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Abstract

Learning from interactive learning environments enriched with multiple external
representations (MERs) is often beneficial. The learning benefits of MERs highly rely
on the development of Representational Competence. Representational Competence
refers to an ability to translate and see relations between MERs. The relevant research
findings have consistently reported learners’ difficulty in relating and translating in
MERs due to insufficient development of Representational Competence. Although
dynamic linking is one of the strategies recommended to address this issue, it offers
mixed results. This paper reports design of a new interaction feature that overcomes
some of the limitations of traditional dynamically linked representations. We
designed an additional interaction in dynamically linked MERs to support learners’
cognitive demands; we refer to this as Reciprocative Dynamic Linking. The goal of this
additional affordance was to strengthen learners’ cross-representation cognitive
linkage by promoting Representational Competence. The paper reports the study
conducted to investigate effects of Reciprocative Dynamic Linking on students’
Representational Competence. The said study was conducted in a course on Signals
and Systems from Electrical Engineering program (N = 24). The subjects were
assigned to two conditions: a Simulation and a Simulation with Reciprocative
Dynamic Linking. The representation competence was assessed with an instrument
for measuring Representational Competence within Signals and Systems domain.
The effect of Reciprocative Dynamic Linking on learners’ cognitive load was also
investigated. The results confirmed that Reciprocative Dynamic Linking could lead to
improvement in Representational Competence and thus, higher learning for “Apply
and Analyze Procedural knowledge” categories of tasks. Reciprocative Dynamic
Linking also promoted germane cognitive load of learners, as it could offer the
required cognitive support to improve learners’ Representational Competence. The
findings from semi-structured interviews and screen capture analysis corroborated
the results. This paper provides details of how to design Reciprocative Dynamic
Linking in interactive learning environments and its effect on learners’
Representational Competence. Apart from establishing learning effectiveness of
Reciprocative Dynamic Linking, the study further contributes by confirming the role
of cognitive processing of learners while learning from interactive learning
environments. The findings from the study suggest designing strategies not for just
(Continued on next page)
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creating highly interactive learning environments but equipping a given learning
environment with conducive interaction features that foster learning.

Keywords: Multiple external representations, Interactive learning environment,
Simulation, Representational Competence, Affordance, Cognitive load

Introduction
Various forms of computer-based learning environments prevalent in education include

animation, interactive simulation, gaming environment, smart boards, adaptive learning

environments, ubiquitous learning environments, and various system simulators. In this

paper, we refer “interactive learning environments” (ILEs) to computer-based learning

environments; which present content dynamically in an interactive manner, permitting

interactions between a learner and a learning material with the help of different kinds

of interaction features. Interactive simulation, one of the type of interactive learning en-

vironments, have been used in the teaching-learning of elementary level science con-

cepts (Barak et al. 2011), as well as complex concepts or processes in engineering and

allied courses (Boucheix and Schneider 2009; Lattu et al. 2003; de los Santos Vidal et

al. 1996; Wang et al. 2011). ILEs are often enriched with multiple external representa-

tions (MERs) to explain relevant scientific concepts and phenomenon.

Learning with MERs facilitates and strengthens learning process by providing several

mutually referring sources of information (Moreno and Durán 2004). ILEs include a var-

iety of multiple representations in the form of audio, videos, animations, tables, and

graphs. Learners can integrate concepts from different representation formats and sensory

modalities into one meaningful experience (Moreno and Mayer 2007). Using MERs,

learners build abstractions that promote deeper understanding of domain (Ainsworth and

VanLabeke 2004). The coordination of different representations in a cohesive manner and

explicit identification of their relations support students’ understanding at a deeper level.

Research findings related to learning impact of MERs have consistently reported

learners’ difficulty in relating and translating in MERs. Representational Competence

refers to learner’s ability to “reflectively use a variety of multiple external representa-

tions or visualizations, singly and together, to think about, and act on the underlying

physical entities and processes in a domain” (Kozma and Russell 1997). This includes

an ability to translate and see the relations between representations. The learning bene-

fits of MERs highly rely on how students translate between and connect across multiple

external representations (Ainsworth 1999; Kozma and Russell 1997; Wu and Shah

2004). To overcome the learning difficulty in relating and translating in MERs,

researchers have recommended support for learners in translation by means of appro-

priate design features and design guidelines (Tabachneck et al. 1994; Kozma 2003).

Dynamic linking (also referred to as dyna-linking) in MERs has been one such popular

strategy adopted for enabling translation among representations (Ainsworth 1999). It is

expected that dyna-linking helps learners to establish relationships between representa-

tions (Kaput 1989; Scaife and Rogers 1996). However, the results of empirical studies

have been mixed. Dyna-linking bears the risk of users remaining passive learners due

to automatic transitions and learners experiencing more cognitive load due to the re-

quirement of focusing on multiple contents of the learning environment (van der Meij
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and de Jong 2006). In a comparative study, simply linking representations dynamically

did not lead to improved learning compared to non-linking (van der Meij and de Jong

2006). Thus, due to the mixed nature of results, there is a demand for further research

to ensure learning benefits from dyna-linked MERs.

Research in cognitive and learning sciences has acknowledged that deeper learning

with multiple external representations depends on certain conditions including the cog-

nitive load of learners (Ainsworth 1999, 2006; Kozma and Russell 1997; Wu and Shah

2004). Cognitive load is not simply considered as a by-product of the learning process

but as a major factor that determines success of an instructional intervention. Learning

is hindered when cognitive overload occurs and working memory capacity is exceeded

(de Jong 2010). Learning with separate representations generates a heavy cognitive load

leaving fewer resources for actual learning, since learners are required to relate dispar-

ate sources of information (Sweller 1989). Thus, instructional control of cognitive load

while leaning from ILEs, especially while dealing with features such as MERs, is vital.

Therefore, learning environments need to be designed with interactive features that

meet learners’ cognitive processing demands.

This article reports the design of a new interaction feature that enhances the learning

process by overcoming some limitations of traditional dynamically linked MERs. Con-

sidering the need to strengthen learners’ Representational Competence and support

their cognitive load demands while translating among MERs, we designed an additional

interaction in dynamically linked MERs. We refer to this as Reciprocative Dynamic

Linking (RDL) which is an affordance to select and manipulate each of the MERs indi-

vidually in a reciprocative manner. Most conventional dynamically linked MERs permit

and offer only one representation for manipulation, and the corresponding changes in

other representations are displayed. This does not allow learners to learn the reciprocal

linkage of other representations with the manipulated representation. Learners’ at-

tempts to develop this cross-representational linkage by attending multiple representa-

tions simultaneously with conventional dynamically linked MERs put additional

learning demands on learners (Van der Meij and de Jong, 2006). With Reciprocative

Dynamic Linking, learners not just observe dynamic changes of MERs but are also able

to select and manipulate all representations one by one. Learners are able to see auto-

matic changes occurring in the second representation when the first representation is

manipulated, and they are also able to see the changes occurring in the first representa-

tion when they actively manipulate the second representation. More importantly,

learners are able to make intentional choices about which representation is to be

selected for manipulation. The goal of this additional affordance is to strengthen

learners’ cross-representation cognitive linkage by promoting Representational Compe-

tence. It is expected that this improvement in the Representational Competence would

further help learners in improving learning of domain knowledge.

