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Abstract
High attrition and dropout rates are common in introductory programming courses.
One of the reasons students drop out is loss of motivation due to the lack of feedback
and proper assessment of their progress. Hence, a process-oriented approach is needed
in assessing programming progress, which entails examining and measuring students’
compilation behaviors and source codes. This paper reviews the elements of a process-
oriented approach including previous studies that have used this approach. Specific
metrics covered are Jadud’s Error Quotient, the Watwin Score, Probabilistic Distance to
Solution, Normalized Programming State Model, and the Repeated Error Density.
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Introduction
Programming is essentially a difficult subject to learn. This is evident in the increasing
failure and dropout rates among novice programmers in their introductory programming
courses (Bennedsen and Caspersen 2007; Yadin 2011; Watson and Li 2014; Horton and
Craig 2015). Several studies had been conducted to pinpoint what could have contributed
to these high attrition rates (Kori et al. 2015; Simon et al. 2006; Kinnunen and Malmi
2006; Gomes and Mendes 2007; Biggers et al. 2008; Moström 2011; Mhashi and Alakeel
2013; Simon et al. 2013; Adu-Manusarpong et al. 2013; Vivian et al. 2013), and one of the
prominent reasons is the lack of problem-solving skills (Carbone et al. 2009; Falkner and
Falkner 2012). Results also showed that time management strategies, effort, and lack of
design and programming ability were among the primary reasons for their struggles in
programming (Vivian et al. 2013). Most novice programmers go into coding immediately
without clearly defining the specific tasks needed to be done. They engage in trial and
error (Carbone et al. 2009; Vee et al. 2006a) and rely mostly from the compiler’s feedback
for error correction (Carbone et al. 2009; Jadud 2005). When students tend to depend
solely from the compiler, they could easily get discouraged whenever they hit a roadblock
and cannot get themselves “unstuck” from an error after exhausting all the strategies they
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are familiar with. Students who portray this characteristic are called stoppers (Perkins et
al. 1986).
This scenario involving novice programmers is common not only during actual pro-

gramming exercises in school but also at the comforts of their home when attempting
to work on solutions to their programming assignments. This is very frustrating to stu-
dents causing them to possibly disengage from what they are trying to solve. Their lack of
interest to carry on with their solutions could persist making them less inspired to learn
further about programming. This is seen as a likely threat to students who are under pres-
sure and those who have become less motivated because studies have shown that there
is a link between student motivation and success in learning to program (Carbone et al.
2009).
Programming teachers, on the other hand, have little or no way of knowing the real

hardships students face and the progress that they make along the way since the teach-
ers only see the final outputs submitted to them. Teachers possibly do not even realize
to what extent their students’ are capable of writing correct programs (Jadud 2005).
This is the problem when students are being assessed traditionally. Giving students
performance-based conventional assessments such as take-home programming assign-
ments, examinations (e.g., requiring students to come up with code fragments), and
charettes (e.g., short programming assignments carried out in a fixed-time laboratory
sessions) (McCracken et al. 2001) and grading only their final outputs do not take into
account the students’ intentions (Johnson 1984) and the process that led to their final sub-
missions (Lane and VanLehn 2005). Programming should be regarded as not just merely
about code generation but also as a means to reflect how students think, decompose, and
solve problems (Marion et al. 2007).
It is for this reason that it is important that students’ intermediate results be likewise

considered rather than just the completed output. This kind of approach could possi-
bly address one of the challenges of novice student instruction in Computer Science and
other related disciplines, that is, how to keep the students’ interest in programming. It is
believed that the key to keep them motivated is to help them succeed in their early pro-
gramming courses. Students must not only possess the skills but also the motivation to
succeed in learning (Helme and Clarke 2001). Hence, if teachers can help keep their stu-
dents’ interest in their early programming courses at bay, then there is a greater chance
that attrition could be reduced. One way to do this is to use a process-oriented style of
gauging their work (Worsley and Blikstein 2013).
The goal of this paper is to discuss the following: (1) process-oriented approach in pro-

gramming and its potential benefits, (2) elements of a process-oriented approach, (3)
studies conducted using this approach in the context of novice programming with focus
on data collection, and (4) some metrics used in this approach.

A process-oriented approach in programming
Programming in itself is a process, and hence, the process that students undertake in
developing a solution to a computer problemmust also be evaluated. A completed source
code weakly represents the student’s knowledge and skills needed to create it (Lane and
VanLehn 2005) because when a student’s final work is solely graded, it is not possible to
ascertain the student’s level of ability since that single grade is a combination of several
factors (Winters and Payne 2005). A final grade alone as a metric is neither valid nor
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reliable to deduce about the student’s ability to write codes (Cardell-Oliver 2011). As such,
it is proposed that using more complex metrics is more suitable in assessing students’
work in the process of coming up with the final solution.
Thesemetrics, which are based on students’ progress, code, or behavior, are called data-

driven metrics (Petersen et al. 2015). Examples of these metrics are the Intention-Based
Score (IBS) (Lane and VanLehn 2005) also known as degree of closeness (Helme and Clarke
2001), Error Quotient (EQ) (Jadud 2005),Watwin Score (WS) (Watson et al. 2013), Prob-
abilistic Distance to Solution (PDS) (Sudol et al. 2012), and the more recent Normalized
Programming State Model (NPSM) (Carter et al. 2015) and Repeated Error Density (RED)
(Becker 2016).
A process-oriented method of assessing open-ended problems (Johnson et al. 2013),

