total time in the system (s) 14,527.65 13,538.46

Time on the problems (s) 3187.73 4104.72

Time in MG (navigation) (s) 6452.55 5879.77
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OLM group and the 22 students in the OSLM group who were sufficiently active in the

system to be considered for this analysis, only 18 and 17 students respectively answered

the confidence questions in both the pre- and post-tests. These were included in the

following analyses. There was no difference in the KMA scores of the pre-test between

the OLM and OSLM groups (t = .581, p > .05), which suggests that there was no selec-

tion effect regarding the dependent variable.

A mixed-effects analysis of variance (ANOVA) was conducted to evaluate the effects

of time (pre-KMA vs. post-KMA) and group (OLM, OSLM). According to the results,

there was a significant main effect of time, F(1, 33) = 18.12, p < .001, r = 0.35. This ef-

fect shows that if we ignore the groups of participants, the absolute KMA scores were

different for the pre- and post-measurements. However, there was no significant inter-

action between the groups of participants and time, F(1, 33) = 0.03, p > .05. This result

shows that increases in the KMA scores were not significantly different for the OLM

and OSLM groups. Also, there is no significant main effect for the group, F(1, 33) =

0.054, p > .05. This means that if we ignore the pre- and post-measurements, the KMA

scores are not different for the OLM and OSLM groups. These results reveal that the

post-absolute knowledge monitoring scores of the students were significantly higher

than the pre-absolute knowledge monitoring scores after they studied with the Mastery

Grids system. The means and interaction graph are shown in Fig. 5.

After working with the system, the students’ knowledge monitoring abilities were sig-

nificantly improved in both groups. To examine whether OLM or OSLM improves the

students’ KMA scores, a paired sample t test was conducted. The results indicate that

both the OLM (t = − 2.510, p < .05) and OSLM (t = − 3.920, p < .01) groups’ knowledge

monitoring abilities were increased from the pre-test to post-test.

The ability to monitor knowledge level compared to others

To examine the students’ relative knowledge monitoring ability, we used the students’

comparisons of themselves with their classmates. For this purpose, the students’ self-

reported percentiles (how they thought they ranked against others in both the pre- and

post-tests) were compared to their actual percentiles (the position of the pre- and post-

test scores within the whole group). Due to violation of the normality assumption, this

comparison was conducted using a Wilcoxon signed-rank test for both the OLM and

OSLM groups, and a separate analysis was done for the pre- and post-test. The results

show that for the pre-test assessments, the students’ estimated percentile ranks were

significantly higher than their actual percentile ranks in both the OLM (Z = − 2.857, p

< .01) and OSLM (Z = − 3.300, p < .01) groups. In other words, the students overesti-

mated their relative levels of knowledge (see Table 6). We also found significant differ-

ences between the students’ average actual and estimated percentiles in the post-test

for the OLM group (Z = − 2.214, p < .05). However, there were no significant

Table 5 KMA mean, median, and standard deviation scores for the OLM and OSLM groups

OLM OSLM

N Mean Median SD N Mean Median SD

Pre-KMA scores 22 .212 .171 .491 21 .129 .167 .440

Post-KMA scores 18 .589 .636 .276 17 .587 .636 .225
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differences for the OSLM group (Z = − 1.065, p > .05), which means that the students

in the OSLM group were much closer to reality when estimating their relative levels of

knowledge. This result suggests that the OSLM interface, in which students can see the

other students’ knowledge levels and their own position within the class, improved

their awareness of their relative knowledge assessment, which was expected.

Knowledge monitoring ability and academic achievement

Prior research has demonstrated that successful knowledge monitoring seems to in-

crease as the students’ competence levels increase (Kruger and Dunning, 1999). To

examine whether this general tendency is valid in our case, a correlation analysis was

conducted, and a significant positive correlation was found between the post-KMA

scores and academic achievement, as measured by the post-test (R = .681, p < .001).