In this paper, we present the design of Reciprocative Dynamic Linking in ILEs devel-

oped for a topic on Signal Representation in the course on “Signals and Systems”; a sec-

ond year course from Electrical Engineering undergraduate program. The paper reports

the study conducted to investigate effect of Reciprocative Dynamic Linking on students’

Representational Competence assessed in the selected domain. The effect of Reciproca-

tive Dynamic Linking on learners’ cognitive load was also investigated as a part of this

study, as the proposed feature of Reciprocative Dynamic Linking was expected to offer
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the required instructional support to meet learners’ cognitive load demands. The results

confirmed that Reciprocative Dynamic Linking could lead to higher learning, and it of-

fered the required cognitive support to improve learners’ Representational Competence.

The findings from semi-structured interviews and screen capture analysis corroborated

the results. This paper provides details of how to design Reciprocative Dynamic Linking

in ILEs and how it contributes towards improving learners’ Representational

Competence.

Related work
The main strength of MERs in ILEs lies in the different types of (dynamic) representa-

tions that can be included and its ability to combine different representations in one

interface. MERs offer several learning benefits. Each representation in MERs can show

specific aspects of the domain to be learnt. Different types of representations may be

useful for different purposes, as they differ in their representational and computational

efficiency (Larkin and Simon 1987). Teaching and learning with more representations

facilitates and strengthens the learning process by providing several mutually referring

sources of information (Kozma and Russell 1997; Grouws 1992) and leads to deeper

learning. It has been reported that “the cognitive linking of representations creates a

whole that is more than the sum of its parts … It enables us to ‘see’ complex ideas in a

new way and apply them more effectively” (Kaput 1989, 1992). As reported in the re-

search studies, students generally benefit from being exposed to a wide range of repre-

sentations and perspectives on a problem, including underlying mathematical and

scientific laws, engineering design strategies and objects, as well as the social context

(Nathan et al. 2011, 2013; Walkington et al. 2011). It also further highlighted that the

coordination of different representations in a cohesive manner and explicit identifica-

tion of their relations supports student understanding.

Learning from multiple representations is characterized by means of three key func-

tions: (i) to provide complementary information and processes, (ii) to constrain inter-

pretations, and (iii) to construct a deeper domain understanding (Ainsworth 1999). The

major learning demands from MERs on learners are to understand the semantics of

each representation, to understand which parts of the domain are represented, to relate

the representations to each other, and to translate between the representations.

In general, learners’ ability in translating between, seeing the relations between MERs

and connecting across MERs, plays an important role in deciding learning effectiveness

while learning from MERs (Ainsworth 1999, 2006; Kozma and Russell 1997). The Rep-

resentational Competence of learners subsumes learners’ abilities to comprehend how

two representations are related and how they can be used together. Thus, Representa-

tional Competence influences learning from MERs.

When learning with separate representations, learners are required to relate separate

sources of information, which may generate a heavy cognitive demand, leaving fewer

resources for actual learning, especially in dynamically changing MERs. Thus, learning

from MERs places demands on working memory and creates challenges for learners

(van Someren et al. 1998), especially those with low prior knowledge (Kozma and Rus-

sell 1997; Yerushalmy 1989). These challenges can cause students to interact with sim-

ulations randomly, instead of systematically (de Jong and van Joolingen 1998). Such

learning limitations affect learners’ understanding and results into a discourse that is
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constrained by the surface features of individual representations. Thus, the unique cog-

nitive demand while learning MERs is to understand how to translate between repre-

sentations in dynamic learning environments.

Researchers recommended support for learners in this translation through appropri-

ate design features and design guidelines (Tabachneck et al. 1994; Kozma 2003). A var-

iety of approaches in the form of guidelines such as implicit cues, integrated

representations, static linking, dynamic linking, and explicit instruction have been sug-

gested to address students’ such difficulties (Ainsworth 2006; van der Meij and de Jong

2004). While Kozma (Kozma 2003) suggested design principles to increase connections

between representations for supporting students’ domain understanding, DeFT (Design,

Functions, Tasks) principles were implemented in the DEMIST learning environment

(Ainsworth and VanLabeke 2004). These principles recommended dynamical linking

(dyna-linking) in MERs, when multiple external representations are used to support

complementary roles and information, and to constrain interpretation.

Dyna-linking of MERs has been one such popular strategy for enabling translations

between representations (Ainsworth 1999). With dynamically linked representations, ac-

tions performed on one representation are automatically shown in all other representa-

tions. It is expected that dyna-linking helps learners to establish relationships between

representations (Kaput 1989; Scaife and Rogers 1996). It helps learners in accomplishing

an important task of translating between representations. Two important learning re-

quirements are considered while designing dyna-linked MERs; the need to learn content

from complementary representations and the need to reduce cognitive load of making

mental connections between representations (Wu and Puntambekar 2012). The learning

benefits from dyna-linked MERs are attributed to the cognitive support extended to

learner. As the translations between MERs are taken care by the technology in the learn-

ing environment, learners are freed to concentrate on interpreting the representations

and their consequences. The Cognitive Theory of Multimedia Learning (Mayer 2001) and

the dual channel assumption of Dual Coding Theory (Paivio 1986) support the use of

dynamic linking of MERs to reduce the cognitive load upon learners.

An environment using multiple dynamically linked representations can facilitate nov-

ices’ learning (Kozma and Russell 1997). While the simultaneously changing represen-

tations in dynamic linking have been conceived as a useful feature, it has also received

criticism. Ainsworth (1999) cautioned that dynamic linking might leave a learner too

passive in the learning process. Dynamic linking may discourage reflection on the

nature of the translations, leading to a failure of learner in constructing the required

understanding. Another problem with dynamic linking has been that with multiple

dynamically changing representations, learners need to attend to changes that occur

simultaneously in different regions of various representations, leading to cognitive over-

load (Lowe 2003). It must be noted that on the one side, while the feature of dyna-

linking is being reported to offer cognitive support while learning from MERs, on the

other hand, it has also been considered to induce more cognitive load due to the need

to attend to changes that occur simultaneously in different regions of various represen-

tations. Empirical studies such as one with the SIMQUEST environment (van der Meij

and de Jong 2006) found that simply, linking representations dynamically could not im-

prove learning compared with non-linking. It showed some improvement in the learn-

ing only with spatially integrated linked representations. Such an integration of
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representations is not always possible, due to the nature of the learning materials or

specific learning goals.

Thus, the nature of results of dyna-linking in MERs is mixed, and hence, there is a

need for further research to design dynamic linking with apt interactivity that would

offer the necessary cognitive support to learners while translating among representa-

tions. This also highlights the relevance of the concept of cognitive load and cognitive

load theory while learning with dyna-linked interactive learning environments. The

basic idea of cognitive load theory is that cognitive capacity in working memory is lim-

ited; so that if a learning task requires too much capacity, learning will be hampered.

The recommended remedy is to design instructional systems and features that optimize

the use of working memory capacity and avoid cognitive overload.