such as in programming, is about capturing students’ intermediate works and using a suit-
able metric to account for students’ learning and behavior. In this approach, the process
of producing the final output is examined in an attempt to see the students’ progres-
sion while solving the problem. The data that can be captured in the course of program
development can be turned into meaningful information to help teachers see if students
understand the programming concepts used (Pettit et al. 2012). With this chronological
data progression, it is possible to recreate the problem-solving steps the student makes
(Vee et al. 2006a), giving a glimpse of how each student advances toward a solution.
Patterns can also be observed from this kind of data, and analyzing such patterns can

give teachers and researchers alike an indication of students’ behavior and learning pro-
cess, which can be a fertile ground for research. Examples of these patterns that can be
extracted are programming behavioral patterns such as debugging (Ahmadzadeh et al.
2005), compilation, and coding (Vee et al. 2006a; Spacco et al. 2006); patterns depict-
ing practices common to successful students but not to struggling students (Norris et
al. 2008); problem-solving strategies (Kiesmueller et al. 2010; Hosseini et al. 2014) and
anomalies (Helminen et al. 2012); submission patterns (Falkner and Falkner 2012; Alle-
vato et al. 2008); and code evolutions (Piech et al. 2012; Blikstein 2011). The possibility of
cheating and the effect of starting late on projects can also be traced from these patterns
(Fenwick et al. 2009) as well as distinguishing experienced students from poorly perform-
ing students (Annamaa et al. 2015; Leinonen et al. 2016). The data collected can also
be explored to predict student performance identifying at-risk students in programming
(Tabanao et al. 2008; 2011; Falkner and Falkner 2012; Watson et al. 2013; Koprinska et al.
2015) with the aim of providing them tailored remedial instructions. Capturing and ana-
lyzing these patterns as a result of using a process-oriented approach is indeed important
as it can provide significant help to teachers to vary their strategies for the benefit of the
students.
The use of a process-oriented approach in programming is a win-win situation for both

teachers and students. Teachers can gain meaningful insights about how students move
toward a solution and be able to judge their programming proficiency as well as provide
the necessary remedial actions. Students, on the other hand, would appreciate if their
teachers would inform them how their work would be assessed, provide them with inter-
mediate feedback to encourage them more (Hattie and Timperley 2007), and award them
the grade that would truly measure their progress. If no forms of instructional interven-
tions are afforded, students would be left clueless as to where they have gone wrong and
consequently would probably choose to drop out when they get discouraged.
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Elements of a process-oriented approach and studies conducted
Using a process-oriented approach of assessing students’ work entails a decision on how
data will be collected, how much data will be captured, and how frequent the data will
be stored. For this approach to effectively work, data must be acquired automatically
from students during their actual programming sessions using some tools or program-
ming environment (Jadud 2005). All source codes produced, together with other pertinent
related information, are gathered. For instance, all students’ behavior during program-
ming sessions are captured every time they interact with the compiler or engage with
the programming environment used. Hence, the analysis of the compilation behavior
is dependent on the automatic collection of source codes written by students while
programming. Per the work of Jadud (2005), the observations are not dependent on a
researcher observing the subjects but it is actually the computer that does the entire job of
automatically capturing and storing the students’ interaction with it. The term online pro-
tocol is used to refer to this sort of data. Precisely, an online protocol is a collection of files
submitted to a compiler that gives a chain of snapshots (Lane and VanLehn 2005) repre-
senting the programmers’ in-between thought processes and hence has the capability to
capture not only the final submissions but also the entire history of program development.
In developing an online protocol, the granularity of data must be decided. Different data

granularity levels were identified (Koprinska et al. 2015): (1) submission-level data—stores
submitted source codes; (2) snapshot-level data—stores file saves, compilations, and exe-
cutions; and (3) keystroke-level data—stores data every time a student makes changes in
the source code. These levels of data granularity are ordered as follows from the finest
to coarsest (Ihantola et al. 2015): keystrokes, line-level edits, file saves, compilations,
executions, and submissions.
It is important to select the level of granularity that could provide adequate and reason-

able amount of data depending on the analysis needs. If data is collected at the smallest
level of detail (e.g., mouse events or keystrokes), then there should be ameans to store and
handle large volumes of data. Some of these details might not be even relevant anymore.
On the other hand, if data is collected at a larger granularity (e.g., assignment submis-
sions), then extracting the necessary information might not be possible. Comparisons of
these levels are found in Vihavainen et al. (2014).
Tools that could unobtrusively automate data collection must also be considered. The

common tools utilized by researchers that could provide the means for data to be col-
lected systematically are the automated grading systems, IDE instrumentation, version
control systems (VCS), and key logging (Ihantola et al. 2015). The granularity of the
data is dependent on these tools. For instance, automated grading systems like Web-CAT
(Edwards and Perez-Quinones 2008) produce data at the granularity of submissions.Web-
CAT is capable of collecting file submissions of the same task repeatedly. Examples of
IDE instrumentation tools, which collect data as snapshots, are called third generation
approaches (Norris et al. 2008) like Hackystat (file modifications) (Johnson et al. 2003),
Jadud’s work (compilation events) (Jadud 2005), Marmoset (file saves) (Spacco et al. 2006),
and ClockIt (compilation events) (Norris et al. 2008). VCS analyze source code snapshots
at commit points only, whereas key logging offers data collection down to the smallest
level of detail such as individual keystroke events.
There is plenty of literature using a process-oriented approach. Table 1 lists studies

conducted ordered chronologically by year from 2006 to 2016 using this approach in the
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Table 1 Studies conducted using a process-oriented approach in the context of novice
programming

Study What has been done PL Tools Gran.

Jadud (2006a) Quantified how much or how
little student struggles with
syntax errors in terms of EQ

Java Instrumented BlueJ C

Jadud (2006b) Correlated EQwith exammarks Java Instrumented BlueJ C

Spacco et al. (2006) Provided controlled feedback
and instructional monitoring
on students’ progress for them
to start working early

Java Marmoset IDE Instr. w/ opt.
CVS synch.

