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Abstract
The present study focuses on the integration of an automatic question generation
(AQG) system and a computerised adaptive test (CAT). We conducted two
experiments. In the first experiment, we administered sets of questions to English
learners to gather their responses. We further used their responses in the second
experiment, which is a simulation-based experiment of the AQG and CAT integration.
We proposed a method to integrate them with a predetermined item difficulty that
enables to integrate AQG and CAT without administering the items in a pretesting. The
result showed that all CAT simulations performed better than the baseline, a linear test,
in estimating the test taker’s true proficiency.

Keywords: Automatic question generation, Computerised adaptive test, English
vocabulary question, Multiple-choice question

Introduction
One of the prominent research in the computer-assisted language testing field is an effec-
tive measurement of the test taker’s proficiency. Computerised adaptive testing (CAT)
has been studied as a solution to this, which is a method of testing where the test is
adjusted according to the test taker’s proficiency. CAT aims at a precise and reliable
measure of test taker’s proficiency by presenting items1 that are appropriate to their
proficiency (van der Linden and Glas 2000). For example, a high-proficiency test taker
would receive items that are more difficult compared to low-proficiency test takers.
That way, the test taker would not be frustrated by questions that are too difficult or
too easy for them. Therefore, CAT leads to a more precise measurement of their pro-
ficiency. CAT evaluates the test taker’s proficiency after the response of each item and
updates the estimated proficiency to select the next item to present to the test taker.
This can also subside the drawback of the conventional linear test where all test tak-
ers answer the same set of items in the same order regardless of the difference in their
proficiency.
However, successful implementation of CAT often relies on a large collection of

previously administered items called the item bank. The item bank consists of items

1Hereafter, we use the term ‘item’ interchangeably with ‘question’ and ‘question item’.
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with their item parameters2 estimated from the test taker responses in a pretesting
phase. Estimating the item parameters is called item calibration. As a result, CAT
leads to a considerable cost in the item development, pretesting, and item calibra-
tion processes (Veldkamp and Matteucci 2013). In addition, conducting a pretesting
poses a risk of exposing the items before they are used in a real test. Integrat-
ing CAT with an automatic question generation (AQG) could possibly mitigate the
problems of costly item development in CAT. AQG enables a generation of many
questions with their item difficulty to make it possible to eliminate the pretesting
phase.
However, attempts in the integration of CAT and AQG are scarce. One early attempt

by Bejar et al. (2002) assessed the feasibility of an approach to adaptive testing based
on item models. They selected several item models and used them to produce isomor-
phic items. They further calibrated the item models and applied the model calibration
to all instances of the model. Another study by Hoshino (2009) developed an item
difficulty predictor using machine learning and applied the predictor to assign the
difficulty to newly generated items. In those related studies, the items still need to
be calibrated by administering the items to test takers, either to obtain the model
calibration or to train the difficulty predictor. Consequently, the cost of the cali-
bration process could not be avoided. Unlike previous research, the present study
discusses the possibility of integrating CAT with AQG without any item calibration
process. It means that the item parameter is estimated during the question generation
process.
To sum up, the contributions of this study is proposing the AQG and CAT integra-

tion that makes item calibration unnecessary. Our proposal estimates item difficulty
while generating the questions based on their components. We validate the feasibil-
ity of the integration through a simulation-based experiment using data collected by
administering the generated items to English learners. In the research and practice of
technology-enhanced environment, this study contributes to the development of an effec-
tive measurement of language learner’s proficiency using CAT. This study also potentially
mitigates the problem of costly item development and pretesting by integrating the
CAT with an AQG, which can produce as many questions as possible in a relatively
short time.
In this study, we conducted a simulation-based evaluation of AQG and CAT integra-

tion. Thus, the main research question is on the performance of the proposed method
(CAT using predetermined item difficulty) compared to the common practice of CAT
(using the estimated item difficulty from test taker responses) and linear test. To compare
the performance, we plan to use the mean squared error (MSE) between the true profi-
ciency of the test takers and the proficiency estimated by the simulations as an evaluation
metric.
The remainder of this paper is organised as follows. The next section presents a brief

overview of the related work, including the AQG system, item difficulty control and CAT.
Then, we present the evaluation experiments including the description of the proposed
methods and their results and discussions. Finally, we conclude the paper and provide
future research directions.

2For instance, item difficulty, item discrimination, etc.
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Related work
Automatic question generation (AQG)

There has been a considerable number of studies on automatic question generation, par-
ticularly for the English test purposes (Brown et al. 2005; Lin et al. 2007; Smith et al. 2010;
Sakaguchi et al. 2013; Susanti et al. 2015; Satria and Tokunaga 2017). Multiple-choice
question, in particular, has received extra attention because it appears in standard-
ised English proficiency tests such as TOEFL, TOEIC and IELTS. In the present study,
we focus on multiple-choice vocabulary question since this type is the majority in the
aforementioned standardised tests.
Figure 1 shows an example of the vocabulary questions used in the present study. They

are modelled after the TOEFL vocabulary question. A question is composed of four com-
ponents: (1) a target word which is the word being tested in the question, (2) a reading
passage where the target word appears, (3) a correct answer and (4) distractors. This type
of questions intends to measure a test taker’s ability to understand a meaning of the tar-
get word when it is used in a particular context provided by the reading passage. There is
only one correct answer among the four options.
We implemented the automatic generation system introduced by Susanti et al. (2015) to

generate vocabulary questions as shown in Fig. 1. Given a target word and one of its word
senses (meaning) as the input, the process of generating a question starts with retriev-
ing a reading passage containing the target word with the given sense from the Internet.
The retrieved reading passage and a lexical dictionary are utilised to generate the correct
answer and distractors.