This result shows that as the students’ knowledge increased, they became more suc-

cessful in assessing their knowledge. Figure 6 (left) displays the relationship between

the students’ academic achievement, as measured by the post-test, and their knowledge

monitoring ability. A significant negative correlation (at the .01 level) was also found

Fig. 5 The means and interaction graph

Fig. 6 Scatter plots showing the relationships between academic achievement measured by the post-test
and absolute and relative knowledge monitoring abilities. Note that better abilities mean higher KMA
ssscores (left) but lower percentile differences (right)
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between academic achievement and the post-bias score (percentile difference) (R =

− .542, p < .001). In other words, when the students’ knowledge increases, the differ-

ence between their estimated percentiles and real percentiles decreases.

Study 2

Knowledge monitoring ability

We also conducted a similar experiment in another context, a graduate class on Data-

base Management Systems. Table 7 displays the mean, median, and standard deviations

of the KMA scores for both OLM and OSLM groups. Since the normality distribution

is violated in the KMA scores in this context, we conducted a non-parametric analysis.

Before using the Mastery Grids interface, the two groups took a pre-test to examine

whether they had equal knowledge monitoring abilities for SQL programming. Accord-

ing to the results of a Mann-Whitney U test (U = 163.500, p = 0.547), there were no

significant differences in the KMA scores between the groups in the pre-test.

After the training, a Wilcoxon signed-rank test was conducted to evaluate the effects

of repeated KMA measurements on both the OLM and OSLM groups. As shown in

Table 8, the results reveal that there was no significant difference between the pre-

KMA scores and the post-KMA scores for the OLM and OSLM groups. Though the

improvement was not significant, in both groups, we could see increased KMA scores

for the majority of the students.

Another Mann-Whitney U test (U = 162.000, p = 0.631) showed that there was no

significant difference between the post-KMA scores of the students in the OLM group

and OSLM group. This effect tells us that the post-KMA scores in the OLM group

were basically the same as those in the OSLM group.

According to these results, working with the system helped the students to improve

their knowledge monitoring abilities, but this improvement was not statistically signifi-

cant. Even though this finding was less satisfactory than our findings for the Java Pro-

gramming course, the likely reason for this result is clear. When we were coding the

data, we observed that some of the students checked “No” for confidence in all the

questions or in several questions, and their pre-test scores were zero or very low, indi-

cating that these students had no knowledge about the questions and gave random

Table 6 The students’ actual percentiles and estimated percentiles for the OLM and OSLM groups

OLM OSLM

N Mean SD N Mean SD

Pre Actual percentiles 20 38.64 23.98 19 35.36 23.38

Estimated percentiles 71.00 22.40 77.00 24.74

Post Actual percentiles 19 56.58 31.59 17 55.22 23.12

Estimated percentiles 72.00 22.86 65.58 30.29

Table 7 KMA mean, median, and standard deviation scores for the OLM and OSLM groups

OLM OSLM

N Mean Median SD N Mean Median SD

Pre-KMA scores 12 .218 .200 .376 31 .336 .200 .488

Post-KMA scores 12 .301 .200 .292 30 .349 .400 .333
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answers. For example, if a student had no prior knowledge about SQL programming,

they would check all the confidence questions as “No” and simply choose any of the an-

swers for these ten questions. The result of the four scores used to compute the KMA

score for such a student is shown in Table 9.

KMA = ((0 + 10) − (0 + 0))/10 = 1

In this example, this student had a perfect knowledge monitoring ability score of 1,

which means s/he was aware of what s/he knows or does not know. However, this re-

sult is not obtained only from the awareness of the person, but also from his/her lack

of prior knowledge. The KMA scores of students who could not answer any question

in the pre-test also confirm this observation. Their mean KMA scores were .45 in the

pre-test and .31 in the post-test, which indicates that their knowledge monitoring

scores were decreasing (because estimating the correctness of their answers at post-test

time is harder than at pre-test time). In the Database Management context, the mean

pre-academic achievement score (measured by the pre-test) was 11.67 for the OLM

group and 12.26 for the OSLM group. In other words, most of the students had no

prior knowledge, and only a few had very limited knowledge. Taking these conditions

into account, a general increase in the KMA scores is arguably critical, even though this

increase is not statistically significant.