FS

Vee et al. (2006b) Determined the typical errors
made and guess the
programming intentions

Eiffel Eiffel Studio C

Allevato et al. (2008) Implemented a reporting
mechanism and derived a
correlation on the following:
no. of submissions vs. final
score, code complexity vs. final
score, and early vs. late testing

Java Web-CAT and BIRT S

Norris et al. (2008) Determined the practices that
make students successful
software developers and what
practices do not

Java ClockIt (BlueJ data log-
ger/visualizer)

C

Tabanao et al. (2008) Identified at-risk students by
computing EQ

Java Instrumented BlueJ C

Fenwick et al. (2009) Identified some higher-level
patterns of novice student
programming behaviors (e.g.,
potential cheating, impact of
starting projects late)

Java ClockIt C

Kasurinen and Nikula (2009) Measured which concepts
were difficult to students, how
well the different
programming structures were
understood, and traced
student learning

Python VLE S

Rodrigo et al. (2009) Used a combination of human
observation, midterm score,
and online protocol to study
which observable affective
states and behaviors can be
used to predict student
achievement

Java Instrumented BlueJ and
JCreator

C

Rodrigo and Baker (2009) Attempted to automatically
detect student frustration

Java Instrumented BlueJ C

Rodrigo et al. (2009) Analyzed novice programmer
behavior (mover, stopper, and
extreme movers) using EQ
scores

Java BlueJ Browser C

Allevato and Edwards (2010) Used frequent episode mining
to find common patterns of
behavior (well-performing vs.
poorly performing, early vs.
late, etc.)

Java Web-CAT C

Blikstein (2011) Explored and compared
student coding strategies and
identified coding profiles
(copy-pasters, mixed-mode
self-sufficients)

Java NetLogo KS, ME, C

Tabanao et al. (2011) Determined error, compilation,
and EQ profiles of students
and attempted to accurately
identify at-risk novice
programmers

Java Instrumented BlueJ C
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Table 1 Studies conducted using a process-oriented approach in the context of novice
programming (Continued)

Study What has been done PL Tools Gran.

Piech et al. (2012) Predicted student
performance using machine
learning on student
development traces and
trajectories

Java Eclipse C

Pettit et al. (2012) Proposed a process to capture
intermediate versions of
students’ programs during
development and analyzed the
data using milestone markers

Python Google documents editor FS

Falkner and Falkner (2012) Tracked a student’s overall
assignment submission rate
(e.g., timeliness) to identify
students who are at-risk of
performing poorly in class

- Web Subm. System, SVN
repository

S

Helminen et al. (2012) Visualized the solution paths
using an interactive graph to
explore patterns and
anomalies

Python JS-Parsons tool FM

Sirkiä and Sorva (2012) Explored and analyzed
mistakes in student-submitted
solutions to study novice’s
misconceptions of
programming

Python UUhistle Prog. Visualiza-
tion System

S

Sudol et al. (2012) Proposed a metric to measure
the probabilistic distance
between an observed student
solution and a correct solution
as applied to a transition graph

– Online tutor S

Spacco et al. (2013) Revealed student work
patterns (e.g., what hours of
day students work, how much
work is done before and the
day of the deadline, total
amount of time spent coding)
and examined the use of
release tests in detail that
provides feedback to students

Java Marmoset using an Eclipse
Plugin

FS

Worsley and Blikstein (2013) Attempted to detect the
evolution of students’
programming strategies and
knowledge focusing on
“tinkering” and “planning”
episodes

– – LLE KS

Matsuzawa et al. (2013) Proposed a tool for observing
and recording the
programming process to apply
Personal Software Process
(PSP) in the classroom and to
enable learners to conduct PSP
analysis by themselves

Java Developed Eclipse logger,
Prog. Process Vis.

KS

Watson and Li (2014) Predicted performance using a
time as a predictor based upon
how a student responds to
different types of error
compared to their peers

Java Instrumented BlueJ C

Helminen et al. (2013) Presented and demonstrated
tool for collecting, viewing
detailed data about Python
programming sessions and
analyzing students’ activities

Python Web-based Python prog.
environment

S, FM, C, E
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Table 1 Studies conducted using a process-oriented approach in the context of novice
programming (Continued)

Study What has been done PL Tools Gran.

Heinonen et al. (2014) Used a browser-side snapshot
analysis tool capable of
providing functionality for
annotating and visualizing
code snapshots to seek
differences between novice
programmer that passed or
failed

– CodeBrowser FS, LLE

Hosseini et al. (2014) Examined programming
behavior found along student
problem paths that exhibit
patterns as Builders, Massagers,
Reducers, and Strugglers

Java JavaParser FM, FS, E, S

Gatchalian (2014) Characterized students based
on their intention-based score
patterns and “update
characteristics” of their code
compilations

Java Instrumented BlueJ C

Ihantola et al. (2014) Explored factors that may
influence the difficulty of
programming assignments by
applying a recursive
partitioning to construct a
decision tree of assignment
difficulty, and metrics for
automatically assessing those
factors

Java – KS

Blikstein et al. (2014) Used machine learning
techniques to discover
programming behavioral
patterns, correlated them with
students’ assignment and
exam grades, and transformed
code snapshots of map of
states that show the progress
of the students’ work

Java Instrumented Eclipse FS, FM

Vihavainen et al. (2014) Investigated the things that
programmers with no previous
programming experience
struggle with and how their
behavior changes over a short
period of time

Java Test My code (NetBeans
plugin)

KS

Spacco et al. (2006) Explored correlation on
students’ effort and success on
exercises vs. final exam score,
attempted to detect “flailing”
students early enough, and
tried to answer whether
students improve during the
semester

C, Python CloudCoder S, FM

Pettit et al. (2015) Considered the incremental
changes students make and
correlating score between
sequential submissions using
the following metrics: source
lines of code, cyclomatic
(McCabe) complexity, state
space, and the 6 Halstead
measure of complexity of the
program

C++ Athene online automated
system

S
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Table 1 Studies conducted using a process-oriented approach in the context of novice
programming (Continued)

Study What has been done PL Tools Gran.