Item difficulty control

In the AQG system, item difficulty can be controlled during the process of generating
each component. For instance, the AQG system retrieves an easy reading passage for an

Fig. 1 Four components in a multiple-choice question asking for closest-in-meaning of a word (source:
TOEFL iBT question from past test, taken from the official website, https://www.ets.org)

https://www.ets.org
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easy item, whereas it retrieves a difficult reading passage for a difficult item. Susanti et al.
(2017) introduced a method to control the difficulty of an item based on the characteris-
tics of the question components (reading passage, correct answer and distractors) during
the item generation. Susanti et al. (2017) determined three factors including the reading
passage difficulty, similarity between the correct answer and distractors, and the word
difficulty level of the distractors.
Following the work on item difficulty control proposed by Susanti et al. (2017), we gen-

erated questions with various level of difficulty with respect to the following three factors:
(1) target word difficulty (TWD), (2) similarity between correct answer and distractors
(SIM) and (3) distractor’s word difficulty level (DWD). For each of these factors, we define
two levels, high and low, as shown in Table 1.
Susanti et al. (2017) reported that the reading passage difficulty (RPD) did not affect the

item difficulty since most of the test takers might not read the reading passage to answer
the questions. Therefore, instead of RPD, we utilise the target word difficulty (TWD) in
the present study. We leveraged the JACET 8000 word difficulty list (Ishikawa et al. 2003)
for the TWD. In this study, we set the JACET 8000 level less than or equal to 3 as low and
greater than or equal to 4 as high considering the target word difficulty distribution in our
list of target words. As with the TWD, we used JACET 8000 for DWD where the three
candidates with the lowest level are adopted as the low-level distractors, and the three
highest level candidates are adopted as the high-level distractors. By setting the two levels,
high and low, we can easily define each level like this: a fixed number of highest-scored
candidates as high-level distractors, and a fixed number of lowest-scored candidates as
low-level distractors. This simple definition of low level and high level for every factor is
the reason why we considered only two levels in this study.
We employed the word embedding technique, GloVe (Pennington et al. 2014), for calcu-

lating the semantic similarity between the correct answer and distractors (SIM), following
the implementation of Susanti et al. (2017). The three candidates with the lowest simi-
larity are chosen for the low-level distractors, and the three candidates with the highest
similarity are chosen as the high-level distractors.

Computerised adaptive test

In computerised adaptive test (CAT), emerged in the 1970s, items are chosen to present
to examinees based on their previous responses. Initially, this concept was called tailored
testing by Lord et al. (1968). When computer technology facilitated implementation of
this concept, the name was changed into computerised adaptive testing. Unlike the con-
ventional paper-and-pencil test (i.e. linear test), CAT prepares different tests for different
test takers.
The procedure of administering CAT is illustrated in Fig. 2. The test starts with setting

the initial proficiency of a test taker. Then, the CAT selects the first item according to
the initial proficiency. The items are selected from the item bank, which is a collection of

Table 1 Factors to control the item difficulty

ID Factor Level

TWD Target word difficulty Low High

SIM Semantic similarity between the correct answer and the distractor Low High

DWD Distractor word difficulty level Low High
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Fig. 2 Overview of CAT

items. The proficiency of the test taker is then re-estimated concerning their response to
the first item. This estimation is then used to determine the next item. The cycle of the
process continues until it reaches a certain stopping criterion. The following is a detailed
description of the four main steps of CAT, summarised from Davey and Pitoniak (2006).
1. Initial proficiency (θ0) estimation. Ideally, the closer initial proficiency is to the true

proficiency, the faster it converges to the test taker’s true proficiency value. The initial
proficiency may be set in various ways, including (1) a standard value for all test takers
and (2) a random value according to a probability distribution.
2. Item selection. An item is selected based on the current estimation of the test taker’s

proficiency. We listed several strategies in the following.

• Maximum information selection (Weiss 1974): it selects an item that maximises the
information gain. This method guarantees a faster decrease of standard error, but it
can cause overexposure of items in the bank. In one-parameter models, an item is
most informative when its difficulty parameter is close to the test taker’s proficiency
(matched difficulty). This is the oldest and widely used item selection method.