The ability to monitor knowledge level compared to others

We also wanted to analyze how successful the students were in comparing themselves

with their classmates relatively. For this purpose, the students’ actual percentiles and

their estimated percentiles in both the OLM and OSLM groups were analyzed using

the Wilcoxon signed-rank test, due to the violation of the normality assumption. The

results show that, for the pre-test assessments, there were significant differences be-

tween the students’ average actual percentiles and their estimated percentiles in both

the OLM (Z = − 2.666, p < .05) and OSLM (Z = − .3.4573, p < .05) groups.

In the post-test assessments, we also found significant differences between the stu-

dents’ average actual and estimated percentiles in the OLM group (t(11) = 2.227, p <

.001). However, there were no significant differences in the OSLM group (t(26) =

− .299, p > .05). This result shows that using an OSLM interface, in which the students

can see the other students’ knowledge levels and their own position within the class,

improved their relative knowledge monitoring ability, as in study 1. Table 10 displays

Table 8 Wilcoxon signed-rank test results of the students’ repeated KMA scores for the OLM and
OSLM groups

Group Negative Positive Ties z p

OLM 5 7 0 − .825 .410

OSLM 11 16 3 − .144 .885

Table 9 a, b, c, and d scores for a given example

Actual
performance

Student’s confidence

Solved Did not solve

Solved a = 0 b = 0

Did not solve c = 0 d = 10
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the mean and standard deviations of the students’ actual and estimated percentiles for

both OLM and OSLM groups.

The percentile-based analysis provides sufficient evidence in most of the practical

cases when the scores have a reasonably broad and non-skewed distribution but will

not work for narrow or skewed distributions. To examine the sufficiency, we checked

the normality and breadth of the distribution of the test scores in all four cases. While

in three cases the distribution was broad and close to normal, this was not true for

study 2 pre-test. These pre-test scores were clustered at certain points, such as 0, 10,

20, 30, 40, and 50 in OLSM and 0, 10, 20, and 30 in OLM, and they did not show a

wide distribution. To add a more reliable analysis for this case, we decided to examine

“better-than-average” phenomena related to placement, which means the belief that

one’s relative knowledge/performance is better than others. To examine this effect, we

reviewed the students’ estimated pre-test percentiles in the two groups, to separate

those who believed their performance would be better than at least 50% of the class

from those who did not. Then, we explored the relationship between the students’ pre-

test scores and their estimations descriptively using cross tables (Table 11).

As can be seen in Table 11, most of the students did not estimate themselves to be in

the top half of the class. Though this finding was unexpected, it is still reasonable con-

sidering that the students’ general preliminary knowledge levels were very low. As can

Table 10 The students’ actual percentiles and their estimated percentiles for the OLM and OSLM
groups

OLM OSLM

N Mean SD N Mean SD

Pre Actual percentiles 12 50.86 31.75 27 47.17 26.20

Estimated percentiles 39.09 25.08 29.58 22.35

Post Actual percentiles 12 52.28 31.01 27 61.46 22.51

Estimated percentiles 75.75 14.87 59.15 32.40

Table 11 The students’ pre-test scores and their estimations of their relative placement

Group Pre-
test
scores

Estimations of relative placement Total

Above the average Below the average

OSLM 0 0 11 11

10 1 8 9

20 2 2 4

30 0 1 1

50 0 1 1

Total 3 3 23 26

OLM 0 1 4 5

10 0 2 2

20 1 0 1

30 1 2 3

Total 3 8 11

Somyürek et al. Research and Practice in Technology Enhanced Learning           (2020) 15:17 Page 15 of 24



be seen from the values, all the students who could not answer any question in the

pre-test and got a zero score out of 100 (eleven students in the OSLM group and four

students in the OLM group), and most of the students who received a ten score in the

pre-test (eight students in the OSLM group and two students in the OLM group) had

estimated that they were in the bottom half of the percentile positions. We also found

that a vast majority of the students had low scores and that they generally did not think

they were “better-than-average.”