Altadmri and Brown (2015) Used the Blackbox dataset to
analyze the frequency,
time-to-fix, and spread of
errors among users

Java BlueJ C

Ahadi et al. (2015) Detected high- and
low-performing students after
the very first week of the
programming course to
provide better support for
them using EQ, WS, and
standard machine learning
techniques

Java Test My Code KS

Carter et al. (2015) Proposed and derived NPSM
to predict students
programming performance,
and compared its explanatory
power against EQ and WS

C++ OSBIDE All

Petersen et al. (2015) Evaluated the performance of
EQ in multiple contexts
(different datasets, different
languages, working practices,
and student backgrounds)

C, Python, Java CloudCoder, PCRS, Test My
Code

S

Koprinska et al. (2015) Attempted to predict
accurately failing and passing
students in the middle of the
semester using a decision tree
classifier

– PASTA (auto. marking and
feedback sys.)

S

Annamaa et al. (2015) Aimed to automatically
analyze students’ solving
process in programming
exercises using visualization

Python Thonny All

Leinonen et al. (2016) Correlated keystroke latency
with exam performance and
programming experience

Java Test My Code KS

Becker (2016) Introduced RED to quantify
errors, and compared it with
EQ

Java Custom Java editor C

C compilations, S submissions, FS file saves, FM file modificiations, KS keystrokes,MEmouse events, E executions, LLE line-level edits

context of novice programming. The table shows what has been done, the programming
language and tools used along with the data granularity.
Of the 42 studies listed, majority of the data collection was done in Java (26), followed by

Python (6), and C++ (2). Five of the studies did not mention the programming language
used, while two of the studies were conducted using multiple programming languages
(C/Python and C/Python/Java). Since Java was the preferred programming language, it
is assumed that this is the reason why BlueJ was the most preferred tool for capturing
data. Compilations (11) took the lead when it comes to data granularity followed by a
combination of varying levels of granularity with submissions (9) coming in third.

Metrics
In a process-oriented approach, the use of a proper metric in analyzing online protocol
is important if the aim is to derive meaningful information from the data collected. The
studies listed in Table 1 utilized a combination of different metrics, which is dependent on
the information need of the researcher. For the purpose of discussing how these metrics
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were derived and computed, five of these metrics are discussed. These metrics are Jadud’s
Error Quotient (EQ) (Jadud 2006a),Watwin Score (WS) (Watson et al. 2013), Probabilistic
Distance to Solution (PDS) (Sudol et al. 2012), Normalized Programming State Model
(NPSM) (Carter et al. 2015), and Repeated Error Density (RED) (Becker 2016). The main
criterion for selecting these metrics is primarily because these metrics were all used to
analyze novice programming behavior to understand better why students drop out early
in the course and what possible interventions could be provided. It all started with Jadud’s
work, which was subsequently improved by the succeeding metrics by addressing the
deficiencies of Jadud’s Error Quotient metric.

Error Quotient

EQ is a metric that measures the number of syntax errors a student encounters in a single
programming session (i.e., a sequence of compiles from one class period). This mea-
surement is based on several criteria, such as the (1) number of syntax errors made by
a student, (2) the frequency of repeating those syntax errors, and the (3) error’s source
location in subsequent compilations. A high EQ is given to students who commit many
syntax errors and fail to fix them in between compilations. On the other hand, a low EQ
is awarded to students who encounter a small number of syntax errors or who manage to
quickly fix the syntax error encountered. The use of EQ permits us to compare student
sessions easily.
Given a session of compilation events e1 through en, the EQ is calculated as follows

(Jadud 2006a):

• Collate: Create consecutive pairs from the events in the session, e.g., (e1, e2), (e2, e3),
(e3, e4) up to (en−1, en).

• Calculate: Score each pair according to the algorithm presented in Fig. 1.
• Normalize: Divide the score assigned to each pair by 9 (the maximum value possible

for each pair).
• Average: Sum the scores and divide by the number of pairs. This average (in the

range 0–1) is taken as the EQ for the session.

To show how the scoring is done, consider the tabular visualization in Fig. 2. The table
in this figure is an example of a novice’s compilation session with four events. Each row
in the table signifies the change between a pair of successive compilation events. The
meanings of the table columns are as follows:

• Err type: Denoted with a “∗” if a compilation pair was error-free; otherwise, it shows
a number representing a known syntax error. This number provides a unique index
into the table of recognized syntax errors (e.g., error type no. 8 refers to “Class or
interface expected”).

• � T: Represents the amount of time (in seconds) that passed between compilations
(reduced to five bins: 0–10 s, 20–30 s, 30–60 s, 60–120 s, and more than 2 min). This
provides a summary of which compilations were quick and reflexive, and which were
done with more thought.

• � Ch: Tells how many characters were added or removed from one compilation to
the next. This gives a sense for the magnitude of the change (e.g., a single character
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Fig. 1 The Error Quotient algorithm flowchart

change may mean an addition of a semi-colon as in the case of missing semi-colon
error).