• Stratified selection (Chang and Ying 1999): the item selection begins by stratifying the
item bank according to item discrimination. More informative (more discriminating)
items are placed at the bottom stratum and less informative item are placed at the
top. Selection is made from more discriminating stratum toward the middle of the
test and changed into the selection from the most discriminating stratum by the end
of the test. Within each stratum, items are selected by matched difficulty.
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• Cluster selection (De Rizzo Meneghetti and Thomaz Aquino Junior 2017): the item
selection begins by clustering the items according to their parameter values and
selects the items from the cluster that contains either the most informative
(discriminating) item or item with the highest average information gain.

3. Proficiency (θ ) re-estimation. The test taker’s proficiency is re-estimated after the
response to the administered item. This proficiency reflects the test taker’s proficiency up
to that item in the test. Common methods for the proficiency re-estimation include (1)
maximum-likelihood estimation and (2) Bayesian estimation which uses prior knowledge
of the distributions of the test taker’s estimated proficiencies.
4. Stopping criterion. In CAT, a test ends when it reaches a predefined threshold of the

standard error or when a fixed number of items is administered.

Evaluation experiment
In this study, we conducted a simulation-based evaluation of AQG and CAT integration.
First, we asked the English learners to complete sets of questions with various difficulty
generated in advance by the automatic question generated system equipped with a dif-
ficulty control mechanism. Next, we used their responses on every item to conduct the
CAT simulation. Therefore, the evaluation consists of two experiments: (1) experiment 1:
gathering the response data and (2) experiment 2: CAT simulation, as explained in the
following.

Experiment 1: gathering response data

The research question in experiment 1 is whether the automatically generated question
items measure test taker proficiency. In this experiment, we generated the question items
using the AQG system explained in the ‘Automatic question generation (AQG)’ section
and administered them to the English learners.

Experimental design

Questions We created all eight possible combinations of the three factors affecting diffi-
culty (Table 1) with two levels each, as shown in Table 2. We prepared 24 question items
for each combination in Table 2, generating 192 question items in total. Note that we
used 192 different target words for these question items. We divided the 192 items into
six question sets (QS_A to QS_F), taking into account the balance of the combinations
and parts-of-speech of the target words. Our participants are 116 first-year Japanese high
school students, 27 female and 89 male students. We divided them into six groups (C_A
to C_F) based on their class at the high school. Each group worked on each question set.
One question set consists of 32 question items with four items for each combination. The
target words were selected from the Oxford3000 words3 and GSL4 word lists.

Experimental procedure We conducted the experiment as an online test. The partici-
pant took the test using computer. Each group worked on the assigned question set. The
test was 30 min long. All participants in each group worked on the question set together
in the same classroom.

3https://www.oxfordlearnersdictionaries.com/wordlist/english/oxford3000/
4http://www.eapfoundation.com/vocab/general/gsl/alphabetical/

https://www.oxfordlearnersdictionaries.com/wordlist/english/oxford3000/
http://www.eapfoundation.com/vocab/general/gsl/alphabetical/
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Table 2 Combinations of three factors

Combination
Factor

RPD SIM DWD

LLL Low Low Low

LLH Low Low High

LHL Low High Low

LHH Low High High

HLL High Low Low

HLH High Low High

HHL High High Low

HHH High High High

Result and discussion

We verified whether the automatically generated question items measure test taker pro-
ficiency by calculating the correlation of the test taker scores on the test with their real
latest term exam scores.We have several reasons why we used the latest term exam scores
as the reference for participant English proficiency.

• It was the most recent English exam that the participants took.
• Since they are high school students, it was the only score that all of them have. Some

students have scores of English standardised tests such as TOEIC or TOEFL, but not
all of them have.

We also analysed the item difficulty of the generated question items since it will be used
in experiment 2.

Correlation of the test taker’s scores We have 22,272 responses in total for all ques-
tion items (116 participants worked on 192 question items). We calculated the test taker’s
score of our experiment by dividing the number of their correct responses by the total
number of questions in the question set, i.e. 32. The overall correlation between scores
of all participants is 0.384, and the Cronbach alpha value is 0.515. Table 3 shows Pear-
son correlation coefficients between the student test scores and their scores on the latest
English term exam in each group.
As we can see in Table 3, we do not have strong correlations between the test taker’s

score of the experiment and their term exam scores in all classes. The latest term exam
includes different types of questions (reading, grammar, vocabulary, etc.) to assess overall
English skill, while our test focuses on vocabulary. This would be the main reason for
the low correlation scores. The correlation is particularly low in class B, in which the

Table 3 Correlation of test taker’s scores in the experiment with their latest term exam scores

Question set Group Correlation coefficient No. of students

QS_A C_A .405∗ 21

QS_B C_B − .190 20

QS_C C_C .289 18

QS_D C_D .521∗ 19

QS_E C_E .579∗ 19

QS_F C_F .301 19

average .301 116

*Statistical significance at p < .05
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Table 4 Correlation of test taker’s scores (extreme cases removed)

Question set Group Correlation coefficient No. of students

QS_A C_A .486∗ 19

QS_B C_B .551∗ 15

QS_C C_C .471∗ 15

QS_D C_D .700∗ 14

QS_E C_E .641∗ 18

QS_F C_F .395 17

*Statistical significance at p < .05

correlation coefficient is negative. The error analysis in the class B data shows that there
are several extreme cases where the test takers with the high exam score did not perform
well in our experiment, and vice versa. Table 4 shows all correlation coefficients after we
remove in total 18 extreme cases from all groups (where the difference of the scores is
more than 30 points).