Knowledge monitoring ability and academic achievement

Due to the violation of the normality assumption, the relationships were analyzed using

Kendall’s tau-b correlation coefficient. According to the results, a significant positive

correlation was found between the post-KMA scores and the academic achievement

scores (rτ = .458, p < .001). These results show that when the students’ academic

achievement (measured from the post-test scores) increases, their knowledge monitor-

ing ability also improves, as was seen in study 1. Figure 7 shows the relationship be-

tween the students’ academic achievement scores and their knowledge monitoring

abilities. A significant negative correlation was found (at the .05 level) between the aca-

demic achievement scores and the post-bias scores (percentile difference) (rτ = − .567,

p < .05). In other words, when the students’ knowledge increased, the difference be-

tween their estimated percentiles and their real percentiles decreased. This suggests

that better learners also are better at assessing their relative knowledge.

Discussion and conclusion
Prior research has demonstrated that people generally think their knowledge levels are

objectively higher than they are (Kahneman, Slovic, & Tversky, 1982). But along with

increases in expertise and ability, the gap between perceived and real levels of know-

ledge becomes smaller (Kruger & Dunning, 1999). In a learning context, this biased

preview of one’s own knowledge/ability may prevent learners from making adequate

study choices and consequently can result in ineffective learning (Dunlosky & Rawson,

2012). Thus, accurate knowledge monitoring skills are considered a necessity for pro-

ductive learning (Black & William, 1998).

E-learning environments, especially adaptive and intelligent ones, try to support

learners not only in their learning about a particular domain, but also to become more

effective learners (Mitrovic & Martin, 2002). Learning dashboards are an important tool

Fig. 7 Scatter plots showing the relationships between academic achievement (as measured by the post-
test) and absolute and relative knowledge monitoring abilities. As in Fig. 4; better abilities mean higher
KMA scores (left) but lower percentile differences (right)
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in modern learning environments and can be used for this purpose (Verbert et al.,

2013). Providing a visual overview of students’ activities and allowing them to compare

their progress with that of their peers can support their learning process and also in-

form both teachers and other stakeholders about their teaching process (Duval, 2011).

Bull (2016) suggested combining the power of OLMS with learning analytics

dashboards.

The OLM and OSLM interfaces can be used as a powerful and detailed learning dash-

board to visualize student models. This is a basic component of adaptive e-learning sys-

tems. However, a systematic literature review by Jivet et al. (2018) and a study by Verbert

et al. (2013) both indicate that some important problems and limitations exist in extant

learning dashboard studies. First, no learning theory or concept has been used to design

most learning dashboards. Second, most learning dashboards were developed to inform

teachers; only a few have been developed to support learners. Third, evaluations of learn-

ing dashboards often are not consistent with their usage goals.

Our study addresses these problems/limitations and examines the effects of OLM/

OSLM on knowledge monitoring abilities. Our Mastery Grids system is based on two

important learning theories, the Self-regulated Learning and the Social Comparison

Theory. To support the SRL, the OLM interface includes self-monitoring tools which

allow students to view their progress in different learning activities (work examples and

problems) in each topic, so that they can recognize when they have mastered the activ-

ities. In addition, an OSLM interface based on the Social Comparison Theory allows

students to view the progress of their peers and an overall model of the class (Guerra,

Hosseini, Somyürek, & Brusilovsky, 2016). The Mastery Grids system specifically sup-

ports learners rather than teachers. Finally, since the aim of the system is to support

SRL and social comparisons, its evaluation was conducted via absolute and relative

knowledge monitoring assessments, which are crucial indicators of SRL and social com-

parisons. In other words, the aim of our system and its evaluation methodology are

consistent.