• Location: Represents the extent of student’s program file (left side: start, right side:
furthest point a student edited their program, colored rectangle: location of the
syntax error reported, black dot: location of the change made to fix the syntax error)

Scoring begins by taking a pair of events one by one. Referring to Fig. 2, these event
pairs are (1, 2), (2, 3), and (3, 4). Taking the first pair and tracing using the flowchart in
Fig. 1, it can be verified that both events end in a syntax error. Since the second event is
error-free, this pair of events is given a score of zero. This is repeated on the second pair,
which also receives zero since the first event incurred no errors. As for the third pair, both
events end in a syntax error (add 2), both have the same error type (add 3), and both have
the same error location (add 3) yielding a total of 8. Hence, the three pairs have scores
0, 0, and 8, respectively. The scores are then normalized to 0, 0, and 0.88 resulting to an

Fig. 2 An example of a four-event session (Jadud 2006a)
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Fig. 3 The steps in preparing a set of compilation pairings

average penalty of 0.29 (0.88/3) to the pairs. This average over all the pairs is now the EQ
of this programming session.
Per Jadud’s experiment, EQ appears to be inversely correlated with grades, whichmeans

that students who have low EQ scores are likely to have higher assignment and exam
grades in programming than those students with high EQ scores. Further, EQ offers also
a possibility as a predictor of students’ academic performance.

Watwin Score

The Watwin algorithm attempted to address the flaws of EQ as the latter only assumes
that students either work only on a single source file or linearly work on several files.
Watson et al. (2013) found, however, that students can probably work on multiple files.
This algorithm also offers considerable improvement by increasing its predictive accuracy
in predicting student performance based on the way a student tackles different types of
errors when compared to peers by proposing resolve time as a predictor. Students receive
penalty based on the amount of time they take to fix an error relative to their peers, which
is distributed normally. The algorithm is performed as follows:

Input A set of student programming logs (compilation and invocation) for all files
compiled during a session:

1. Prepare a set of successive compilation event pairings using the process shown in
Fig. 3.

2. Quantify programming behavior

• Score all compilation pairings generated using the scoring algorithm in Fig. 4.
• Normalize each score by dividing by 35 (maximum possible score for each

pairing).
• Average the normalized scores of all pairings.

Output The average of all pairings (in the range 0–1) is taken as the student’s WS for the
session. A score of zero denotes that the student’s session is error-free, whereas a score of
1 means that all compilations ended in errors. A score approaching zero indicates that a
student is more experienced in programming.
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Fig. 4 The Watwin Score algorithm

Step 1 in Fig. 3 builds pairs of compilation events {{e1, e2}, {e2, e3}, . . . , {en−1, en}} ordered
by timestamp on a per file basis. In building such pairs, it considers the possibility where
a student works concurrently on multiple files. In step 2, all pairings {ef , et}, whose code
snapshots are the same, are identified and removed as these can bloat the total number of
compilation pairings. Pairings with a successful event type ef are likewise removed. Dele-
tion and commented fixes are detected in step 3 as these do not reflect a student’s ability
in fixing errors. Deletion fixes are spotted by getting the difference ratio between the
snapshots of ef and et . The pair {ef , et} is removed if the number of insertions and alter-
ations is zero and if that of deletions is greater than zero. Commented fixes are spotted
and removed using a regex expression. In step 4, error messages generated in every com-
pilation event pairs are generalized to build a profile for different classes of errors. Finally,
in step 5, the amount of time spent on each compilation pairing {ef , et} is estimated. This
is accomplished by creating a combined sequence of invocation and compilation events
{h1, h2, . . . , hk−1, hk} for all files in a session, sorted by timestamp. For every {ef , et}, if
there occurs an hi, such that the timestamp of ef > hi > et , the estimated time spent on
{ef , et} is computed as the difference between the timestamps of et and hi.
In this approach, resolve time to fix errors is used as a predictor in the scoring model

for two reasons: (1) this has not been explored in previous studies prior to the conduct
of this research, and (2) the researchers found a strong significant correlation in students’
mean resolve time vis-à-vis performance. As illustrated in the scoring algorithm in Fig. 4,
students are penalized if their resolve time is more than one deviation above or below the
mean. A low penalty means that students have fixed an error quickly than their peers,
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and a high penalty signifies that students have fixed an error much slower than their
peers. After scoring all pairings, the scores are normalized, and the computed average
becomes the WS. The components included and the penalties assigned in the algorithm
were not products of random guesswork but were based on previous studies conducted
using regression models and cross-validation, hence making this algorithm applicable to
independent datasets.
Using a student’s WS as the independent variable, and the students’ overall coursework

mark as the dependent variable, a linear regression can be performed to test the predictive
power of this algorithm on students’ performance in programming. Moreover, WS can
also be used as a classifier of student performance.

Probabilistic Distance to Solution

Traditional metrics for measuring student performance, such as those that depend on
the number of submissions or deal with the time spent to correctly finish a program-
ming problem, do not actually reflect student’s understanding and misconceptions about
the problem they are solving. In fact, these are considered too coarse-grained to make
a distinction between conceptual misunderstanding and syntactical or parsing mistakes
made by the students. The PDS metric gives a glimpse of the entire history of problem-
solving steps a student takes starting from the first attempt of solving the problem up
to the completed solution while providing additional insight into misconceptions and
problem-solving paths by focusing on individual algorithmic components within the
larger algorithm students are constructing. These algorithmic components, which are
used to evaluate student progress, provide a way to determine if a student is making a pro-
ductive edit (e.g., moving closer to a solution) or an unproductive edit (e.g., does not fix an
incorrect algorithmic component of the code), whether engaging in a shotgun debugging
or pursuing a misconception.
The idea is, for each submission, the student’s code is converted to a vector of binary

features called an alignment vector (AV), which encompasses the algorithmic compo-
nents (e.g., looping structure, decision structure, use of the loop control in an array access,
and inclusion of a return statement), correctness outcomes, and compilation success. The
model of required algorithmic elements was based on the work of Sudol-DeLyser (2014).
A value of 1 and 0 in the AV represents the appearance and absence of each algorithmic
component, respectively. The generated AVs are represented as program states in a net-
work. The model used is useful because it can be seen which individual concepts students
struggle and is also useful for tracking and evaluating students’ progress across multiple
submissions.
Figure 5 shows a snapshot of a network constructed given a particular problem. The

