
RESEARCH Open Access

Classroom practice for understanding
pointers using learning support system for
visualizing memory image and target
domain world
Koichi Yamashita1*, Ryota Fujioka2, Satoru Kogure2, Yasuhiro Noguchi3, Tatsuhiro Konishi2 and Yukihiro Itoh4

* Correspondence:
yamasita@hm.tokoha-u.ac.jp
1Faculty of Business Administration,
Tokoha University, 1230 Miyakoda,
Kita-ku, Hamamatsu, Shizuoka
431-2102, Japan
Full list of author information is
available at the end of the article

Abstract

Pointers are difficult learning targets for novice learners of C programming. For
such difficult targets, introducing a system visualizing program behaviors is
generally expected to support learners to understand the targets. However,
visualization in existing systems often conceals the concrete value of variables
such as pointers; the way in which each visualized object is located on the
memory is not made explicit. In order to address this issue, we focused on a
program visualization system called TEDViT. It visualizes simultaneously and
synchronously the memory image that is the field that presents the concrete
value of variables and the target domain world that is the field that presents
logically the data structures processed by the program. We consider that
observing and comparing program code, memory image, and target domain
world with TEDViT could work for understanding pointers. TEDViT visualizes the
status of the target domain world according to the visualization policy defined
by the teacher in order to allow teachers to set their instruction content based
on the growing variety of learner background knowledge. We also consider that
this feature could support teachers’ instructions and class managements
appropriately, and improving teachers’ performance by TEDViT’s support would
bring improvement of learners’ understanding. We conducted classroom practice
for understanding pointers in connection with a memory model, thus
introducing TEDViT to a real class. Analysis of answered scores in a questionnaire
conducted after the practice suggests that our practice using TEDViT provided
useful supports for participants to understand pointers. It also suggests our
practice had a certain effect to reduce uneven levels of understanding among
participants. Based on these results, we describe that classroom practices in our
framework could support learners to understand pointers and support teachers
to manage the class.

Keywords: Education for programming, Program visualization system, Domain
world model, Classroom practice

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Yamashita et al. Research and Practice in Technology Enhanced Learning
 (2017) 12:17
DOI 10.1186/s41039-017-0058-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s41039-017-0058-4&domain=pdf
mailto:yamasita@hm.tokoha-u.ac.jp
http://creativecommons.org/licenses/by/4.0/

Introduction
As information technology has pervaded our society in recent years, improving the

productivity of program codes has been expected increasingly. Many institutes of

higher education have organized programming classes for various students. Teachers

are required to teach learners with various levels of background knowledge in limited

time and hence to achieve efficient and effective programming education.

Thus far, several program visualization systems have been developed to support nov-

ice learners in understanding program codes (Pears et al., 2007). These systems

visualize the data structures processed by the target programs in certain ways and sup-

port learners in understanding the programs and algorithms by making their behavior

visible. Sorva, Karavirta, and Malmi (2013) pointed out the following difficulties faced

by novice programming learners:

� Novice learners often see particular programming concepts merely as pieces of

code rather than as active components of a dynamic process that occurs at

runtime.

� Novice learners often cannot grasp so-called notional machine which is an abstrac-

tion of the computer in the role of executor of programs.

� The runtime world of the notional machine and the domain world of target

processed by program code are hidden and are not clearly visible in program code.

� Novice learners often fail to trace programs step by step because of insufficient

understandings of statement sequencing and insufficient ability to keep track of

program state.

Program visualization systems support novice learners to overcome these difficulties by

visualizing the logical data structures processed by target programs. Introducing these sys-

tems to classes is expected to allow learners to cultivate a better understanding of program

and hence to contribute efficient and effective programming education (Naps et al., 2002).

However, in some case depending on learning target, teachers who introduced an

existing system into their classes sometimes feel unsatisfied about the visualizations

provided by the system. The typical learning target is pointers, for which teachers tend

not to accept system’s visualizations. Their visualizations of logical data structures have

fixed abstraction level, and hence, these often conceal the concrete value of variables

such as pointers; the way in which each visualized object is located on the memory is

not made explicit. The behaviors of pointer processing such as operations on pointer

variables and passing pointer arguments in function calls are difficult for novice

learners to understand by observing the visualizations.

We consider this undesirable situation is caused because many of existing systems

have focused only on visualizing logical data structures and have made light of visualiz-

ing statuses of the notional machine. An expert programmer might have an image of

the status of a target domain world according to the memory image of the variables

provided by a debugger or tracer and might grasp changes in the world status based on

the program code. That is, perceiving successfully the statuses of the notional machine

and the statuses of the target domain world, and the relationships between them would

derive better understanding of the program code like an expert programmer. We con-

sider that the failure of many of novice programmers to understand programs is caused

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 2 of 16

by their poor ability to perceive the relationships among the program code, memory

image, and status of the target domain world.