DeLeeuw and Mayer (2008) theorize that there are three types of cognitive processing

(essential, extraneous, and generative) and place them in the triarchic model of cognitive

load. Mayer proposed this model for organizing framework for the cognitive theory of

multimedia learning and stated that a major goal of multimedia learning and instruction

is to “manage essential processing, reduce extraneous processing and foster generative pro-

cessing” (Mayer 2009). Intrinsic cognitive load occurs during the interaction between the

nature of the material being learnt and the expertise of the learner. The second type, ex-

traneous cognitive load, is caused by factors that aren’t central to the material to be learnt,

such as presentation methods or activities that split attention between multiple sources of

information, and these should be minimized as much as possible. The third type of cogni-

tive load, germane cognitive load, enhances learning and results in task resources being

devoted to schema acquisition and automation. Intrinsic cognitive load cannot be manip-

ulated, but extraneous and germane cognitive loads can be manipulated. As germane cog-

nitive load relates to learner’s engagement in cognitive processing such as mentally

organizing the material and relating it to prior knowledge, it is important to channelize

and design instructional design strategies to increase germane cognitive load. Thus, we

consider designing interaction features to increase germane cognitive load as one of the

strategies to offer necessary cognitive support to learners for optimizing cognitive re-

sources while translating among the representations.

On this backdrop, aptly designed interactive features in interactive learning environ-

ments can offer the necessary cognitive support to learners. Such features can ensure ef-

fective learning from dynamically linked MERs in technology-enhanced learning (TEL)

environments. We designed “Reciprocative Dynamic Linking”; an additional interaction

feature to offer the required cognitive support to learners while learning from MERs. The

following section explains designing of “Reciprocative Dynamic Linking.”

Designing “Reciprocative Dynamic Linking” in MERs
The goal of Reciprocative Dynamic Linking is to promote Representational Compe-

tence by strengthening learners’ cross-representation cognitive linkage while learning

from multiple external representations. There have been numerous taxonomies used

for defining and categorizing various forms of MERs. We refer to the most commonly

used taxonomy (Wu and Puntambekar 2012) that includes four major types of repre-

sentations: verbal-textual, symbolic-mathematical, visual-graphical, and actional-

operational. Considering the domain requirement, symbolic-mathematical and visual-

graphical types of MERs are used as forms of multiple representations in the learning
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materials developed. The key feature of Reciprocative Dynamic Linking has been the

reciprocative interface. It allows selection and manipulation of each of the MERs indi-

vidually in a reciprocative manner. The reciprocative interface is two-way manipulative,

and it enables learners to carry out meaningful switchover among MERs resulting in

comprehension of relations between them. The dynamically linked MERs can be

selected for manipulation using an interactive selection affordance.

The Reciprocative Dynamic Linking derives its base from contemporary theories of

cognition such as distributed and embodied cognition (Glenberg et al. 2013). These

theories postulate that external representations play more roles than merely decreasing

cognitive load and can support operations that are difficult to do by imagination alone

(Kirsh 2010). Actions like manipulations could be a way of promoting integration of

MERs (Chandrasekharan 2009).

Figure 1 shows the screenshot of a simulation in the topic of signal representation de-

signed with Reciprocative Dynamic Linking. As shown in the Fig. 1, there are two

dynamically linked MERs in the form of a mathematical equation (MER 1: mathematical

equation of a signal in time domain) and a signal spectra (MER 2: graphical representa-

tions of a signal in frequency domain). The reciprocative interface feature of Reciprocative

Dynamic Linking allows both the representations to get manipulated. Learners are not

just able to see automatic variation occurring in the signal spectra when signal equation

(MER 1) is manipulated but are also able to see the variation occurring in the signal

mathematical equation when signal spectra (MER 2) is manipulated.

Research questions and hypotheses
One of the objectives of the study was to assess the effect of Reciprocative Dynamic

Linking on the development of learners’ Representational Competence. Development

of Representational Competence was judged by assessing how learners understand se-

mantics of each representation, how they understand which parts of the domain are

Fig. 1 Reciprocative interface of Reciprocative Dynamic Linking
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represented, how they relate representations to each other, and how they translate be-

tween representations (Ainsworth 1999). The first research question assessing learners’

development of Representational Competence was

RQ1: How does Reciprocative Dynamic Linking affect learning of Representational

Competence in interactive learning environments?

Apart from assessing effectiveness of Reciprocative Dynamic Linking, investigating how

it supports learners’ cognitive processing especially germane cognitive load was also ne-

cessary to analyze learning effectiveness of this feature. Thus, another objective of the

study was to analyze impact of Reciprocative Dynamic Linking on cognitive load of

learners. The second research question aimed at assessing learners’ cognitive load in the

presence of Reciprocative Dynamic Linking. The inclusion of Reciprocative Dynamic

Linking was foreseen as an additional learning support to learners that would positively

influence their germane cognitive load. In line with this, the second research question was

RQ2: How is learners’ cognitive load influenced by the presence of Reciprocative

Dynamic Linking in interactive learning environments?

To answer these research questions, we used the following types of learning environ-

ments: (a) Simulation (SIM) and (b) Interactive Simulation with Reciprocative Dynamic

Linking (SIM-RDL). SIM and SIM-RDL were both designed for the same content for

the selected topic. While SIM-RDL was designed with Reciprocative Dynamic Linking

to offer reciprocative interface, SIM was designed without Reciprocative Dynamic Link-

ing. The development of representation competence was assessed with the help of an

instrument for measuring “Representational Competence within Signals and Systems

domain.” Germane cognitive load was measured using validated a self-reported cogni-

tive load subjective rating scale. The details of the instruments used are given in Sec-

tion 5.3 of this paper.

The context of this research study has been a course on Signals and Systems,

which is a foundation course offered in the second year of Electrical Engineering

programs. The topic of the study, “Representation of signals in time and frequency

domains,” demands learning from multiple representations. This topic forms the

core knowledge required for building up knowledge related to different transforms

(such as Fourier and Laplace transforms) which are regarded as important and dif-

ficult topics as reported in Signals and Systems education research literature (Wage

et al. 2005). Deeper understanding of time domain and frequency domain represen-

tations, as well as mathematical-graphical translations, is mandatory for under-

standing this topic. The translation of a signal to its multiple representations has

been reported as a learning problem in this course (Fayyaz 2014); hence, it is an

important topic to address. The learning material developed offered MERs of three

kinds: (i) linking time domain graph and frequency domain graph, (ii) linking fre-

quency domain graph and time domain mathematical expression, and (iii) linking

two different dynamically linked mathematical representations. All the questions

expected learners to select appropriate MER, relate given MERs, and construct

new MERs.
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In terms of learning outcomes, students are expected to comprehend various con-

cepts from the course and also to apply/analyze them in a meaningful manner while

attempting associated procedural tasks. Thus, the “Understand,” “Apply,” and “Analyze”

cognitive levels as defined in the Revised Bloom’s Taxonomy (Krathwohl 2002) were

emphasized in this study. Work on the Signals and Systems Concept Inventory (Wage

et al. 2005) and the work reported by Hiebert and Lefevre (1986) have emphasized on

the need to focus on “Conceptual and Procedural” knowledge types as well as on their

co-existence. One of the objectives of engineering curriculum has been to develop con-

ceptual and procedural knowledge as mutually supportive factors (Taraban et al. 2007).

This further supports the need for catering these two knowledge types while forming

hypotheses. Thus, for both the research questions, hypothesis was formed for two dif-

ferent categories of knowledge type and three cognitive levels as per two-dimensional

taxonomy of educational objectives (Anderson and Krathwohl 2001).

Firstly, it was expected that students learning with SIM-RDL would learn better as

compared to students learning with SIM due to development of more Representational

Competence. Thus, the hypotheses for RQ1 were as follows:

H1-A: Students learning with SIM-RDL will score higher as compared to students

learning with SIM for Conceptual knowledge at the “Understand” level.