network nodes S1 . . . Sn−1 are possible program states with an end state node F, and the
edges represent the observed transitions between states. In the table, columns Fx are the
binary program features that correspond to the required algorithmic components for a
given problem. Row Sx indicates the presence (green box) or absence (white box) of those
features. S0 is the starting state (empty starter code), and S56 represents the correct final
state. In the transition graph, the thickness of the edges indicates the number of edits
the transition was observed all over the students’ submission, whereas the lengths are
arbitrary and do not have something to do with the model. All lines are single directional,
indicating a move from the thin side of the line to the thick side.
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Fig. 5 An example of student program states (Sudol et al. 2012)

Consider, for example, the path S0, S55, S60, and S56. It can be seen from the AV (table
in Fig. 5) that from the initial state students submitted a code with a missing compo-
nent (F8), and then a code with a correct return statement that did not compile before
transitioning to the final state. For each node, a Maximum Likelihood Estimate (MLE)
transition probability to every other node using the observed transitions is computed.
Given the number of observed transitions from state x to state y (Tx,y), the probability of
being in state y at time t is estimated with the MLE:

p̂(Sy(t)) = P(Sy(t)|Sx(t − 1)|) = Txy
∑

i Tx,i

This is equivalent to a Markov chain estimate with a 1-state history.
A classic problem in Computer Science, which is the randomwalk problem in networks,

is applied to the calculation of a PDS particularly referring to the number of likely edits it
would take a student from any given node (AV state) to a final state (complete solution). A
mean distance from each state to the final state is calculated using a set of linear equations.
This is done by modeling each edge as a transition probability and single unit of distance
between states. The PDS metric, along with the transition graph (TG) as seen in Fig. 5,
can provide substantial information about the paths followed by students in their attempt
to arrive at a correct solution. By looking at the PDS and the TG, it is possible to identify
if a student has made productive edits or just guessing to fix compiler errors. This is
because the AV was generated based on the instructional goals or learning objectives.
Hence, its representation and visualization can draw generalizations how program states
are parallel to student performance and other latent factors such as learning. For example,
in the table in Fig. 5, one student’s first submission is observed as S55 with PDS of 2.99,
and the next state it transitioned to is S57 with PDS 4.43. This means that the edit made
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was less productive since it resulted in a shift to a state with a higher probabilistic number
of submits needed to arrive at a correct solution.

Normalized Programming State Model

NPSM differs from EQ and WS in terms of predicting student performance because it
determines not only syntactic correctness, but also semantic correctness of a program-
ming solution given at any point in time. Hence, it offers a more holistic predictive model
of student performance compared to EQ andWS. NPSM’s approach deals with program-
ming data stream and requires that a student’s current programming solution be mapped
into one of the four states in the 2 × 2 space shown in Fig. 6. The syntactic correctness
of a program is determined based on whether the last compilation attempt results in an
error. On the other hand, since semantic correctness is not immediately obvious, it can-
not be determined right away. The only way to go around this is to look for the presence
or absence of runtime exceptions in the last execution attempt. A program is semantically
correct if it produces a runtime exception in the last execution attempt. It is semantically
unknown if the last execution attempt does not produce a runtime exception.
A state-transition diagram found in Carter et al. (2015) is used to map this model to the

stream of programming log data provided by the IDE used in this study. The 11 states in
the transition diagram along with their codes, for quick viewing, are shown in Table 2.
The editing states in the model, namely YN, YU, NU, and NN, serve as rough proxies

representing both the syntactic and semantic status of the program being edited as shown
in Fig. 6. It is inferred that students who spend more time in syntactically correct and
semantically unknown states will likely to perform better than students spending more
time in syntactically and semantically incorrect states. In the RN and DN states, students
would seem to ask the question, “Why does notmy programwork?” and in the RU andDU
states, they would be inclined to ask the question, “Doesmy programwork?” Among these
states, DN and DU are in a more powerful position to ask these questions since they are
using the debugger. Lastly, students who spend time in R/ state may imply that a student is
struggling. Overall, the relationship between these five execution states vis-à-vis student
performance is not clear.
A student’s programming activity is mapped to one of the 11 states in this model. To

correlate the use of this method with student performance, the amount of time a stu-
dent spent in each state is recorded and the recorded times relative to the total time the
student spent programming is normalized. In the preliminary analysis of the data gath-
ered using this model, it was observed that the Idle state was the dominating state of the

Fig. 6 Dimensions of program correctness
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Table 2 The 11 states in the transition diagram

State Code

Unknown (start) state UU

Idle

Editing syntactically incorrect, last debug successful NU

Editing syntactically incorrect, last debug unsuccessful NN

Editing syntactically correct, last debug successful YU

Editing syntactically correct, last debug unsuccessful YN

Execute without debug (following NU) R/

Execute without debug (following YN) RN

Execute without debug (following YU) RU

Debugging (following YN) DN

Debugging (following YU) DU

students, which means that students are likely to spend most of their day not doing any
programming activity. Since the focus is on the time students spent in programming, the
Idle state was eliminated from the normalization process. One variable was added in the
model, which is the time-on-task, leaving a total of 11 data points per students. These 11
data points form the NPSM.
A predictive measure was derived using NPSM to predict performance. Based on pre-

vious studies conducted and given that NPSM has 11 predictors, the ideal sample size
is estimated at 220 students to achieve full statistical power when deriving the predic-
tive measure. Four states were considered in the development of the predictive model,
namely UU, NR, RU, and RN, and multivariate regression was performed using these
states. RN and RU are found to be positive contributors to student success, while UU and
NU are found to be negative contributors. This suggests that dealing with a program’s
runtime behavior, notwithstanding the semantic correctness, is a successful programming
approach. On the other hand, writing large chunks of code and not compiling it (UU) does
not contribute to programming success, and when students compile, they will be trapped
in NU state, which is also found to be negatively correlated with performance. YN and
NN are not significant predictors, so they were dropped in this predictive model.