As suggested by the investigation results of Milne and Rowe (2002) and Lahtinen, Ala-

Mutka, and Jävinen (2005), pointer is a learning target that many of novice learners find

hard to understand. In order to support learners to understand pointers, we focused on a

program visualization system called TEDViT (Kogure et al., 2014), which is an acronym for

Teacher Explaining Design Visualization Tool, and conducted classroom practice for under-

standing pointers introducing TEDViT. It visualizes simultaneously and synchronously the

memory image that is the field that presents the concrete value of variables, and the target

domain world that is the field that presents logically the data structures processed by the

program. Learners can observe and compare program code, memory image, and target do-

main world by using TEDViT; hence, it is expected to bring positive effects on learners’ un-

derstanding of pointers. Moreover, TEDViT visualizes the status of the target domain world

according to the visualization policy defined by the teacher in order to allow teachers to set

their instruction content based on the growing variety of learner background knowledge.

Therefore, it is also expected to support teachers’ instructions and class managements

appropriately.

In this paper, we describe a classroom practice for software engineers aimed at allow-

ing them to cultivate a better understanding of pointers in connection with memory

models. For that aim, the practiced class includes learning activities that each partici-

pant individually observes and compares program code, memory image, and target do-

main world. Following the description of TEDViT in the next section, we describe the

classroom practice and the questionnaires conducted after the practice. Based on the

analysis of the answers, we discuss that learning based on observations and compari-

sons of three world visualizations would have a certain effect to understand pointers

and that introducing TEDViT into classrooms could contribute to teachers’ efficient

and effective class management.

TEDViT: Teacher Explaining Design Visualization Tool
We focused on TEDViT as the program visualization system introducing classroom for

understanding pointers. TEDViT has two characteristic features that are different from

existing systems. First, TEDViT can visualize the data structures processed by target pro-

grams in two ways: memory image of variables and status of the target domain world. Sec-

ond, TEDViT can visualize the target domain world according to visualization policy

defined by a teacher. In this section, we describe these two features of TEDViT and over-

view of related existing systems.

Visualizing memory image of variables and status of target domain world

TEDViT visualizes the data structures processed by a target program in two ways,

memory image of variables and status of target domain world, and provides a learning

environment where learners can observe and compare both visualizations. Figure 1

shows a learning environment generated by TEDViT. The environment consists of

three fields: the data structures processed by the program in (A) are visualized in the

two fields in (B) and (C). TEDViT reproduces a series of memory images of variables in

(B) for each step of the program’s execution with table format. Each record includes

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 3 of 16

the following attributes: address of variable on memory, variable type, variable name,

and concrete value of variable. TEDViT also reproduces a series of statuses of the target

domain world in (C) that visualizes logical data structures. We will explain the visuali-

zations in (C) in the next subsection. When a learner clicks the “Next” or “Prev” but-

ton, the highlight in (A) moves to the next or previous statement in the program code;

the memory image in (B) is updated according to the values of the variables after exe-

cuting the highlighted statement; and the corresponding status of the target domain

world is visualized in (C). TEDViT simulates statement execution step by step so that

the learner can understand the program’s behavior by observing the changes of the tar-

get domain world in (C). Simultaneously, the learner can understand the concrete

memory image in each execution step and the concrete expression of the data struc-

tures by observing and comparing the world in (C) with the memory image in (B).

The current version of TEDViT has the following features in visualization of the

memory image:

� Visualizing the variable size and the size of the data pointed by the variable if it is a

pointer.

� Visualizing the memory table where the row height corresponds to the variable size.

� Highlighting the operand variable in the address operation if the focusing statement

includes an address operation.

Figure 2 provides an example of memory image visualization practically used in our

practiced classroom. Here, the focusing statement includes the address operation with

operand variable sum.

Fig. 1 Overview of learning environment generated by TEDViT, including three visualization fields (a), (b), and (c)

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 4 of 16

Visualizing status of target domain world based on teacher’s intention

For example, a teacher might draw an object in a horizontal layout when the instruction

target is to sort an array, whereas the teacher might draw the array in a vertical layout for

a stack. Changes in visualization policy such as this are derived by fitting the instruction

content to the learners’ background knowledge. For example, if the learners sufficiently

understand a stack, drawing either object in a horizontal or vertical layout would be ac-

ceptable to the learners. Similarly, the teacher would not need to draw the temporary vari-

able in a task that swaps the values of two variables for non-novice learners.