H1-B: Students learning with SIM-RDL will score higher as compared to students

learning with SIM for Conceptual knowledge at the “Apply” level.

H1-C: Students learning with SIM-RDL will score higher as compared to students

learning with SIM for Procedural knowledge at the “Apply/Analyze” level.

Secondly, it was hypothesized that Reciprocative Dynamic Linking will improve learn-

ing in SIM-RDL due to increase in germane cognitive load of learners assuming all

other cognitive loads experienced by learners remained constant. Thus, the following

hypotheses were formulated for the second research question:

H2-A: Students learning with SIM-RDL experience higher germane cognitive load as

compared to students learning with SIM for the “Understand” level tasks for “Concep-

tual” knowledge.

H2-B: Students learning with SIM-RDL experience higher germane cognitive load as

compared to students learning with SIM for the “Apply” level tasks for “Conceptual”

knowledge.

H2-C: Students learning with SIM-RDL experience higher germane cognitive load as

compared to students learning with SIM for the “Apply/Analyze” level tasks for

“Procedural” knowledge.

Methods
Participants and experimental design

Participants were students from second year of engineering from three different

colleges affiliated to University of Mumbai (N = 24; 14 males and 10 females). The

study was conducted using a two-group post-test-only experimental research de-

sign. Since students were not exposed to the contents of the learning material in
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any of the courses studied in the previous semesters, post-test-only design was

found to be appropriate for the study. Participants were randomly assigned to one

of the following two conditions: (a) Simulation (SIM group); N = 12 and (b) Inter-

active Simulation with Reciprocative Dynamic Linking (SIM-RDL); N = 12.

The participants were studying in the third semester of the program. The course

Signals and Systems is offered in the fourth semester of the program. Thus, the partici-

pants had no prior knowledge about the content of the simulation and they were at par

for their prior knowledge based on their academic structure. Additionally, the prior

knowledge was checked by giving two questions to solve before the treatment. In these

questions, students were asked to represent a given sinusoidal signal in frequency do-

main spectral representation. The first question was, “A sinusoidal signal is described

x(t) = 4cos (20πt + π/6). Can you identify its amplitude, frequency and phase?” The sec-

ond question in continuation with the first one was, “Show how the signal will look

when it is represented in frequency domain (i.e., plotted as a function of frequency as

its horizontal axis).” As all the participants were familiar with mathematical form of

representation of sinusoids, as anticipated, all participants answered the first question

correctly. However, none of the participants could answer the second question. This

not only implied that all the participants were at par as far as their background know-

ledge was concerned, but it also confirmed all of them to be novice learners for a topic

on frequency domain representation of sinusoids. Thus, the purpose of administrating

these questions to ensure equivalence of learners in both groups and to confirm that

none of the students had studied the topic prior to the treatment was fulfilled. This

pre-test was conducted before students worked with the interactive simulations. Its

purpose was to check if the two groups were equivalent on the prior knowledge of the

topic. However the pre-test scores were not considered for analysis of students’ per-

formance after they worked with the interactive simulations, i.e., only the post-test

scores were considered for analysis of performance. Further, first year performance

grade point score (on a scale of 10) was used to confirm the group equivalence. The

data was checked for normality and other valid assumptions to decide suitability of

parametric statistical tests for comparing means. An alpha level of 0.05 was used for all

statistical tests. There was not a significant difference in these scores for SIM (M =

8.26, SD = 0.86) and SIM-RDL (M = 8.35, SD = 0.85) groups grade point. As the sample

size was small, we conducted non-parametric test on the data. The Mann–Whitney U

test, a non-parametric equivalent test of independent sample t test, was used for com-

paring means of the Representational Competence assessment test scores. As per the

results obtained from Mann–Whitney U test, the means were found to be statistically

equivalent (U = 51.000, p = 0.802). The average age of students was 20 years. Partici-

pants were familiar with the use of ICT tools in learning through other courses and

labs in their curriculum.

Treatment

The instructional interventions for the two conditions were as follows:

(a)The SIM group learnt with an interactive JAVA applet. This applet allowed students

to manipulate only one of the representations, and students could observe the
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changes happening in the second representation. The applet offered MERs of three

kinds in three different tabs: (i) linking time domain graph and frequency domain

graph, (ii) linking frequency domain graph and time domain mathematical

expression, and (iii) linking two different dynamically linked mathematical

representations. Figure 2 shows snapshot of the applet screen interface for tab 2

wherein time domain mathematical expression and frequency domain graphical

representation are shown to learn time and frequency domains representations of

sinusoids. Here, students could only manipulate mathematical representation of a

sinusoid, and the provision of manipulating graphical representation of signal

spectra was not offered to students from SIM group.

(b)Interactive Simulation with Reciprocative Dynamic Linking (SIM-RDL): This applet

offered affordance in the form of Reciprocative Dynamic Linking. This

Reciprocative Dynamic Linking offered interactivity that allowed learners to select

and manipulate each of the MERs.

Figure 3 shows two representations of a signal: time domain graphical represen-

tation and frequency domain graphical representation. The learner could select the

representation to be manipulated. The reciprocative nature of dynamic linking

allowed learners to vary time domain graphical representation and correspondingly

observe dynamic changes happening in the frequency domain graphical representa-

tion of the signal, or vice versa. Similarly, in other tabs of the learning material,

learners could implement reciprocative manipulation between either two different

graphical representations or two different mathematical expressions using recipro-

cative interfaces.

Measures and instruments

The following data sources were used:

Fig. 2 Screenshot of the Simulation applet developed on Signal representation
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1. Representational Competence assessment test

2. Self-reported cognitive load subjective rating scale

3. Recording of screen capture during learners’ interaction with learning material

4. Individual semi-structured interview (audio-taped and transcribed)

The learning impact of Reciprocative Dynamic Linking was analyzed from the scores

of Representational Competence assessment test. The second research question was an-

swered based on the self-reported cognitive load subjective rating scale. The screen

capture analysis and individual semi-structured interviews were used to understand

how students use Reciprocative Dynamic Linking affordance while learning. The quali-

tative data from screen captures and semi-structured interviews were analyzed initially

to obtain a general sense of data as per six-step approach in analyzing and interpreting

qualitative data (Creswell 2002, pp. 237).

Instrument for measuring Representational Competence within Signals and Systems domain

The instrument was designed to assess Representational Competence. It consisted of

eleven questions, with ten open-ended questions and one question in a multiple choice

format. Each of the questions expected students to carry out tasks that could assess de-

velopment of Representational Competence; such as extracting information from the

given representation, constructing new representations from previously learnt represen-

tations, evaluating consistency of different representations, integrating different repre-

sentations to create a coherent understanding and to apply that to solve problems. The

research context being a course of Signals and Systems, the questions from the instru-

ment were set for one of the topics from the course. All questions required students to

select, relate and construct multiple representations in the domain. The questions were

related to (i) student’s understanding of the individual representation of signals, i.e.,

Fig. 3 Screenshot of the SIM-RDL applet developed on Signal representation
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time domain/frequency domain representations or graphical representations/mathem-

atical expressions, (ii) students’ ability to translate from one domain to another, i.e.,

from time domain to frequency domain and vice versa, and (iii) students’ comprehen-

sion of both representations in an integrated manner. Answering these questions re-

quired learners to use the given MERs in an integrated manner and further, to think on

the underlying process/concept being depicted through these MERs. Thus, students’

abilities in answering these questions correctly reflected development of their Repre-

sentational Competence. In the context of Signals and Systems, learners’ abilities to

comprehend signal representations in both domains (time and frequency), to translate

smoothly between domains, and to apply the integrated representation of a signal in

newer contexts are indications of deeper and complete learning process.