The results of our two classroom studies indicate that OLM/OSLM interfaces can be

used to support students’ knowledge monitoring abilities. According to the results, the

Mastery Grids system helped the participating students to improve their knowledge

monitoring abilities in both the Database Management and the Java Programming

courses. However, this improvement was statistically significant only in the Java Pro-

gramming course. The Java Programming students’ mean academic achievement scores

were 31.17 for the OLM group and 29.87 for the OSLM group in the pre-test, which

means that they had some prior knowledge about Java Programming before the treat-

ment. In the Database Management course, the students’ mean academic achievement

scores were 11.67 for the OLM group and 12.26 for the OSLM group in the pre-test,

which indicate that most of the students had no prior pertinent knowledge and only a

few of them had a small amount of prior topic knowledge. If the level of preliminary in-

formation is so low that a student will not even try to answer the test questions, it is

not possible for him/her to be overconfident regarding those questions. In conclusion,

while the students’ KMA increased in both groups, we assessed that these increases

were not significant in the Database Management course study because these students’

average preliminary topic knowledge was very meager.
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Our results support prior studies, which also show some positive results of OLM on

students’ self-assessments. For example, Mitrovic and Martin (2002) analyzed the im-

pact of OLM on learners’ self-assessments in terms of the number of abandoned prob-

lems in their system and the reasons for abandoning the problems. They assigned

students to two versions of their constraint-based tutor, both with and without OLM.

They split each group into two subgroups according to their knowledge levels. The

findings were that learners who had a high level of knowledge in the experimental

group abandoned significantly fewer problems than those in the control group. Regard-

ing the reason for abandoning the problems, the students in the control group (espe-

cially those who had a high level of knowledge) said the problems were too easy (they

stated this more often than students in the experimental group); however, their logs

were generally not consistent with this reason. The researchers interpreted this as evi-

dence that OLM can help students with higher levels of knowledge to complete prob-

lems and evaluate themselves more accurately. Similarly, Kerly, Ellis, and Bull (2008)

designed and evaluated their CALMsystem with an open learner model. Students were

asked to rate their confidence at one of four levels (low, moderate, good, or high) for

each of the topics in the system. The OLM presented students with both the system’s

belief about their level of topic knowledge and their own confidence ratings. One of the

versions of the CALMsystem included OLM, while the other version included OLM

and an additional chatbot. If the learner’s confidence rating and the system’s estimation

were different, the chatbot was used for negotiation. The study revealed that mean self-

assessment errors were reduced for the learners in both versions of the CALMsystem.

Our previous study results (Somyürek & Brusilovsky, 2015) also demonstrate that

OLM/OSLM interfaces help to improve students’ self-assessment skills. We used the

Mastery Grids system and assigned students to two versions with OLM and OSLM. In

pre- and post-tests, we asked the students to check “Yes” or “No” for each item in the

tests to record whether they were confident that their answer was correct. Using their

confidence data and their performance for each question, we computed several self-

assessment metrics, such as total correct assessments, correctness ratio, and incorrect-

ness ratio. According to the results, the metrics were higher in the post-test than in the

pre-test, which indicates an improvement in the accuracy of the students’ self-assessments.

Although the results of these three studies are consistent with our present results, the meas-

urement method (KMA) of the present study differs from these earlier studies.

We also obtained evidence that studying with an OSLM interface improves students’

awareness about their relative knowledge assessment, which was expected. In both case

studies, we found that there were no significant differences between the students’ post-

average actual and estimated percentiles for the OSLM group, in which the students

could see the other students’ knowledge levels and their own position within the class.

We also found that studying with the traditional OLM-only interface is not sufficient

to develop the students’ relative knowledge assessment abilities. This result is both

novel (because the effects of OSLM have not been deeply explored in previous studies)

and practically valuable because it shows that an OSLM interface can provide import-

ant information to help learners assess their relative levels of knowledge in a class. This

result also supports the main principle of the Social Comparison Theory, which states

the importance of social comparison to help people evaluate their abilities and reduce

uncertainty (Buunk & Gibbons, 2007). Though an objective knowledge assessment
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criterion is most important for correct self-evaluation, it does not provide as much “get

ahead” impetus as social comparisons with peers. These comparisons are valuable for

people to understand whether they are superior or inferior in relation to others because

people define “superior” in comparative terms. As a result, this information may be

critical to goal setting, which can lead to self-enhancement (Collins, 1996). Regarding

the value of social comparisons in an educational context, our results demonstrate that

the OSLM interface seems to improve students’ relative knowledge monitoring abilities.