Estimating the item difficulty There are several ways of estimating item difficulty from
the test taker’s responses. In test theory such as Classical Test Theory (CTT) and Item
Response Theory (IRT), the difficulty is defined as the likelihood of correct responses, not
as the perceived difficulty nor necessary amount of effort (DeMars 2010). We calculated
the estimated item difficulty of all question items using both CTT and IRT (using R5

software and the lazyIRT package6). We found that the item difficulties estimated by CTT
(P) and IRT (b) are strongly correlated (average r = .825). Hence, for further analysis, we
use only the CTT difficulty (P). Table 5 presents the descriptive statistics of the estimated
item difficulties from CTT.

Analysis of variance on combinations The purpose of the analysis of variance
(ANOVA) is to see if the differences in the mean difficulty index between combinations
are significant. If they are different, it means that the item difficulty can be controlled
using the combination of the three factors.
Figure 3 shows the box plot of the average difficulty index P for each combination. The

box plot shows that the means (red circles) are different for each combination. However,
the difference varies greatly depending on the combinations. Hence, these differences
in means could have come about by chance. We performed a one-way ANOVA on the
combinations to see if the differences between them are statistically significant. We sub-
sequently looked at the p value of the ANOVA results to determine to what extent the
differences between the means are significant.
We performed the ANOVA on (1) the eight combinations shown in Table 2 and (2) four

regrouped combinations, as explained below.

• Eight combinations. The one-way ANOVAwas performed on the eight combinations,
yielding in a p value less than .01. This indicates that the mean differences in the
difficulty between the eight combinations are statistically significant at a significance
level of .01, suggesting that the three factors did affect the item difficulty.

5https://www.r-project.org
6http://www.ms.hum.titech.ac.jp/Rpackages.html

https://www.r-project.org
http://www.ms.hum.titech.ac.jp/Rpackages.html
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Table 5 Descriptive statistics of the estimated item difficulty

P(CTT)

QS_A QS_B QS_C QS_D QS_E QS_F

n 32 32 32 32 32 32

x̄ .507 .509 .460 .454 .507 .434

sd .091 .095 .083 .098 .089 .085

max .687 .687 .562 .625 .656 .594

min .375 .312 .219 .281 .312 .312

r with b (IRT) .789 .782 .830 .840 .891 .816

• Four regrouped combinations. We reduced the combinations into four groups based
on the number of ‘high’ factors: (1) H0 (LLL), (2) H1 (LHL, LLH, HLL), (3) H2
(LHH, HHL, HLH) and (4) H3 (HHH). The rationale behind this regrouped
combinations is that the combination with more ‘high’ factors are expected to be
more difficult than the one with fewer ‘high’ factors. The result of ANOVA shows
that the difficulty differences between these four new groups are statistically
significant (p value< .01). This indicates that setting the factors to high or low
influences the item difficulty; to be more concrete, the items with more ‘high’ factors
are more difficult than those with fewer ‘high’ factors. Therefore, we can control the
item difficulty by varying the investigated factors. Figure 4 shows the box plot of the
regrouped combinations.
We also conducted a post hoc test (TukeyHSD) at a 95% confidence level on the pairs
of the four regrouped combinations. Figure 5 shows the result that the mean
differences are statistically significant for four (H2-H0, H3-H0, H2-H1, H3-H1) out
of the six pairs.

Fig. 3 Box plot for the eight combinations
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Fig. 4 Box plot for four regrouped combinations

The correlation between the test taker scores in the experiment and their latest exam
scores (Table 3) shows that the automatically generated question items can measure the
proficiency of the test takers in every class except for one where the correlation is negative.
Thus, we have an affirmative answer to our research question. However, the correlation
is not so strong. Further investigation with more participants is necessary to reinforce the
answer to our research question.

Fig. 5 Post hoc result for four regrouped combinations
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In this study, we propose the use of predetermined item difficulty for conducting the
CAT simulation to demonstrate the feasibility of integrating AQGwith CATwithout item
calibration. Looking at the result of the ANOVA in the eight combinations (Fig. 3), even
when it yielded statistically significant mean differences, we are not sure how to interpret
the item difficulty into eight levels since we are not sure of the total order of the eight com-
binations. Whereas for the four regrouped combinations, we can make the order based
on the number of ‘high’ level factors, and the result also shows a statistically significant
result. Thus, we experiment on the predetermined item difficulty using the result of the
four regrouped combinations as explained in experiment 2.

Experiment 2: CAT simulation

The research question in experiment 2 is on the performance of the proposed method
(CAT using predetermined item difficulty) compared to the common practice of CAT
(using the estimated item difficulty from test taker responses).