A typical method for providing visualized data structures to learners is to show slides

and/or movies made with presentation and video editing software. Nevertheless, these

materials cannot be used for certain learning activities, such as learners observing pro-

gram behavior where input data are changed individually, because the input data are

fixed. The other method to do with allowing learners to change input data is to provide

target program to learners, including graphic drawing functions. However, this is also

not realistic because it might burden teachers with troublesome coding, such as creat-

ing, updating, and deleting drawing objects with name resolution that involves name

spaces, scopes, and so on.

To resolve this problem, a function has been implemented for teachers to define the

policy for drawing a status of the target domain world according to their own intent. The

teachers can create or edit a configuration file independently from the target program file.

TEDViT interprets such visualization policy by scanning the configuration file and visual-

izes the target domain world according to it. The learners can then observe the program

behavior in the target world visualized in accordance with the teacher’s intent. The rela-

tionship among teacher, learner, and TEDViT is shown in Fig. 3.

Related works

The concept to support learners’ understanding by visualizing data structures and their

behavior along with the statement executions of target program in certain ways has

relatively long history in programming education research. Thus far, several program

visualization systems have been developed. The reason of our adoption of TEDViT

among these existing systems is that we have dissatisfaction with many of the existing

systems as follows:

� The visualization provided by existing systems is too much abstracted to learn the

target closely related to hardware, such as pointers.

Fig. 2 Example of memory image visualization in our practice

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 5 of 16

� If the abstractions of data structures by existing systems were differ from teacher’s

explanations in the classrooms, learners may confuse in understanding by providing

various visualization objects each of which has a different abstraction.

� Using systems that allow teachers to arbitrarily set the visualization fields observed

by learners, it takes considerable time to complete visualization settings.

Many existing systems such as Jeliot 3 (Moreno, Myller, Sutinen, & Ben-Ari, 2004;

Ben-Ari et al., 2011), NoobLab (Neve, Hunter, Livingstone, & Orwell, 2012), and LEPA

(Yamashita et al., 2016) reproduce the behaviors of programs by visualizing logical data

structures processed by target program and their changes made by statement execu-

tion. However, these visualizations involve certain abstractions of data structures which

are established independently in each system. These abstractions often conceal detailed data

which teachers might want to make students observe in a learning target closely related to

hardware, such as pointers. For example, iList (Fossati, Eugenio, Brown, & Ohlsson, 2008)

visualizes logical data structures targeting linked lists and supports learners to understand

algorithm behavior and role of code statement, allowing learners to operate the visualized

structure by inputting code fragments. The concrete values of pointer variables are

concealed in iList, and hence, the way in which each visualized object is located on memory

is not made explicit. Depending on the learning target, teachers are highly likely to explain

program behaviors based on memory models. However, almost all of these existing systems

do not have a function that allows teachers to alter the abstraction of visualizations.

Moreover, in algorithm visualization systems such as TRAKRA 2 (Malmi et al., 2004),

the scope of abstraction is extended to program codes. TRAKRA 2 reproduces algorithm

behaviors by learner’s GUI manipulations on visualized logical data structures, and hence,

it is expected to have an effect to understand algorithms. However, the visualization of

TRAKRA 2 often cannot be immediately expressed by some lexical items and syntactic

fragments provided by programming language. If learners reached an appropriate level of

understanding of an algorithm, they would have to write a code with combining various

syntactic fragments complicatedly, such as self-referential data structures. In program-

ming education, the gap between an algorithm and its implementation method needs to

be bridged by a certain way. In the learning target such as pointers, the system introduced

into the class is required to deal with the visualizations of not only the statuses of target

domain world with a certain abstraction but also the less abstracted statuses of notional

machine and actual program codes controlling it (Sorva, 2013).

Also, it would be an obstacle to introduce these systems into the class that visualizations

of program behaviors have fixed policies established beforehand and independently by the

Fig. 3 Relationship among teacher, learner, and TEDViT (Yamashita et al., 2016)

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 6 of 16

system’s developer team. In introducing these systems into the class, the teachers would

have to accommodate their explanation to the visualization policy established by each sys-

tem. Because teachers would avoid students’ confusion in understanding by providing

various visualization objects, each of which has a different policy. It would be a burden for

teachers designing classrooms, and hence, it would be one of the factors that teachers

cancel their introduction of program visualization systems. As the range of educational

opportunities for introducing students to programming has been expanded, we consider

that systems introduced into the class need a function that enables teachers to adjust the

visualization policies. For example, Gries and Gries (2002) proposed the visualization

method of memory model for teaching Java and object orientation to novice learners. The

system introduced into the class should deal with visualizations reflecting teacher’s

intention, as much as possible.