In study 2, because the students’ pre-test scores were clustered at certain points and

did not show a wide distribution, we examined “better-than-average” phenomena to

add further analysis for this case. The “better-than-average” effect is an important indi-

cator of the overestimation of one’s own standing. According to the literature, most

people believe even that though their performance is not so good, they are still better

than the median (Moore & Healy, 2008). But the literature also emphasizes that this ef-

fect is limited to easy tasks; for difficult tasks, the effect may be reversed (Kruger,

1999). In our results, when the students’ prior knowledge was very low, no “better-

than-average” effect was found.

Finally, we obtained evidence that the students’ academic achievement scores are

correlated with their knowledge monitoring abilities. Better learners (i.e., those with a

higher academic achievement scores in the post-test) also seem to have better meta-

cognitive skills (i.e., their absolute and relative knowledge assessments). Similar re-

sults that indicate a relationship between the participants’ knowledge monitoring

skills and academic achievement scores were also reported in several earlier studies

(Kruger & Dunning, 1999; Somyürek & Çelik, 2018; Somyürek & Brusilovsky, 2015;

Isaacson & Fujita, 2006). We would like to interpret this result together with our

other two results to compare with previous studies. Prior studies have reported rela-

tionships between social comparisons, self-assessment, self-regulation, and academic

performance. Festinger (1954) proposed that the most accurate evaluation of one’s

abilities may be gained by making social comparisons with a similar target. Wheeler,

Martin, and Suls (1997) developed a model to show how people use social compari-

sons to understand whether they might successfully accomplish a task. According to

their model, people can predict their capability to succeed in any specific task if they

know the performance of a similar individual as well as their own past experience,

whether or not this experience reflects their maximum effort and specifically their

performance-related attributes. Thus, social comparisons can improve peoples’ self-

assessments and can increase learning through self-regulation. Self-assessment is a

self-regulatory strategy; also, self-regulation and academic performance are positively

influenced by self-assessment (Panadero, Jonsson, & Botella, 2017). Several literature

reviews and meta-analysis studies have demonstrated that self-regulation has a posi-

tive influence on academic performance (Panadero, 2017; Richardson, Abraham, &

Bond, 2012). Thus, OSM and OSLM interfaces may be used to increase learning, due

to their positive effects on learners’ knowledge monitoring abilities. However, because

the relationships between self-assessment, self-regulation, and academic performance

are considered both reciprocal and intricate (Panadero, Jonsson, & Botella, 2017), the

opposite may also be true. Because the students’ Java and SQL knowledge increased

in our post-tests, this improvement might have supported their knowledge monitor-

ing abilities. In other words, the improvement effect may not be associated only with
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the use of the OLM/OSLM system, but also with learning the content. We need to

underline that these are cumulative effects of learning the content and using the

systems.

The study’s limitations and recommendations
The first limitation of this study is that the results were obtained from the cumulative

effects of learning the content and using the systems with the OLM and OSLM inter-

faces. Considering this important limitation, this study could be repeated with an extra

control group that would use the e-learning system without the OLM/OSLM features.

In this way, the effects on the control group (only learning the content) and the experi-

mental groups (learning the content and using the systems) could be compared in fu-

ture studies. Unfortunately, it still would be impossible to remove the effects of OSM

and OSLM influence on self-regulation or academic performance, or their effects on

knowledge monitoring skills.

From a methodological point of view, this study includes other important limita-

tions associated with the samples. The sample sizes were not very large in either

of the two studies, and in the second study, the numbers of students in the OLM

and OSLM groups were not balanced. Sample size is closely related to the power

of the study, which refers to its ability to detect an effect. Interpretation of results

is also more difficult in studies including small samples because only large sample

studies can produce precise results. Therefore, when examining the results of this

study, it should be taken into account that they were obtained from a relatively

small sample. Another problem is the unbalanced sample sizes in our study 2. In

the beginning of that study, we used different sections of the same Database Man-

agement course, and the numbers and other preconditions were very similar in

both groups. However, due to the social features of the OSLM interface, the stu-

dents in that group were more engaged, which we discovered from their answers

in the student questionnaires and their usage data. In other words, since more stu-

dents preferred not to use the e-learning system in the OLM group, we had more

missing data, which resulted in imbalances. Because the missing data was com-

pletely random, we still conducted our analysis and were able to analyze the data

of 12 students in the OLM group and 31 students in the OSLM group. We also

did not find any significant differences between the OLM and OSLM groups’ abso-

lute knowledge monitoring abilities in study 2. The numbers in that sample also

may have led to these insignificant results. So, we suggest using larger sample sizes

and more balanced groups for future studies.