Repeated Error Density

RED is a metric used to quantify repeated errors. It is considered more advantageous
compared to Jadud’s EQ since it is less context dependent and is suitable for short sessions.
RED has properties making it capable to answer Jadud’s questions, such as (1) “If one
student fails to correct an ‘illegal start of expression’ error over the course of three com-
pilations, and another over 10, is one student [about] three times worse than the other?”
and (2) “What if the other student deals with a non-stop string of errors, and the repeti-
tion of this particular error is just one of many?” Dissecting these questions would mean
that when EQ is used as a metric, both students in these cases would have an EQ of 1.
These cases can be demonstrated in the succeeding scenarios. Take students A, B, and

C; an error type x; and a repeated error r. Suppose student A logs two consecutive errors
of type x resulting in one repeated error r. Is it fair to say that student B who logs three
consecutive errors of type x resulting in two repeated errors 2r is struggling with that error
more by a factor of two? What about student C who also logs 2r but not all in one string
s (say across 2s, by logging two consecutive errors of type x followed by some successful
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Table 3 Summary of the three scenarios

Student Sequence S x r s EQ

A ... x x ... 2 1 1 1

B ... x x x ... 3 2 1 1

C ... x x ... x x ... 4 2 2 1

compiles, followed by two more consecutive errors of type x)? Considering all these cases
and given the assumption that no other errors are made, and all other variables among the
three students are equal, the EQ will be equal to 1 in all cases. Table 3 summarizes these
three scenarios.
Table 3 shows that EQ is not of any help. Hence, RED came into the picture to quantify

repeated errors by both looking at the amount of repeated error strings a student encoun-
ters and looking at the length of these strings. This metric involves summing a submetric
calculated on each repeated error string encountered in a compilation event sequence.
This submetric is r2i / | [si] |where | [si] | is the length of the string si containing ri repeated
errors. This can be expressed completely in terms of ri as r2i / (ri+1), since the length of a
string si containing ri consecutive errors is always equal to ri+1.
The value of RED for a given sequence S of n repeated error strings for each si in S is

shown in the equation below:

RED =
∑n

i=1
r2i

ri+1
where ri is the number of repeated error r as a pair of events where each event results in
the same error. Table 4 shows the RED values for all sequence combinations for which a
total of 0–4 repeated errors are encountered.
In Table 4, sequences 1 and 2 mean that a single occurrence of error x, or two occur-

rences separated by other activity, does not comprise repeated errors and hence has a
RED value of 0. Sequences 4 and 5 illustrate two ways that error x can be repeated twice
successively, but sequence 4 is considered the “natural” choice for showing that a stu-
dent struggles twice of that the student in sequence 3 as evidenced by the RED values of
sequence 4 (1) and sequence 3 (0.5) giving a ratio of 2:1. The same can also be observed
for sequences 11 and 5. With this, Jadud’s first question was addressed.

Table 4 RED values for all combinations of 0–4 repeated errors r (A, B, C correspond to students in
Table 3)

Number Sequence S r RED

1 x
0

0

2 ... x ... x ... 0

3 (A) ... x x ... 1 0.5

4 (C) ... x x ... x x ...
2

1

5 (B) ... x x x ... 1.3̄

6 .. x x ... x x ... x x ...

3

1.5

7 ... x x x ... x x ... 1.83̄

8 ... x x x x ... 2.25

9 ... x x ... x x ... x x ... x x ...

4

2

10 ... x x ... x x ... x x x ... 2.3̄

11 ... x x x ... x x x ... 2.6̄

12 ... x x ... x x x x ... 2.75

13 ... x x x x x ... 3.2
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For Jadud’s second question, this is addressed by inspecting sequences 5 and 4.
Sequence 5 contains one long string of two repeated errors with RED = 1.3, and sequence
4 also has two repeated errors but over two shorter strings and has RED = 1. In this case, a
penalty of 1/3 is incurred for a sequence that encounters two repeated errors in one long
string. Therefore, it can be said that the student in sequence 5 (B) is struggling more with
error x than the student in sequence 4 (C) as reflected by the former’s higher RED score.
It can be observed that Jadud’s EQ has become the basis of the creation of other metrics.

Newer metrics had been developed to address the shortcoming of the older metrics. As
data evolve and as the need for answers are being sought, more suitable and better metrics
will come to exist in the near future. Table 5 shows a comparisonmatrix of the five metrics
along with their advantages and disadvantages.