We adopted TEDViT as the system introduced into the class because it satisfies these

requirements. TEDViT visualizes program codes, memory images, and logical data struc-

tures, simultaneously and synchronously, and allows teachers to define visualization policy

of logical data structures. Other systems capable of arbitrary visualization definitions in-

clude ANIMAL (Rössling & Freisleben, 2002); however, the cost of visualization defini-

tions in ANIMAL tends to be relatively high. By using ANIMAL, teachers can define

arbitrary policy with a script language named AnimalScript and can provide arbitrary

visualization to their students. Although the description capability increases significantly

by using the script language, the cost associated with learning the language is a matter

that cannot be ignored. Moreover, the sizes of script codes also tend to be large relatively.

For example, the sample script for a bubble sort algorithm bundled in ANIMAL consists

of 170 lines of code. Comparing it with the size of source code for bubble sort, it is hard

to say that the script size is sufficiently small.

Visualization policies in TEDViT is defined by a set of drawing rules in CSV format, and

any definition could be completed in practical time with some experience in rule definitions.

The times required to complete rule definitions are approximately the same as slide crea-

tions with some presentation software. However, the teaching material created through the

visualization definitions in TEDViT would be more useful because TEDViT can reproduce

the program behavior without rule modifications, even if the target data processed by the

program change. Furthermore, development of graphical interface for visualization defin-

ition in TEDViT has proceeded to reducing the cost (Tezuka et al., 2016).

Methods: Classroom practice for understanding pointers
In this section, we describe the classroom practice that used TEDViT for understanding

pointers. The practice was conducted along with a scenario that included activities for

observing and comparing memory images and the target domain world. It was incorpo-

rated into four sessions in open lecture for software engineers. Because the participants

in the practice were not students but engineers already employed, we evaluated the ef-

fect of the practice based on questionnaire survey conducted after the practice. Hama-

matsu Embedded Programming Technology Consortium (HEPT) is a collaborative

consortium with industries and the university to which some of the authors belong;

HEPT is also training system engineers. HEPT offers a training course for software de-

sign and development engineering, including lectures on programming in C. Our class-

room practice was incorporated into four sessions of these lectures and conducted at

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 7 of 16

13 May 2015. The practice participants were 15 software engineers responsible for soft-

ware development, but without much experience in C programming, as listed in Tables

1 and 2.

The goal of the sessions is to understand how to design and implement a function that

can take arbitrary data types using function and generic pointers. In order to achieve this

goal, the learners need to understand “relationships among types, variables, and pointers,”

“pointers in function arguments,” “pointers as return values,” “pointer operations,” and

“relationships between pointers and arrays” in connection with a memory model. Pointer

is a mechanism specific to a few programming languages such as C/C++. It is difficult for

engineers who usually use other language such as Java, VB, and Perl to understand these

learning targets, even if they had sufficient experience in software development. The ses-

sions into which our practice was incorporated were held to support those engineers to

understand pointers.

The practiced sessions and the learning sections in each session are the following:

1. Variables and pointers

1-a.Pointer operators and memory model

2. Functions and pointers

2-a.Calls by value

2-b.Calls by pointer

2-c.Return values with pointers

3. Arrays and pointers

3-a.Relationship between array names and pointers

3-b.Relationship between arithmetic operations on pointers and array index

operations

3-c.Memory model of multidimensional arrays

3-d.Handling an array to reverse the order

4. Generic pointers

4-a.Operations on generic pointers

4-b.Sample library of integer stacks

Aiming to the goal achievement, we introduced TEDViT into the session classes and

incorporated learning activities to observe statuses of the target domain world associat-

ing with statuses of the memory image into the session learnings. We expected that

these activities could contribute to cultivating better understanding of pointers. In the

practice, four sessions were conducted in above order by 90 min each. Each learning

section consisted of receiving the classroom lecture, observing the program behavior

with TEDViT, practicing with a coding exercise, and receiving an explanation of the so-

lutions for the exercise. We planned to allow the participants to use TEDViT mainly

for observing program behavior so that they could observe and compare the memory

image of variables and the target domain world by operating individually the learning

Table 1 Number of participants with different years of programming experience

Years of experience Less than 1 year 1–3 years 3–5 years 5–7 years

Number of participants 5 7 1 2

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 8 of 16

environment visualized by TEDViT. We also observed that the teacher of the session

classes used TEDViT to explain the point of an exercise solution with connections be-

tween the status of the target domain world and the memory image of variables.