Method: variation of item difficulty

To conduct an AQG-CAT integration simulation, we need three main elements: (1) items
with their item parameters, (2) test taker’s responses on every item and (3) test taker’s real
proficiency to calculate the error of the proficiency measurement.
For the elements (1) and (2), we use the result of experiment 1. In experiment 1, we

administered the machine-generated questions to 116 high school students as the test
takers. As a result, we obtained the test taker’s responses to 192 items. We use these
items as the element (1) and the test taker’s responses as the element (2). However, we
excluded the data from group C_B for experiment 2 since the correlation between test
takers’ scores on the experiment and their exam scores is negative, as explained in the
result and discussion of experiment 1. Hence, we used 160 items in total.
In this paper, we adopt a one-parameter logistic model which considers only the item

difficulty b (Appendix); thus, for element (1), we only need to define the item difficulty
for every item. Usually, item difficulty is estimated from the test taker’s responses. In this
study, we also use the item difficulty that is predetermined from the question compo-
nents. The predetermined item difficulty is calculated in advance without any test taker’s
response; it means we do not need to administer the item to the test takers beforehand.
Accordingly, we prepared the following variations of item difficulty including the gold

standard for the element (1).
a. EST item difficulty.This is the item difficulty estimated from the test taker’s responses

in experiment 1, which is a commonly used estimation in CAT. We can consider this
estimation as the gold standard. There are various ways to estimate the item difficulty
from the test taker’s responses, such as using CTT or IRT. For the CAT simulations, we
used the item difficulty estimated using CTT. Although most CATs are constructed with
IRT, according to Rudner (2002); Rudner and Guo (2011); Frick (1992), CATs can still be
constructed on the basis of classical test theory (CTT). In our research, we have tried con-
ducting the CAT simulation with the IRT scores. However, the result was not as stable as
using the CTT scores. Our small samples on calculating the IRT scores might have pre-
vented the item calibration process from working well. Besides, in our CAT simulation,
we have to normalise the score in the range 0–1. We decided to use the CTT scores since
they are already in that range.
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b. REG item difficulty. We calculate the item difficulty by using linear regression in
this variant. We controlled the item difficulty of the questions used in experiment 1 by
combining the three factors of question components: TWD, SIM and DWD. To apply the
linear regression, we normalise the numeric value for each factor, as follows.

• TWD: we use the target word difficulty level of JACET 8000, with normalisation into
range [0, 1].

• SIM: we use the average similarity score between the correct answer and distractors.
The similarity score, ranging over [0,1], is calculated with cosine similarity on the
GloVe word embedding.

• DWD: we use the average distractor word difficulty level of JACET 8000, with
normalisation into range [0, 1].

Using the above numeric values for each factor and the CTT-based item dif-
ficulty calculated from the test taker’s responses, we run a linear regression to
get the regression coefficients. We use the coefficients to calculate the predeter-
mined item difficulty for all items. This method is similar to the work done
by Hoshino (2009). However, the work by Hoshino (2009) used a binary clas-
sification approach where it can only classify the item difficulty into ‘easy’ and
‘difficult’.
c. ORD item difficulty. We represent the predetermined item difficulty by an ordinal

value from 1 to 4 in this variant, following the result of the analysis in experiment 1. In
experiment 1, we generated each item with one of the combinations of the three fac-
tors as listed in Table 2. Further analysis showed that we could group the items into
four difficulty levels based on the number of the ‘high’ factor in the combinations. The
result also showed that the items with more high factors are more difficult than those
with fewer high factors. The four groups are (1) H0: no high factor, (2) H1: only one
high factor, (3) H2: two high factors and (4) H3: all high factors. Figure 4 illustrates the
grouping.
We further represent the item difficulty of the items in each group with an ordinal value

from 1 (H0) to 4 (H3). Hence, the items in the same group are assigned the same value
representing the item difficulty.
d. AVG item difficulty. We replace the ordinal values of ORD with the average item

difficulty of the items in each group. We estimate the difficulty index for all items using
CTT and average them in each group to calculate the item difficulty of the group as shown
in Fig. 4. Since the item difficulty index increases as the item becomes easier, we invert
them for this variant. Thus, we have four average values, one for each group. Note that
the AVG item difficulty requires the test taker’s responses as the REG item difficulty; that
means a pretesting is necessary.
The AVG and REG item difficulty are included in the experiment to show the

feasibility of using predetermined item difficulty which are not calculated from test
taker responses as in the EST item difficulty. For example, in the case of the REG
item difficulty, we can set up the weight (coefficient) manually for every factor that
made up a question and create an item with its item difficulty calculated with the
weight.
Finally, we use the latest term exam scores of the test takers as their real proficiency, i.e.

the element (3).
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Experimental design