In the topic of signal representation, underlying concepts related to signal frequency,

amplitude, phase, fundamental time period, and complementary nature of time and fre-

quency domains constituted the conceptual knowledge. Translating signals from one

domain to another or from one representation to another required certain steps to be

carried out in a sequential and meaningful manner. This was an example of procedural

knowledge. With regard to cognitive level of the task, questions related to the “Under-

stand” cognitive level expected learners to identify or interpret a particular representa-

tion. At the “Apply” cognitive level, students were expected to use their fundamental

understanding of signal attributes in multiple domains and their interrelations in differ-

ent domains while translating given signals or representations into another. The

“Analyze” level questions expected learners to methodically examine the given informa-

tion, identify the aptness of the information, and then solve the given task using the

relevant part of the information.

Three out of the ten open-ended questions were from an extended topic of Fourier

transform properties. The learning material developed did not contain this topic. Also,

students have not studied the topic in the previously learnt courses. These questions,

apart from expecting students to translate from one representation to another, also ex-

pected them to analyze and translate their comprehension to an extended topic. These

questions were from higher cognitive levels and helped in assessing students’ ability in

integrating MERs and applying it to a new topic. One of the questions from the assess-

ment instrument has been shown in Fig. 4, wherein, apart from expecting students to

translate from one representation to another, it also expected students to analyze and

translate their comprehension to an extended topic.

As the questions were set based on two-dimensional taxonomy of educational objectives

(Anderson and Krathwohl 2001), they were categorized for specific type of knowledge and

cognitive levels for the selected topic. It covered “Understand,” “Apply,” and “Analyze”

cognitive levels and “Conceptual and Procedural” types of knowledge based on the two-di-

mensional taxonomy framework. The questions in the assessment test paper were orga-

nized into three categories based on their cognitive level, knowledge type, and MERs

targeted. The category I questions catered to the “Apply Procedural knowledge” type,

category II questions were from “Understand + Apply Conceptual knowledge” type, and

category III questions aimed at “Analyze Procedural knowledge” type.

The answers of representational knowledge assessment test were assessed based on

an adopted version of rubrics for assessing learner’s competency developed in selecting,

constructing, and relating appropriate representation (Etkina et al. 2006: Revised and
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adapted based on https://sites.google.com/site/scientificabilities/rubrics). The rubric was

designed to test six abilities: (i) ability to extract the information from the given represen-

tation correctly, (ii) ability to construct new representations from previous representa-

tions, (iii) ability to evaluate the consistency of different representations and modify them,

(iv) ability to use/select appropriate representations to solve problems, (v) ability to repre-

sent mathematical expression (descriptive representation) sinusoidal/complex exponen-

tial, and (vi) ability to graphically represent (depictive) the form of signal waveform/

spectra. The students were assessed on four levels of performance for these abilities. One

of the abilities along with its performance indicators is shown in Table 1.

Content validity by experts and interrater reliability The Representational Compe-

tence assessment instrument was developed and peer-reviewed by the researchers of

this study in cooperation with three domain experts who had +20 years of teaching ex-

perience in the domain of Signals and Systems. Two reviewers also had a formal back-

ground in educational technology research. The review process was carried out in an

iterative manner. The suggestions given on time to time basis were incorporated, and

the instrument was further reviewed till all the reviewers were satisfied with the

categorization of the questions and their appropriateness in the context of learning ob-

jectives. A number of iterations were needed to finalize the test, especially for all the

representations shown in the test paper. The instrument was also given to students

(other than subjects of this study) to check its usability and language/diagrams compre-

hension. The questions were reworded wherever students expressed their difficulty in

understanding the questions. Apart from this instrument, another instrument was used

for measuring cognitive load.

Two raters assessed the answer sheets of Representational Competence assessment

test independently, and the interrater reliability in terms of agreements was 95% for all

open-ended questions from the instrument. The intraclass correlation coefficient was

found to be 0.965. Disagreements were resolved via discussion between the two raters.

Fig. 4 Screenshot of a sample assessment question
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Instrument for measuring cognitive load

Apart from testing the hypothesis that “students would develop Representational Com-

petence better with SIM-RDL as compared with SIM,” this research study also aimed

at testing another hypothesis about the Reciprocative Dynamic Linking’s role in assist-

ing learners by supporting germane cognitive load. Thus, another instrument needed in

this research study was the one that could measure learners’ germane cognitive load.

Cognitive load is a multidimensional construct representing the load that performing a

particular task imposes on the learners' cognitive system. In an attempt to separately

measure the three cognitive loads, it has been reported that mental effort ratings were

most sensitive to manipulations of intrinsic processing (created by topic complexity),

and mental difficulty ratings were most sensitive to indications of germane processing

(reflected by transfer test performance) (DeLeeuw and Mayer 2008). These results were

found to be consistent with a triarchic theory of cognitive load in which different as-

pects of cognitive load may be tapped by different measures of cognitive load. Learners

have the ability to reflect on their cognitive processes and provide their responses on

numerical scales (Gopher and Braune 1984; Paas et al. 2003). Therefore, self-reported

measures were used to measure participants’ cognitive load. Uni-dimensional scales,

such as retrospective difficulty ratings, are a popular subjective cognitive load measure-

ment technique because they are easy to use and do not interfere with the learning task

(Paas et al., 1994).

To measure mental difficulty indicative of germane cognitive load, a nine-point

Likert-type scale was used as a subjective cognitive load measure. This scale is accepted

as a valid method for measuring cognitive load (Kalyuga et al. 1998, 2000; Paas and

Van Merrienboer 1994; Van Merriënboer et al. 2002; Yeung et al. 1997). In this study,

participants were asked “How easy or difficult was to work with these questions?” after

each category of questions. The participants selected one of the nine options: ranging

from 1 as “extremely easy” to 9 as “extremely difficult.” A mental difficulty rating ran-

ging from 1 to 9 was collected from each participant.

To measure intrinsic cognitive load, a subjective rating scale was provided on the first

page of the students’ answer booklets. The participants were asked, “How much mental

effort they invested while learning using the applets?,” and rated their subjectively expe-

rienced mental effort on a nine-point rating scale ranging from 1 “very very low mental

effort” to 9 “very very high mental effort.” Nine-point rating scales have been used suc-

cessfully in other studies (Kalyuga et al. 1998; Tindall-Ford et al. 1997).

Procedure

Pilot study

The aim of the pilot study was to obtain insight into how students use the affordance

of Reciprocative Dynamic Linking while learning from dynamically linked MERs. This

insight was necessary to formulate a precise research problem to develop further hy-

potheses and subsequently test the learning benefits of the affordance. Considering the

purpose of this research study, an “exploratory sequential mixed methods” design was

found to be appropriate. The details of the pilot study have been reported (Patwardhan

and Murthy 2015). The participants in this study were students from second year

Electrical Engineering program studying a course on “Signals and Systems.” The
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participants belonged to two engineering colleges affiliated to University of Mumbai. A

total of nine students (N = 9; female = 3, male = 6) participated in the study. In this

study, the students interacted with the learning material with Reciprocative Dynamic

Linking. Screen captures of the students’ interaction were recorded using CamStudio™

open source software. The screen captures were recorded for the entire time duration

while the students interacted with the learning material. The students then solved

open-ended questions assessing Representational Competence. After the assessment

test, semi-structured interviews were conducted using interview protocol. The objective

of the interview was to know the students’ perceptions about major issues like, “what

kind of learning support did students get through Reciprocative Dynamic Linking” and

“what aspect of learning could get influenced by Reciprocative Dynamic Linking?”