The teacher prepared the target program codes observed by the participants with

TEDViT in the practice and the configuration files for the visualization of the target

domain world. The number of prepared teaching materials (i.e., program codes and

configuration files) was ten. The visualizations defined by the teacher in accordance

with the teacher’s own intent included arrow objects for representing the relationships

between pointers and pointed variables, and coloring to highlight the objects on which

the teacher intended the participants to focus. Figure 4 provides an example of the ac-

tual learning environment in the practice.

Results: Classroom practice evaluation

It was difficult to conduct a certain test for the evaluation of the learning effect with

TEDViT because the participants in the practice were not students, but engineers

already employed. For the same reason, participants’ achievement codes in coding exer-

cises were not assessed. Hence, our evaluation of the classroom practice is based on an

analysis of the answers of two questionnaires conducted after the practice. One of them

(Q1) was about learning with TEDViT, intended to evaluate how much the participants

were satisfied with learning supports of pointers by TEDViT. The other (Q2) was about

the learning content in the session, which is the same as the questionnaires conducted

every past year, intended to evaluate the effect of the practiced sessions with TEDViT

comparing corresponding past sessions without it.

The questionnaire Q1 contains six items.

Q1-1.Asks how much TEDViT contributed to understanding C programming using

five-point scale.

Q1-2.Asks how much TEDViT contributed to ascertaining wanted matters using five-

point scale.

Q1-3.Asks how much TEDViT was needed for learning using five-point scale.

Q1-4.Asks whether the teaching materials are regarded as useful from among the

prepared ten materials (allows multiple answers).

Q1-5.Asks for comments on the advantages and disadvantages of learning with

TEDViT.

Q1-6.Asks for comments on the insufficient or inconvenient functions of TEDViT.

Table 3 provides an average of the answer scores and standard deviation as dispersion

indicator of the answer scores for Q1-1, Q1-2, and Q1-3. These scores suggest that the

participants were basically satisfied with the learning support provided by TEDViT.

Table 4 lists the teaching materials found useful by participants (Q1-4). These results

Table 2 Number of participants with experience in each language (multiple replies allowed)

Programming language C C++ C# Visual Basic Java Perl

Number of participants 13 6 3 4 4 1

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 9 of 16

suggest that participants of the practice were generally satisfied with learning support

by TEDViT.

The questionnaire Q2 has five items, all of which are same as those conducted over

several years at the HEPT training course:

Q2-1.Asks how much the participant was interested in learning the session content

using 5-point scale.

Q2-2.Asks how well the participant understood the session learning content using 5-

point scale.

Q2-3.Asks how fast the participant perceived was the teacher’s progress in the session

using 5-point scale (1 = too slow, 5 = too fast).

Q2-4.Asks how difficult the session learning content was using 5-point scale (1 = too

easy, 5 = too difficult).

Q2-5.Asks how difficult the exercises were in the session using 5-point scale (similar to

Q2-4).

Table 5 provides the average and standard deviation of each answer score in Q2, in-

cluding those in the questionnaire conducted in 2013 and 2014. The corresponding

learning sessions in 2013 and 2014 were conducted by the same teacher as those in

2015 without TEDViT. The sessions in 2013 were held at 5 June 2013 for 30 engineers,

and those in 2014 were held at 28 May 2014 for 16 engineers. The answer scores of

Fig. 4 Example of environment for learning generic pointers

Table 3 Average and standard deviation of answered scores in Q1-1, Q1-2, and Q1-3

Average SD

Q1-1 4.60 0.49

Q1-2 4.40 0.61

Q1-3 4.33 0.60

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 10 of 16

sessions in 2015 suggest that participants were generally satisfied with practiced ses-

sions with TEDViT.

Discussion
Our practice described in the previous section was conducted not in virtual classroom

for experiment, but in the actual open lecture. Hence, we need to take into account

that the knowledge obtained from the practice might have some limitations, though it

would be more practical. The limitations of our practice are that we could not procure

an enough number of participants to measure the learning effects and could not con-

duct a certain test for the evaluation of the effects. In this section, we discuss that the

learning supports provided by TEDViT were accepted positively by the participants and

that TEDViT could support teacher’s class management by reducing unevenness among

learners in understanding.