We conducted the simulation using a CAT simulation package named catsim developed
by De Rizzo Meneghetti and Thomaz Aquino Junior (2017) and adjusted it to our exper-
iment setting. Using the test taker’s responses collected in experiment 1, we conducted
both CAT and linear test simulations. We prepared the following simulation settings.
1. Linear test simulation (LIN_EST). In this setting, we simulate the linear

test as in experiment 1. We use the EST item difficulty as described in the
‘Method: variation of item difficulty’ section. We use the same order of items in the test
as in experiment 1. The test stops when 20 out of 32 items are administered (test size =
20). This setting serves as the baseline.
2. CAT simulation with EST item difficulty (CAT_EST). This is the CAT simulation

using the EST item difficulty. This setting serves as the gold standard because it simulates
the common setting of CAT. The test size for this simulation is 20.
3. Supervised CAT simulation. In this CAT simulation, we use the REG and

AVG item difficulties. These two item difficulties are not estimated directly from
the test taker’s responses using CTT nor IRT as opposed to the EST item dif-
ficulty. They are calculated from the test taker’s responses, as explained in the
‘Method: variation of item difficulty’ section; therefore, we call this simulation ‘supervised’.
We performed two supervised CAT simulations: with the REG item difficulty (CAT_REG)
andwith the AVG item difficulty (CAT_AVG). Tomake the evaluationmore reliable, cross-
validation is a commonly used validation technique for assessing the generalisation of a
method/ experiment in a supervised setting. In our experiment, we performed the cross-
validation by taking two ways of dividing data into the training and test data: the test
taker-based division and item-based division. By performing those two approaches, we
can investigate the model robustness against test taker variation and item variation.
(a) Test taker-based division. We conducted four-fold cross-validation (CV) by dividing

data regarding test takers, i.e. we divided the test takers into three quarters and one quar-
ter, and used the responses to each item by the three quarter test takers for training and
the rest for testing. The quarters were rotated four times. At each fold, we used the train-
ing data for calculating the average difficulty of each group in the CAT_AVG simulation
and the regression coefficients (the item difficulty regression model) for the CAT_REG

simulation. The average difficulty calculated in the training set was further used to con-
duct the CAT_AVG simulation which is performed only on the data in the test sets. The
test size for this simulation is 20. (b) Item-based division. In this setting, instead of divid-
ing by the responses, we divide the data based on the items. We conducted two-fold
cross-validation by dividing data regarding items, i.e. for CAT_AVG, we split the 32 items
in half, 16 items, in each question set and used the responses for one of them as train-
ing and the rest for testing and vice versa. At each fold, we used the training data for
calculating the average difficulty of each group in the CAT_AVG. For CAT_REG, we con-
ducted the two-fold cross-validation on all items (total 160 items). At each fold, we used
the training data for calculating the regression coefficients for the CAT_REG simulation.
The CAT simulation is then performed only on the data in the test set. The test size for
both CAT_AVG and CAT_REG in this item-based division is 10.
4. Unsupervised CAT simulation. In this simulation, we performed the CAT simulation

with the ORD item difficulty (CAT_ORD). Since we do not use any test taker’s responses
to calculate the item difficulty, we call this simulation ‘unsupervised’. As explained in the
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‘Method: variation of item difficulty’ section, we represent the ORD item difficulty by an
ordinal value from 1 to 4. The test size is 20.
For the CAT simulation, we initialised the proficiency of the test takers to a standard

fixed value for all test takers (initial proficiency = 0). We used the maximum informa-
tion selection strategy for the item selection and the maximum-likelihood estimation for
the proficiency re-estimation. We provide the summary of the abbreviation of the item
difficulties and simulations used in the experiment in Table 6 for readability.

Result and discussion

We conducted seven CAT simulations including one linear test simulation as the
baseline, one gold standard CAT simulation and five CAT simulations. We com-
pared the result of all simulations based on the mean squared error (MSE) cal-
culated between the estimated proficiency at the end of each simulation and the
proficiency of the test takers based on their latest term exam scores. Table 7 sum-
marises the result. The smaller MSE indicates the better simulation because it means
that the estimated item difficulty converges closer to the true proficiency of the test
takers.
The LIN_EST simulation, corresponding to a linear test, produced the biggest MSE

(.195) compared to the CAT simulations. This proves the effectiveness of an adaptive test
to measure the test taker proficiency. We randomly sampled a single test taker in our
experiment to show his progress during the test in each simulation. Figure 6 illustrates
the test progress of the test taker in the LIN_EST simulation. The x-axis denotes the
number of items, and the y-axis denotes the estimated item difficulty (orange line), the
real proficiency of the test taker (black line), and the estimated proficiency of the test
taker by the simulation (blue line). The LIN_EST simulation presents the test taker with
items in the order of the test in experiment 1 regardless of the test taker’s proficiency. The
top-side graph in Fig. 6 reflects this fact showing a heavy up and down of the estimated
values.
Among the CAT simulations, the CAT_EST simulation gave the smallest MSE (.047).

This simulation is the gold standard of CAT because it uses the item difficulty cali-
brated from the test taker’s responses. The bottom-side graph in Fig. 6 illustrates the test
progress of the same test taker in the CAT_EST simulation. Unlike the LIN_EST simula-
tion, the estimated item difficulty (orange line) and the estimated proficiency (blue line)
go close to each other during the test progress.