The pilot study was useful in confirming learning benefits of Reciprocative Dynamic

Linking from qualitative aspect. The screen capture and interview data helped in under-

standing how students use the affordance of Reciprocative Dynamic Linking. The recipro-

cative interactivity helped learners in comprehending the representations in isolation, as

well as the relation and translation between representations. This helped students in the

development of Representational Competence. The granular translations shown in the as-

sessment test was an evidence of the development of Representational Competence in

students. This affordance was used by students to get support in the learning process that

managed their cognitive resources optimally and also supported their inquiry process thus

leading to deeper learning. A more interesting phenomenon observed in screen capture

data was that learners returned again to the first representation after manipulating the

second, that is, the confirmatory manipulation. We conjectured that while manipulating

both representations, learners generated a hypothesis as part of mental inquiry process

and returned to the first representation again to test or confirm the hypothesis. This con-

jecture was supported via interview data, wherein students reported that they used the

feature that allowed variation in both graphs for checking how representations were re-

lated. In the following sections of the main study, its details and finding are presented.

Main research study

First, all participants were briefed about the study procedure and its objectives. They

were assured that their participation had no bearing on their academic performance.

After signing consent forms, they were allotted to two treatment conditions created

using randomizer. The treatment intervention lasted for 35–40 min. During the treat-

ment, screen capture was recorded using the CamStudio™ open source software to ob-

serve how students explore the interactive learning material. After completing learning

from the respective learning material developed, participants were asked to solve the

assessment test. The assessment test booklet had the following components: (i) Self-re-

ported mental effort rating single-question questionnaire, (ii) Representational Compe-

tence assessment instrument for three different learning objectives, and (iii) Self-

reported difficulty rating (mental load) single-question questionnaire. The assessment

test format was arranged as follows:

→Self-reported mental effort rating single-question questionnaire

→Domain knowledge question of “Apply Procedural knowledge” –> Self-reported

difficulty rating (mental load) single-question questionnaire for “Apply Procedural

knowledge”
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→Domain knowledge question of “Understand and Apply Conceptual knowledge” –>

Self-reported difficulty rating (mental load) single-question questionnaire for

“Understand and Apply Conceptual knowledge”

→Domain knowledge question of “Analyze Procedural knowledge” –> Self-reported

difficulty rating (mental load) single-question questionnaire for “Analyze Procedural

knowledge”

At the end of the research study, the students were interviewed. After the interview,

they were thanked for their participation and were given participation certificate.

Data analysis techniques

The quantitative data was collected in the form of Representational Competence assess-

ment test score, self-reported mental difficulty score, and self-reported mental effort score

for both groups. The Representational Competence assessment test score and self-

reported mental effort score were designed for different categories of questions. Thus, the

scores were compared for all these three categories independently. The questions in the

assessment test paper were organized into three categories: category I questions catered

to the “Apply Procedural knowledge” type, category II questions were from the “Under-

stand + Apply Conceptual knowledge” type, and category III questions aimed at “Analyze

Procedural knowledge” type. The second category of the questions was a mixed question

category with questions of “Understand Conceptual knowledge” and “Apply conceptual

knowledge” due to domain (time and frequency domains of a signal)-based categorization

method adopted. This was done to maintain content coherence in the test.

Following steps were taken to carry out statistical analysis of data. The raw data was

processed to get a normalized score, out of ten for each category of questions. The data

was further checked for normality and other valid assumptions to decide suitability of

parametric/non-parametric statistical tests for comparing means. An alpha level of 0.05

was used for all the statistical tests. The statistical analysis involved the following:

– Comparison of means of Representational Competence assessment test score to find

out statistically significant difference between both groups using independent sample t

test or its equivalent non-parametric test to test hypotheses H1-A, B, and C

– Comparison of means of self-reported mental difficulty score and self-reported

mental effort score to find out statistically significant difference between both

groups using independent sample t test or its equivalent non-parametric test to test

hypotheses H2-A, B, and C

The qualitative data received from semi-structured interviews and screen captures

were analyzed using Content Analysis method.

Screen capture analysis

The recorded screen captures were analyzed to find out the manner in which students

explored the feature of Reciprocative Dynamic Linking offered by interactive learning

environments. The screen captures were collected for all participants while they were

interacting with the learning environment. As four captures were lost due to technical

issue, total 20 screen captures were analyzed. Out of 20, 9 screen captures were for the
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control group (SIM), and 11 were for the experimental group (SIM-RDL). The time for ex-

ploring the material ranged from 7 to 20 min (average of 12:10 min). The objectives of

screen capture analysis were as follows: (i) to identify the general approach of students while

exploring the ILE, (ii) to analyze whether the IEF was used by the students, and (iii) to

analyze pattern of exploration by both groups while using Reciprocative Dynamic Linking.

Considering these objectives, the qualitative analysis of screen capture was done in two

phases. The phase I consisted of “code identification phase,” where the possible codes that

could emerge were looked for and identified. In phase II, all the screen captures were ana-

lyzed again based on the identified codes. An exploration activity by a student was consid-

ered as a unit of analysis. For example, selecting a representation for manipulation by

clicking on radio button, manipulating the selected representation, selecting the other

representation for manipulation, and navigating between different tabs of learning mater-

ial were some of the examples of various activities students did while exploring the con-

tent. While looking for general approach of exploration, the objective was to assess the

exploration for any kind of abruptness in the navigation. Based on this, “structured navi-

gation” or “non-structured navigation” was identified as codes in the first phase of ana-

lysis. The other objective for screen capture analysis was to identify if students used

Reciprocative Dynamic Linking, which was coded under the category “utilization of affor-

dance.” The third objective of screen capture analysis was to identify exploration pattern.

The explanatory manipulation exploration and confirmatory manipulation exploration

patterns were identified during pilot study. During this screen capture analysis, all the

screen captures were analyzed to find out these exploration patterns.

Analysis of semi-structured interviews

All the twenty-four participants were interviewed face-to-face immediately after they

completed the assessment test. The objective of conducting the semi-structured inter-

view was to gather data about students’ learning experiences and their perceptions

about the learning environment/its features.

Procedure: Students were briefed about the interview objective and protocol, and

their consent for audio recording of the interview was taken. Then, they were asked

about their learning experience. The conversation was based on the following open-

ended questions: (1) Can you tell us something about the learning experience you had

today? (2) Which typical aspect/feature of the learning environment you think must

have helped you while learning? (3) In what way, you feel the learning environment fea-

tures could help you while solving the domain knowledge assessment test? After asking

about their own learning experience and the manner in which they utilized the learning

environment for the purpose of learning, they were shown the learning environment of

the other group, and their perception about it was asked ( i.e., control group partici-

pants were shown the experimental group learning environment and vice versa).

The interviews lasted for 8–10 min. The recorded interviews were transcribed and

analyzed further using Content Analysis method with a “sentence” as the “coding unit.”