According to the results in Table 3, the participants of our practice rated highly the

contributions of TEDViT to understanding C programming. In the open lecture in

which our practice was conducted, the participants’ background knowledge tend to be

extremely uneven. The positive results regardless of this tendency suggest that partici-

pants strongly support learning activities based on observing and comparing program

code, memory image, and target domain world. Moreover, according to the results in

Table 4, the indicated teaching materials which were answered by more than five par-

ticipants are divided broadly into the following two categories:

1. Learning items with complicated behavior, such as “handling an array to reverse the

order” and “sample library of integer stacks”

Table 4 Number of answers indicating useful teaching materials in Q1-4 (multiple replies allowed)

Teaching material N

Pointer operators and memory model 7

Calls by value 3

Calls by pointer 7

Return values with pointers 4

Relationship between array names and pointers 3

Relationship between arithmetic operations on pointers and array index operations 3

Memory model of multidimensional arrays 4

Handling an array to reverse the order 5

Operations on generic pointers 9

Sample library of integer stacks 9

Table 5 Average and standard deviation of answered scores in Q2 including past surveys

2015 (TEDViT) 2014 2013

Average SD Average SD Average SD

Q2-1 4.67 0.60 4.31 0.58 4.33 0.91

Q2-2 4.07 0.77 4.38 0.93 3.17 1.10

Q2-3 3.07 0.44 3.06 0.66 3.37 0.55

Q2-4 3.27 0.57 3.13 0.86 3.53 0.76

Q2-5 3.47 0.72 3.25 0.83 3.60 0.66

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 11 of 16

2. Learning items where a learner is required to grasp the relationship between the

target domain world and memory model, such as “pointer operators and memory

model,” “calls by pointer,” and “operations on generic pointers”

We consider that the participants who felt to be supported by the visualized target

domain world to understand the program code with complicated behavior would prefer

materials in the former categories. This suggests that the visualization defined by the

teacher successfully supports participants to understand program behavior. On the

other hand, the positive answers to the latter categories suggest that not a few partici-

pants felt to be supported to grasp the relationship between the memory image and the

target domain world by observing and comparing the corresponding fields visualized

by TEDViT. This suggests that synchronous and simultaneous visualization of program

code, memory image, and target domain world contributes to supporting learners to

understand the relationship.

According to the results in Table 5, practiced sessions with TEDViT would contribute

to participants’ understanding in the same degree as sessions without TEDViT. This

means that TEDViT did not impede the participants’ learnings in the classroom prac-

tice. We can also find that the standard deviations of answer scores on understanding

degree (Q2-2), session speed (Q2-3), and session difficulty (Q2-4) in 2015 are lower

than those in 2013 and 2014. Figure 5 provides transition of standard deviation by

means of a graph. These reductions of standard deviations mean reduction of uneven-

ness in levels of understanding of the session contents and in levels of difficulties of fol-

lowing class among participants.

We conducted an F test to evaluate the variance uniformity of answer distributions

on each items of Q2 for two groups: one is the answer in 2015 and the other is the an-

swer in 2013 and 2014. Table 6 provides the result of the F test. Table 7 shows the re-

sult of the t test conducted for the same two groups as F test. Assuming significance

level of 0.05, statistically significant differences were not found through the both test.

However, there were no participants of sessions in 2015 who answered “not under-

standable at all” or “slightly not understandable” in Q2-2, in contrast to the sessions in

2013 and 2014, where some participants did provide these answers. Moreover, we con-

ducted an interview with the teacher of practiced classes and received a comment that

unevenness among participants in progress in their exercises could be reduced by TED-

ViT, and hence, he felt easy to teach the practiced classes. These suggest that individual

learning support successfully reached every participant by using TEDViT.

As mentioned in the “Related works” section, several program visualization systems

have been developed so far, and several positive effects have been reported for learning

with those systems. Nevertheless, there has been very few works that focused on redu-

cing unevenness among learners in understanding. Rather, learning support systems are

evaluated on the premise of the unevenness based on adaptive learning. For example,

Brusilovsky and Spring (2004) developed a system called WADEIn, which has a func-

tion that visualizes natural language explanations adaptively depending on learners’ un-

derstanding. They introduced WADEIn into pointer learning and obtained positive

evaluations from more than 80% subjects. However, teachers may hesitate to introduce

a system like WADEIn into actual classrooms, because adaptive visualizations will take

a high cost of preparation for a wide variety of understanding among learners and it

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 12 of 16

will be difficult to plan class schedules assuming progress in learners’ exercises with

adaptive system. The problem of preparation cost and scheduling difficulty is more ser-

ious especially in open lectures where teachers cannot assume levels of learners’ back-

ground knowledge. We consider that our practice is regarded as one of the instances to

address the unevenness among learners in understanding with reducing the preparation

costs. The comments by the teacher of our practice were positive in introducing TED-

ViT, and we conclude that our classroom practice could be conducted successfully by

introducing TEDViT.

Based on these discussions, we can summarize knowledge obtained through the

classroom practice as follows:

� Learning based on observations and comparisons of target program code, memory

image, and target domain world would contribute to understanding of pointers.