Table 6 Summary of abbreviations

Abbreviation Summary

Item difficulty
EST Item difficulty estimated from test taker‘s scores
REG ltem difficulty estimated using linear regression
ORD Item difficulty using an ordinal value 1 4
AVG Item difficulty using average item difficulties of items in each group

CAT simulations
LIN_EST Simulation of the linear test, using EST item difficulty
CAT_EST Simulation of CAT, using EST item difficulty (gold standard)
CAT_REG Simulation of the CAT, using REG item difficulty
CAT_AVG Simulation of the CAT, using AVG item difficulty
CAT_ORD Simulation of CAT, using ORD item difficulty
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Table 7Mean squared error (MSE) of the CAT simulations

Test taker-based CV Item-based CV

Group LIN_EST CAT_EST CAT_REG CAT_AVG CAT_REG CAT_AVG CAT_ORD

C_A 0.142 0.032 0.044 0.065 0.062 0.157 0.044

C_C 0.199 0.072 0.058 0.092 0.068 0.163 0.060

C_D 0.156 0.060 0.055 0.040 0.051 0.052 0.054

C_E 0.152 0.024 0.055 0.062 0.069 0.089 0.050

C_F 0.328 0.047 0.095 0.060 0.090 0.100 0.097

avg 0.195 0.047 0.061 0.064 0.068 0.112 0.061

The CAT_REG simulation uses the predetermined item difficulty estimated by the linear
regression. Therefore, each item has a different value of item difficulty depending on its
question component factors. It means that this simulation adopts fine-grained item diffi-
culty values. In the item selection step of CAT, it tries to present the test takers with an
item with a closest item difficulty value to the test takers’ current proficiency. Thus, if the
item difficulty has fine-grained values, CAT could find amore appropriate item to present
to the test taker. That being the case, the CAT_REG simulation is quite close to the gold
standard, i.e. the CAT_EST simulation. In both test taker-based CV and item-based CV,
the MSE of the CAT_REG simulation is bigger than that of the CAT_EST simulation (the
gold standard), but their difference is smaller compared to that of the LIN_EST simula-
tion (the baseline). This result is encouraging because the CAT_REG simulation using the
predetermined item difficulty shows the smaller MSE compared to the baseline. Figure 7
shows the test progress of the same test taker in the CAT_REG simulation.
We calculated the correlation between the estimated item difficulty from the test taker’s

responses (used in the gold standard and the baseline simulation) and the predetermined
item difficulty (used in the CAT_REG simulation). This yielded correlation coefficient r =
.37 (statistically significant with p < .01), which is considered as a low correlation. How-
ever, this result is encouraging because it shows that even when the predetermined item
difficulty does not strongly correlate with the estimated item difficulty, it still shows an
acceptable performance when they are incorporated into CAT. This is supported by a
smaller MSE of the CAT_REG simulation compared to the baseline LIN_EST simulation,
as shown in Table 7. Figure 8 shows a scatter plot between the two item difficulties.
The CAT_ORD and CAT_AVG simulations use only four values of item difficulty. They

use coarse-grained item difficulty values in this respect. Figure 9 illustrates the test
progress of the same test taker in the CAT_ORD and CAT_AVG simulations. TheCAT_AVG
simulation gave a bigger MSE than the gold standard and a smaller MSE than the base-
line. However, compared to the CAT_REG simulation, the CAT_AVG simulation yielded a
slightly bigger MSE in the test taker-based CV. In the item-based CV, it yielded an MSE
almost doubled that of the MSE of the CAT_REG simulation. We can explain this differ-
ence by the difference of granularity of difficulty values, i.e. four values vs. continuous real
values.
The CAT_ORD simulation is unsupervised; it uses the predetermined ORD item dif-

ficulty that is calculated from question components without using any test taker’s
responses. It produced the same MSE (.061) as the CAT_REG simulation. As the same
as the supervised CAT simulations (CAT_REG and CAT_AVG), it performed better com-
pared to the baseline, the LIN_EST simulation (MSE = .195). It produced a bigger MSE
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Fig. 6 Test progress of a test taker (top: LIN_EST simulation, the baseline; bottom: CAT_EST simulation,
the gold standard)
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Fig. 7 Test progress of a test taker in CAT_REG simulation

than the gold standard, but the difference is not that great. This result is encouraging for
incorporating a predetermined item difficulty into CAT since it indicates that even only
with four levels of the predetermined item difficulty, it performed relatively better than
the linear test.