The coding was done keeping in mind the objectives of the questions asked. Accord-

ingly, the following categories of the codes emerged strongly from the analysis.

1. Learning pattern: This code elaborated the learning pattern followed by learner

while learning the given content from the learning material.
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2. Feature impact: This code focused on which feature of the learning material was

perceived by learner to be useful in learning and how learners derived learning help

from it.

3. Learning preferences: This code refers to the learning style/feature preferred by

learners.

Results
Representational Competence assessment test

Table 2 shows the mean and standard deviations of Representational Competence as-

sessment test scores for the research study. Both treatment groups were compared for

Representational Competence assessed by questions set in three different categories. As

mentioned earlier, these domain knowledge questions assessed development of learners’

Representational Competence in the topic of Signal Representation from a course on

Signals and Systems.

The data presented in Table 2 passed Shapiro–Wilk test for normality, and other as-

sumptions needed for parametric tests were found to be valid. However, as the sample

size was small, we conducted non-parametric test on the data. The Mann–Whitney U

test, a non-parametric equivalent test of independent sample t test, was used for com-

paring the means of the Representational Competence assessment test scores. As per

the results obtained from the Mann–Whitney U test, the Representational Competence

assessment test score means were found to be statistically significantly different for

“category I: Apply procedural knowledge” and “category III: Analyze Procedural know-

ledge”: (U = 38.500, p = 0.043 and U = 16.000, p = 0.001, respectively). There was no

statistically significant difference found in the means of “Understand + Apply Concep-

tual knowledge” category II questions scores (U = 41.000, p = 0.072).

We did a detailed analysis of questions from categories I to III to get more insight.

The questions from category I aimed at assessing students’ ability of applying proced-

ural knowledge while translating from one domain representation to another domain

representation. Out of the five questions from category I, question numbers 2, 4, and 5

not just assessed students for the topic explained in the learning material, but the ques-

tions also covered the topics that could be treated as an extension of the topic. The bet-

ter performance of SIM-RDL group students, especially in these questions, in a way

indicated that the experimental group could develop deeper learning about the topic

and was able to apply knowledge in different (unfamiliar) topics as well. The mean

score of question numbers 2, 4, and 5 for SIM-RDL group was found to be 77.92%

Table 2 Mean scores and standard deviations of the Representational Competence assessment
test score

Learning objectives Representational Competence assessment test score

Simulation (SIM)
N = 12

Interactive Simulation with RDL (SIM-RDL)
N = 12

M (out of 10) SD M (out of 10) SD

Category I (Apply Procedural knowledge) 4.48 2.16 6.20 1.94

Category II (Understand + Apply
Conceptual knowledge)

6.37 1.18 7.11 1.34

Category III (Analyze Procedural knowledge) 5.17 2.65 8.44 1.99
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higher than the mean score for these questions for the SIM group. (The means for

these questions (2, 4, and 5) together were found to be statistically significantly differ-

ent after running Mann–Whitney U test (U = 31.500, p = 0.020). As far as category III

questions were concerned, the question numbers 10 and 11 were from the “analyze”

cognitive level. The score on these questions of SIM-RDL group was higher than that

of SIM group by 63.15% (statistically significant means with U = 16.000, p = 0.001), and

that again has been a supportive result. These findings demonstrated improved

Representational Competence of SIM-RDL group learners as compared with SIM group

learners measured by means of domain knowledge test questions.

Self-reported difficulty level ratings

Table 3 shows self-reported difficulty level scores of learners. These scores are a meas-

ure of the germane cognitive load as experienced by learners while interacting with the

learning environment.

The data presented in Table 3 passed the Shapiro–Wilk test for normality, and other

assumptions needed for parametric tests were found to be valid. However, as the sam-

ple size was small, we conducted non-parametric test on the data. The Mann–Whitney

U test, a non-parametric equivalent test of independent sample t test, was used for

comparing the means of the self-reported difficulty level (germane cognitive load)

scores. As per the results obtained from the Mann–Whitney U test, self-reported

difficulty level (germane cognitive load) score means were found to be statistically signifi-

cantly different for “category I: Apply Procedural knowledge” and “category III: Analyze

Procedural knowledge”: (U = 29.500, p = 0.021 and U = 33.500, p = 0.041, respectively).

There was no statistically significant difference found in the means of the “Understand +

Apply Conceptual knowledge” category II question scores (U = 40.500, p = 0.106).

In addition to germane cognitive load, learners experience intrinsic and extrinsic cog-

nitive loads while learning from ILEs. The assumption of equivalence of these two cog-

nitive loads (i.e., intrinsic load and extrinsic load) across treatment groups was verified

by controlling certain factors. The main factors considered for controlling intrinsic cog-

nitive load were prior knowledge of learners, difficulty level and content of the topic to

be studied, and academic characteristics of learners. Additionally, self-reported mental

effort rating was used as a measure of intrinsic cognitive load to confirm the equiva-

lence of intrinsic cognitive load in both groups (DeLeeuw and Mayer 2008). The learn-

ing materials for both groups were designed as per recommended instructional design

practices to avoid extrinsic cognitive load. Also, equivalence of learning materials in

terms of instructional design aspects, except presence or absence of Reciprocative

Table 3 Mean scores and standard deviations of the cognitive load scores

Learning objectives Self-reported difficulty level (germane cognitive load)
scores

Simulation (SIM)
N = 12

Interactive Simulation with
RDL (SIM-RDL) N = 12

M (out of 10) SD M (out of 10) SD

Category I (Apply Procedural knowledge) 5.58 1.24 4.27 1.27

Category II (Understand + Apply Conceptual knowledge) 5.25 1.71 4.55 1.73

Category III (Analyze Procedural knowledge) 6.08 1.68 4.36 2.06
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Dynamic Linking, was verified. These points supported extrinsic cognitive load equiva-

lence across groups.

The mean and standard deviation of learner’s self perception of “how much mental

effort was invested while learning from SIM and SIM-RDL?” was found to be SIM (M

= 3.92, SD = 1.16) and SIM-RDL (M = 4.20, SD = 1.75). There was no statistically signifi-

cant difference reported in the means based on the findings of the Mann–Whitney U

test (U = 52.500, p = 0.645). This mental effort reading being a measure of intrinsic

cognitive load demonstrated that learners experienced same amount of intrinsic

cognitive load while learning from two different treatment groups.

Findings from screen capture analysis

As explained in Section 5.5.1, “General approach for exploring learning material,” “Use

of Reciprocative Dynamic Linking affordances in SIM-RDL,” and “Exploration pattern”

were identified as coding categories. The following have been the observations and in-

ferences for the screen capture analysis for these three categories:

� General approach for exploring learning material (structured navigation/non-

structured navigation): All participants exhibited structured navigation. The

students moved linearly through “home screen –> theory –> learning content

(tab wise) introductory text –> learning content interaction.” Students’ familiarity

with computer-based learning environments/simulation environments was evident

from this exploration approach.

� Use of Reciprocative Dynamic Linking affordances in SIM-RDL (used/not used): All

students from SIM-RDL group used Reciprocative Dynamic Linking. That is, all of

them manipulated both the MERs. Tab wise observations are as follows:

Tab 1: Except for two, all students selected time domain for manipulation first. All

possible variables were manipulated by students (amplitude, frequency, and phase)

for both the MERs.

Tab 2: All students selected both the MERs and manipulated all possible variables.