� TEDViT could contribute to reducing unevenness among learners in progress in

their exercises and could support teacher’s class management.

The limitation of our practice is that we could not procure an enough number of par-

ticipants for the practice, because our practice was incorporated into the sessions of an

open lecture for engineers already employed. However, we believe that continuous

practice will suppress this matter. We plan to continue the classroom practices of pro-

gramming education introducing TEDViT. Other limitations include that our evalu-

ation of learning effect with TEDViT was based only on the answer scores in

questionnaires. It was difficult to conduct a certain overall test for the evaluation of the

learning effect with TEDViT because the participants in the practice were not students,

Fig. 5 Transitions of the standard deviations of answered score in Q2

Table 6 The result of F test for Q2 answers in 2015 versus those in 2013 and 2014

F(14, 46) p

Q2-1 0.55055 0.2234

Q2-2 0.44820 0.1034

Q2-3 0.56908 0.2503

Q2-4 0.52110 0.1838

Q2-5 0.98862 0.9594

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 13 of 16

but engineers already employed. We plan to develop some way of direct evaluation

realizing lower externalization cost of participant’s learning achievement and to exam-

ine some indirect evaluation such as recording and analyzing participant’s operation

logs of TEDViT.

Conclusion
In this paper, we described a classroom practice for understanding pointers and a pro-

gram visualization system introduced into the practice. Pointer is one of most difficult

learning targets for novice learners to understand as well as recursion. Introducing pro-

gram visualization systems to programming classes is expected to support novice

learners to overcome these difficulties. Program visualization systems visualize the data

structures processed by the target programs in certain ways and support learners in un-

derstanding the programs and algorithms by making their behavior visible. However,

concrete values of pointer variables are often concealed in such visualizations, and

hence, the way in which each visualized object is located on the memory is not made

explicit. Therefore, novice learners often fail to grasp the relationship between program

behavior and program code and reach a learning impasse.

To address this issue, we focused on TEDViT, a system providing an environment to

observe and compare program code, memory image, and target domain world. TEDViT

visualizes three visualization fields simultaneously and synchronously and provides a

learning environment where learners can observe and compare the three, that is, the

target program code, the memory image representing the concrete values of the vari-

ables, and the target domain world representing logically the data structures processed

by the target program. Moreover, in order to allow teachers to set their instruction con-

tent based on the growing variety of learner background knowledge, TEDViT visualizes

the status of the target domain world according to the visualization policy defined by

the teacher. Using TEDViT, teachers can provide flexible visualizations that are consist-

ent with the teacher’s class instructions to the learners, and learners can be less con-

fused with the visualizations.

We conducted a classroom practice introducing TEDViT for understanding pointers

in connection with a memory model. The participants in this practice were not univer-

sity students, but software engineers responsible for software development. They

learned program behavior by observing and comparing the memory image and target

domain world visualized in the learning environment of TEDViT. In the questionnaire

conducted after our practice, we obtained generally satisfactory answers for TEDViT.

The analysis of answered scores suggested that TEDViT could contribute to reducing

unevenness among participants in levels of understanding and that individual learning

support successfully reached every participant by using TEDViT. In the questionnaire,

Table 7 The result of t test for Q2 answers in 2015 versus those in 2013 and 2014

t df p

Q2-1 1.8412 31.695 0.0750

Q2-2 1.8238 35.550 0.0766

Q2-3 − 1.2777 31.126 0.2108

Q2-4 − 0.5976 32.670 0.5542

Q2-5 − 0.0064 23.745 0.9949

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 14 of 16

some participants commented that the observations of the memory image in learning

pointers were especially valuable. The comments by the teacher of our practice were

also positive in that unevenness among participants in progress in their exercises could

be reduced by TEDViT, and hence, he felt easy to teach the practiced classes.

These results suggest that synchronous and simultaneous visualization of program

code, memory image, and target domain world contributes to understanding of point-

ers. Although we need to consider that a statistically insufficient number of the partici-

pants of our practice may influence the reliability of evaluation results, continuous

practice would suppress this matter. We can conclude that the framework of our class-

room practice could be conducted successfully by introducing TEDViT. In future work,

we plan to conduct more educational practices and evaluate the effectiveness of using

TEDViT with higher reliability.

Acknowledgements
This study was supported by JSPS KAKENHI (Grant Numbers JP24300282, JP16K01084).

Authors’ contributions
KY participated in the development of the system, summarized the research, and wrote this paper. RF and SK
implemented and evaluated the system. YN conducted the classroom practice. YN, TK, and YI gave advice based on
the actual teaching experience. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Faculty of Business Administration, Tokoha University, 1230 Miyakoda, Kita-ku, Hamamatsu, Shizuoka 431-2102, Japan.
2Graduate School of Informatics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan.
3Faculty of Informatics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan. 4Shizuoka
University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan.