CAT simulation using the proficiency from CAT_EST In the preceding discussion,
CAT_EST is used as the gold standard of CAT because it uses the item difficulty cali-

Fig. 8 Scatter plot between the estimated (EST item difficulty) and predetermined item difficulty (REG item
difficulty)
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Fig. 9 Test progress of a test taker (top: CAT CAT_AVG simulation; bottom: CAT CAT_ORD simulation)
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brated from the test taker’s responses. Based on the item parameters and responses of
the test takers, the simulating data sets with true values of item difficulties and profi-
ciencies can be generated. The mean squared error (MSE) can also be calculated using
the proficiencies (true values) generated by CAT_EST instead of the latest term exam
scores. The result showed the same tendencies with the MSE calculated using the lat-
est term exam scores, i.e. the CAT simulations gave smaller MSE compared to the
linear test. This result affirmed an encouraging result where even under low correla-
tion of test taker scores and their real proficiencies, the CAT simulations still performs
better compared to the linear test. Therefore, the integration of AQG and CAT, espe-
cially when using the predeterminated item difficulty, can alleviate the problems of AQG
and CAT.

Conclusions
The present study introduced the integration of an automatic question generation (AQG)
system with a computerised adaptive test (CAT). Integrating CAT with AQG could mit-
igate the problems of costly item development in CAT. Generating many questions and
determining their item difficulty are possible with AQG, thus eliminating the needs of
item pretesting.
We conducted two experiments. In the first experiment, we administered the auto-

matically generated vocabulary questions to English learners. This experiment aimed at
collecting the test taker’s responses to the questions, which are indispensable for CAT.
The collected data was used in the second experiment.
In the second experiment, we conducted the simulation using three types of item

difficulty: one estimated from the test taker’s responses of the first experiment as
a gold standard, and predetermined item difficulties, one by the supervised and
another by the unsupervised methods. The supervised predetermined item diffi-
culty uses the test taker’s responses to estimate the parameters for calculating item
difficulty. Using the unsupervised predetermined item difficulty is our proposal in
which we calculate the item difficulty while generating the question items with-
out the test taker’s responses. Therefore, our proposed method does not require
pretesting.
We evaluated the performance of the simulations by looking at the mean squared

error (MSE) between the true proficiency of the test takers and the proficiency esti-
mated by each simulation. The result shows that all proposed CAT simulations using the
predetermined item difficulty (CAT_REG, CAT_AVG and CAT_ORD) produced smaller
MSEs than the baseline LIN_EST simulation. Thus, we conclude that the integration
of AQG and CAT with predetermined item difficulty is feasible from the experimental
results.
Nevertheless, in this experiment, the predetermined item difficulty CAT_REG and

CAT_AVG still uses the result of a pretesting, while CAT_ORD is a very simple way to
define the item difficulty. Re-investigation and study on how to predetermine the item
difficulty are necessary.
Our future research directions include evaluating the integration of AQG with CAT in

a real setting.

Appendix
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Table 8 Sample b values ( class A )

Item_ID b (IRT) b (CTT) b (AVG)

Q1 − 5.6271468 0.047619048 0.35

Q2 5.5077315 0.714285714 0.46

Q3 4.8854019 0.857142857 0.69

Q4 0.6529363 0.571428571 0.58

Q5 − 1.8483412 0.095238095 0.58

Q6 2.4474034 0.80952381 0.46

Q7 − 5.4746724 0.285714286 0.46

Q8 − 0.8790274 0.380952381 0.58

Q9 1.0941578 0.523809524 0.46

Q10 1.3606067 0.80952381 0.69

Q11 1.1547282 0.666666667 0.58

Q12 0.8300671 0.80952381 0.46

Q13 − 0.8505837 0.285714286 0.58

Q14 − 20 0.047619048 0.35

Q15 − 20 0 0.58

Q16 1.2292055 0.714285714 0.46

Q17 0.1241581 0.523809524 0.58

Q18 − 3.3793825 0.095238095 0.46

Q19 2.0316962 0.761904762 0.46

Q20 3.54614 0.619047619 0.58

Q21 0.5270345 0.619047619 0.35

Q22 − 4.1061856 0.333333333 0.69

Q23 − 1.1511618 0.19047619 0.46

Q24 6.1198977 0.80952381 0.58

Q25 4.1147967 0.619047619 0.46

Q26 − 0.8978591 0.142857143 0.46

Q27 12.5721081 0.80952381 0.35

Q28 5.227762 0.666666667 0.58

Q29 10.7676387 0.857142857 0.69

Q30 − 20 0.047619048 0.46

Q31 − 0.2172442 0.476190476 0.58

Q32 1.8086434 0.571428571 0.58

Table 9 Sample error values (CAT_AVG simulation, class A) (Continued)

True proficiency Predicted Error

0.425 0.179 0.246

0.440 0.298 0.142

0.468 0.500 − 0.033

0.475 0.298 0.177

0.478 0.702 − 0.224

0.525 0.479 0.046

0.573 0.702 − 0.129

0.608 0.814 − 0.207

0.610 0.702 − 0.092

0.625 0.298 0.327

0.625 0.479 0.146

0.648 0.500 0.147

0.720 0.702 0.018

0.728 0.702 0.026
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Table 9 Sample error values (CAT_AVG simulation, class A)

True proficiency Predicted Error

0.783 0.814 − 0.032

0.850 0.814 0.036

0.863 0.814 0.048

0.868 0.814 0.053

0.878 0.814 0.063

0.893 0.179 0.714

0.960 0.814 0.146
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