Conclusion
Programming is perceived to be difficult particularly among novices as evidenced by the
increasing dropout and attrition rates in introductory programming courses. Comput-
ing educators and researchers have endeavored to pinpoint the underlying problem by
analyzing different learning behaviors while writing programs. It is possible that educa-
tors may not have a good grasp on the type of errors students normally encounter or
have no or very limited idea about the students’ misconceptions in programming. This
is because traditionally what is usually required to be submitted and assessed by instruc-
tors are the just the final outputs. Hence, there is really no way of knowing the amount
of effort students put into their work and the level of understanding students have about
their programming assignments.
This paper discusses what is a process-oriented approach of analyzing students’ pro-

gramming solutions. This approach not only takes into account the final submissions
of the students but also captures the progress the students make in writing programs.
In using a process-oriented approach, online protocols (e.g., sequences of automatically
collected source codes written by students while writing a solution to a programming
problem) must be first be collected by deciding the level of data granularity to use.
This approach could be beneficial to computing educators, students, and researchers.
Capturing and analyzing students’ online programming protocols has the potential of
providing computing educators meaningful insights about how students behave a certain
way during programming sessions and the processes by which they learn to program.
This information is useful to computer educators and course designers so that they can
create tailored interventions and adjust course materials accordingly. Educators may also
be particularly interested in identifying at-risk students and what specific programming
areas they are struggling with. Programming students could receive help from appropri-
ate feedbacks and not just rely from the compilers’ feedbacks which are not encouraging
at all to novice programmers. This is an ideal pedagogical situation that could possibly
increase the retention rates in programming courses.
The application and limitations of data-driven metrics covered in this paper were

examined in more recent studies. For instance, since EQ’s drawbacks include being con-
text dependent and containing free parameters, Petersen et al. (2015) investigated the
application of EQ in a multi-context setting to determine its sensitivity to different con-
texts. Significant differences in the predictive power of EQ across contexts were shown.
The researchers were not able to find a model that effectively predicted performance,
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Table 5 Comparison of the five metrics

Metric Measure/criteria Advantages Disadvantages

EQ Measures how many
syntax errors a student
encounters during a single
programming session and
how successive compila-
tion failures in a session
compare in terms of error
message, location, and
edit location

- Proved to correlate
inversely with grades,
hence, can be used to pre-
dict student performance
- Can be an indicator
of how well or poorly a
student was progressing

- Dependent on parameter
values
- Has not explored the
amount of time which a
student takes to resolve an
error
- Assumes that students
only work on a single
source file, or work onmul-
tiple files in a linear man-
ner, which is considered
flawed when creating a
set of consecutive compi-
lation pairings
- Vary across groups, envi-
ronments, and contexts

WS Uses time as a predic-
tor to predict performance
based on a how a student
responds to different types
of error compared to their
peers

- Addressed the shortcom-
ing of EQ by constructing
pairings on a per-filename
basis
- Can be used to predict
student performance even
early in the course
- Outperforms EQ as a pre-
dictive measure

- No measures are taken to
check superficial changes
made to source code can
be incorrectly flagged as
semantic changes

PDS Measures probabilistic
distance between an
observed student solution
and a correct solution
using a Markov model

- Can be used to deter-
mine if an edit or student
path is (a) typical of stu-
dents who have mastered
content, and (b) produc-
tive in progressing toward
a solution
- Can be adapted to focus
on a model state transi-
tions that indicate miscon-
ceptions or other model-
based goals of the data
miner

- A model of required
algorithmic components
must be identified first
- Student evaluation is
constrained based on the
model used

NPSM Characterizes students’
programming activity in
terms of the dynamically
changing syntactic and
semantic correctness of
programs

- Can be used to predict
student performance by
considering the program-
ming process more holisti-
cally
- A substantially better pre-
dictor than EQ and WS

- Provides only a rough
proxy for determining
semantic correctness (e.g.,
presence or absence of
runtime exceptions in the
last execution attempt)

RED Quantifies repeated errors
by looking at the amount
of repeated error strings
a student encounters, and
the length of these strings

- Less context dependent
- Useful for short
sequences
- Can be significantly
reduced by an editor
that has previously been
shown to result in sig-
nificantly fewer compiler
errors

- Its bounded nature
brings some questions
when a large number of
data points are involved
- Prone to outliers - Has
not been validated if it
correlates with student
performance

and even if a model existed, the effectiveness was highly dependent on the parameters
chosen. Ahadi et al. (2015) then proposed an improvement to EQ that measures cod-
ing progression using source code snapshot metadata. This newer metric is no longer
context-sensitive and language dependent, and does not suffer from ad hoc parameters.
In a study byWatson et al. (2012) and Becker et al. (2018), it was suggested that enhanced
syntax error messages could improve students’ performance. However, this was argued
by Denny et al. (2014) indicating that syntax error messages do not work all the time. It is
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possible that the differences in their results are due to differences in contexts. It is imper-
ative, therefore, that data-driven metrics used for assessing student behaviors must be
examined across a wide variety of teaching contexts and situations. More effective strate-
gies for automatically tweaking the metrics to make them suitable in different contexts
must also be developed.
In a much recent study by Carter and Hundhausen (2017), tracing Programming State

Model (PSM) programming sequences can detect a student’s programming ability and
can be used as a platform to provide customized learning interventions to students learn-
ing how to program. There is also empirical proof that students have different ways of
tackling programming assignments depending on their level of achievement. However,
it was found that using automatically generated log data is incapable of connecting a
student’s intention to his/her programming processes. Hence, data collected must be aug-
mented with alternate sources like lab observations and/or reflective dialogues to get the
learner’s intent correctly.
The study of Carter et al. (2017) likewise confirms that EQ and WS as predictive mod-

els differ considerably based on setting. NPSM, on the other hand, outperforms these
metrics as a predictor because NPSM is not affected by the programming environments
and languages used in the studies. Whereas prior studies attempted to predict student
achievement based on the students’ programming data, this recent study have incorpo-
rated non-programming data, specifically online social behavior (e.g., participation levels
in completing programming assignments), to investigate whether this would have an
effect on the predictive power of EQ, WS, and NPSM on the academic success of stu-
dents. Results showed that combining a programming-based metric with participation
level measure could indeed addmore explanatory power into the predictivemodels. How-
ever, to extend the generalizability of these predictive measures, more replication studies
need to be conducted considering different student populations. This is especially true
for NPSM, which, according to previous studies, happens to have a limitation in terms of
its explanatory power. A replication study using the same settings should be conducted to
verify if this limitation still exists.
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