Received: 10 December 2016 Accepted: 22 August 2017

References
Ben-Ari, M., Bednarik, R., Levy, R. B.-B., Ebel, G., Moreno, A., Myller, N., & Sutinen, E. (2011). A decade of research and

development on program animation: the Jeliot experience. Journal of Visual Languages & Computing, 22(5), 375–384.
Brusilovsky, P., & Spring, M. (2004). Adaptive, engaging, and explanatory visualization in a C programming course (pp.

1264–1271). Hypermedia and Telecommunications: Proceedings of World Conference on Educational Multimedia.
Fossati, D., Eugenio, B. D., Brown, C., & Ohlsson, S. (2008). Learning linked lists: experiments with the iList system. In

Proceedings of the 9th international conference on intelligent tutoring systems (pp. 80–89).
Gries, P., & Gries, D. (2002). Frames and folders: a teachable memory model for Java. Journal of Computing Sciences in

Colleges, 17(6), 182–196.
Kogure, S., Fujioka, R., Noguchi, Y., Yamashita, K., Konishi, T., & Itoh, Y. (2014). Code reading environment according to

visualizing both variable’s memory image and target world’s status. In Proceeding of the 22nd international
conference on computers in education (pp. 343–348).

Lahtinen, E., Ala-Mutka, K., & Jävinen, H.-M. (2005). A study of the difficulties of novice programmers. ACM SIGCSE
Bulletin, 37(3), 14–18.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O., & Silvasti, P. (2004). Visual algorithm simulation exercise
system with automatic assessment: TRAKLA2. Informatics in Education, 3(2), 267–288.

Milne, I., & Rowe, G. (2002). Difficulties in learning and teaching programming—views of students and tutors. Education
and Information Technologies, 7(1), 55–66.

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs with Jeliot3. Proceedings of the working
conference on advanced visual interfaces, 373-376.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L., McNally, M.,
Rodger, S., & Velázquez-Iturbide, J. (2002). Exploring the role of visualization and engagement in computer science
education. ACM SIGCSE Bulletin, 35(2), 131–152.

Neve, P., Hunter, G., Livingstone, D., & Orwell, J. (2012). NoobLab: an intelligent learning environment for teaching
programming. Proceedings of the 2012 IEEE/WIC/ACM Joint Conferences on Web Intelligence and Intelligent
Agent Technology, 3, 357–361.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., & Paterson, J. (2007). A survey of
literature on the teaching of introductory programming. ACM SIGCSE Bulletin, 39(4), 204–223.

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 15 of 16

Rössling, G., & Freisleben, B. (2002). ANIMAL: a system for supporting multiple role in algorithm animation. Journal of
Visual Languages & Computing, 13(3), 341–354.

Sorva, J. (2013). Notional machines and introductory programming education. ACM Transactions on Computing
Education (TOCE), 13(2), 8.

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of generic program visualization systems for introductory
programming education. ACM Transactions on Computing Education (TOCE), 13(4), 15.

Tezuka, D., Kogure, S., Noguchi, Y., Yamashita, K., Konishi, T., & Itoh, Y. (2016). GUI based environment to support writing
and debugging rules for a program visualization tool. Proceedings of the 24th International Conference on
Computers in Education, 303-305.

Yamashita, K., Fujioka, R., Kogure, S., Noguchi, Y., Konishi, T., & Itoh, Y. (2016). Practice of algorithm education based on
discovery learning using a program visualization system. Research and Practice in Technology Enhanced Learning,
11(15), 1–19. https://doi.org/10.1186/s41039-016-0041-5.

Yamashita, K., Nagao, T., Kogure, S., Noguchi, Y., Konishi, T., & Itoh, Y. (2016). Code-reading support environment
visualizing three fields and educational practice to understand nested loops. Research and Practice in Technology
Enhanced Learning, 11(3), 1–22. https://doi.org/10.1186/s41039-016-0027-3.

Yamashita et al. Research and Practice in Technology Enhanced Learning (2017) 12:17 Page 16 of 16

http://dx.doi.org/10.1186/s41039-016-0041-5
http://dx.doi.org/10.1186/s41039-016-0027-3

	Abstract
	Introduction
	TEDViT: Teacher Explaining Design Visualization Tool
	Visualizing memory image of variables and status of target domain world
	Visualizing status of target domain world based on teacher’s intention
	Related works

	Methods: Classroom practice for understanding pointers
	Results: Classroom practice evaluation

	Discussion
	Conclusion
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