The following suggestions may be additionally useful to other researchers and

practitioners in the field of e-learning. The OLM features in this study show the

progress of learners in two topics within a Computer Science context, Database

Management and Java Programming. Each topic includes questions and work ex-

amples. The OLM displays the mastery levels of the students regarding the con-

tent. Visualizations are provided for the topics, each example, and each question.

Students can also view their progress in the form of a percentile for each topic by

mousing over the grid cells. The color of a cell presents the student’s activity and

mastery level. Darker green indicates more progress in a scheme ranging from grey

to green. In this context, these OLM features can help to improve the learners’
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absolute knowledge monitoring ability, especially in cases like study 1. Thus, they

may be useful additions to e-learning systems, to provide students an opportunity

to observe their knowledge/performance and progress.

OSLM was added in the aggregated class model to display comparisons of a student’s

personal progress to the progress of peers in the class. The student’s progress level in

the aggregated class is similarly indicated with skill meters for each topic, example, and

question. Increasing personal progress in this case is indicated by darker blue color in

the grid, in a range from grey to blue. The comparison grids feature three color transi-

tions: darker green means the student has made more progress than the group, darker

blue means the class is ahead of the student, and grey means equal progress. Peer

models are shown in separate rows, in which the student can view her/his ranking by

clicking a button. In this context, OSLM can help to improve the students’ relative

knowledge monitoring ability. Adding these features to e-learning systems would pro-

vide students an opportunity to compare their progress with others.

In this study, Mastery Grids was used both for visualization of OLM/OSLM and navi-

gation. It is located on the main page, so that students may view their progress visuali-

zations each time they log in. On the one hand, this design leads the student to

constantly encounter progress information, but on the other hand, with this design, the

researchers cannot discern exactly why a student displayed the tool. S/he may have

viewed it only to navigate through the content and/or to view her/his own progress

and/or the progress of others. For this reason, a similar systems should be designed to

isolate and distinguish access for OLM and OSLM visualizations, as opposed to naviga-

tion uses.

In future studies, students’ knowledge monitoring abilities can be assessed through

simple pre- and post-test questions, as in this study. However, confidence data could

be collected every time the students answer questions within the system. This more fre-

quent data recording would enable the collection of more data and thus a more de-

tailed examination of a student’s knowledge monitoring ability development

throughout the learning process.

We discussed the limitations of KMA measurement related to the students’ prior

knowledge in the context of study 2. As we stated before, if they possess no pre-

liminary information or if that information is meager, KMA measurement cannot

be used effectively to discern the students’ knowledge monitoring ability. Another

important limitation about KMA measurement is that it can only be used with

questions that ask respondents to choose from or to write from a limited set of

possible answers. In its original formulation, KMA works for closed-ended ques-

tions that require writing short answers, such as the result of a programming code,

or selecting the correct option among multiple choices. However, the revised ver-

sion of KMA assessment developed by Gama (2004) provides a solution that allows

questions with longer, free-form answers. This expanded version of KMA measure-

ment permits the use of open-ended questions because the student can both par-

tially solve the problem and evaluate their performance as “partially correct.” In

this revised formulation, the students’ answers are grouped into three categories—

correct, incorrect, or partially correct—rather than only correct or incorrect. Simi-

larly, the students’ confidence in solving a problem may be recorded in the same

three categories. By using a third value to represent an intermediary state, it is
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possible to use different kinds of questions. Using other metrics such as overesti-

mation or overconfidence (Moore and Healy, 2008), which are studied in judgment

and decision-making research, may provide yet another solution regarding longer

and/or higher cognitive level questions. Researchers should plan what type of ques-

tions they need to ask as well as what is the best metric to assess knowledge mon-

itoring with the selected question types.
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