Tab 3: All students selected both the MERs and manipulated all possible

variables. Tab 3 also has a graphical representation, which was not offered for

manipulation. Five students attempted to manipulate that and checked whether

it was also offered for manipulation.

SIM: All students from the SIM group used the possible variable manipulation

opportunities offered for only one representation in all the three tabs.

Thus, students from both groups fully utilized respective affordances offered in their

learning materials. From domain perspective, time domain representation appears to be

the more comfortable and familiar domain of representation and was preferred for

manipulation as a first choice by maximum number of students. In general, all possible

exploration opportunities and affordances were used by the students.

� Exploration pattern (explanatory manipulation exploration/confirmatory

manipulation exploration of SIM-RDL): The pilot study revealed that many

students followed confirmatory manipulation exploration pattern (Fig. 5).

Similar observation was found in this phase of screen capture analysis. In a

given tab, both representations were manipulated as confirmatory search.
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While exploring MERs using Reciprocative Dynamic Linking, students manipulated

the first MER, then the second one. After this, they again reverted to manipulate the

first MER. This pattern was observed for all the three Tabs. This observation, resem-

bling the “prediction and hypothesis testing phase” of inquiry cycle was confirmed in

this screen capture analysis as well. This pattern was prominent in 9 students out of

11. In the case of SIM group, students used the offered affordances for more number

of times. In an attempt to comprehend the content, students from SIM group probably

had to use the only given affordance for many more number of times as compared to

SIM-RDL group. Still, that could not translate into desired learning outcome, as was

evident from the test score.

We present details about how screen capture analysis findings corroborated the find-

ings from Representational Competence assessment test and self-reported difficulty

level ratings in the Discussion section of this paper.

Semi-structured interviews

Learning pattern, feature impact, and learning preferences were identified as codes

while analyzing semi-structured interviews. While some of the verbatim responses cor-

responding to the identified codes have been presented here, the discussion related to

the interview data is presented in the Discussion section.

Learning pattern:

......“It’s basically when one of them moves, I like to observe this one is increasing and what’s

happening to the next one, increasing or decreasing, that pattern I like to remember”........

..... Choosing anyone......so choose one and make changes over there see what changes

happen in corresponding one then you can go for the second one...... make changes

over there, then see.

Feature impact:

......“we are just back testing whatever changes we are seeing, are we are able to get

the same changes mathematically back after changing this”......

.....“It works as a good rechecking for myself that if I have understood the concept like

I can try to predict that if I move the right one in which direction or vice versa how it

should work, so it’s a way of checking myself”.........

...... “with this, we will be able to find relations between all these.... it will simplify lot

of things”.....

Fig. 5 Screen capture analysis of navigation through learning material
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......“when one changes, the other has effects on it......... it creates a a..... like chain when

more representations are there”.....

Learning preferences:

… “that would also be better because frequency domain …we can correlate frequency

and time domain simultaneously, so if both go hand in hand then that–that would

also be a better option and this helps the equation, like the equation we have to think

about what will be the Sin or Cos Sin wave or the waveform”.......

....“if second changes and we need to find the changes in first then, uh, if the second

option is selected then I will have to think it reverse, so it is difficult for me to you

know think in other way. .... Okay......So if direct option is given to change in second

and see the changes in first then that is obviously better”.

.....“if I understand, I do not need both ways manipulation.....one is also enough and

sufficient”....

The overall responses from interviews were in favor of Reciprocative Dynamic Link-

ing. The important keywords/phrases emerged from the interviews favoring Reciproca-

tive Dynamic Linking were back testing, more flexibility in understanding, good

rechecking, predict what can happen, can grasp in easier way, able to find relations,

chain of representations, it fits in my mind, clear idea, relate better, help in thinking

backwards, and time and frequency domain go hand-in-hand.

During interviews, students demanded some additional features/content, such as

more examples and audio commentary. Regarding learning preference, all 24 students

advocated the need of Reciprocative Dynamic Linking. Students who learnt without Re-

ciprocative Dynamic Linking explained what Reciprocative Dynamic Linking would be

and how this feature could be added in the learning material that they had already

used. After understanding about Reciprocative Dynamic Linking, all of them commen-

ted that they would have preferred learning from Reciprocative Dynamic Linking learn-

ing material and justified the reasons for their preferences using the keywords as

mentioned above.

Discussion
Impact of Reciprocative Dynamic Linking on Representational Competence

The Mann–Whitney U test on the Representational Competence assessment test score

assessing Representational Competence demonstrated that SIM-RDL group scored

higher as compared to SIM group for category I and category III questions. The p

values were found to be 0.043 and 0.001, respectively. These statistically significant p

values implied that the means of test scores for questions related to the “Apply Proced-

ural knowledge” and “Analyze Procedural knowledge” categories for SIM-RDL group

were higher than those for SIM group. This confirmed the effectiveness of SIM-RDL

group over SIM group. This also further confirmed that Reciprocative Dynamic Linking

improved development of Representational Competence while attempting “Apply and

Analyze Procedural knowledge task.” This supported hypothesis H1-C.

Category II had mixed questions at the “Understand Conceptual knowledge” and

“Apply Conceptual knowledge” to fulfill domain-specific requirement covering both

time and frequency domains representation of signals. When analyzed separately, the
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test scores were found to be statistically equivalent for the “Understand Conceptual

knowledge” and “Apply Conceptual knowledge” task (p = 0.072). This statistically non-

significant p value indicated equivalence of test score means of questions related to cat-

egory II for both groups. This implied that Reciprocative Dynamic Linking could not

offer significant help to learners to improve their scores in these two categories. The

hypotheses H1-A and H1-B were not supported. We discuss about the probable rea-

sons for this while answering RQ2 in Section 7.2.

The quantitative results when seen along with qualitative data collected from in-

terviews and screen captures provide more insight to the inferences drawn. The

physical interactions with MERs are a necessary part of one’s thinking process in

the knowledge building process (Kirsh 2010). The feature of Reciprocative Dynamic

Linking made this physical interaction with MERs possible. This was supported by

the responses that emerged from the interviews of students. We restate some of

the responses here: “more flexibility in understanding,” “can grasp in easier way,”

“able to find relations,” “chain of representations,” “it fits in my mind,” “clear idea,”

and “relate better.” These responses from students can be considered as an indica-

tion of the learning support that they could get from their interaction with Recip-

rocative Dynamic Linking. Additionally, due to the presence of Reciprocative

Dynamic Linking, students could free up their cognitive resources and use them

for developing better understanding of MERs, which got reflected in their higher

test scores. The results related to cognitive load discussed in the next subsection

also support this aspect.

The screen capture analysis revealed and confirmed the pattern followed by students

while exploring the content. The students followed exploratory and confirmatory

search pattern. The pattern suggested that the students were trying to check the mental

model created through their interactions with Reciprocative Dynamic Linking. This

again has been captured in some of the responses that emerged from the interviews:

“back testing,” “good rechecking,” and “help in thinking backwards.” All these and simi-

lar responses articulated the process the students followed by interacting with Recipro-

cative Dynamic Linking. The reciprocative nature of the interaction was used by

students first to build up the mental model of the content being learnt, and then, it was

used to check the mental model created. The responses like “back testing,” “good

rechecking,” and “help in thinking backwards” supported this. Science education litera-

ture associates prediction ability as one of the feature of model-making. The response,

“I will be able to predict what can happen,” suggested that students could exhibit this

ability as an outcome of model formation process. The better performance of students

in the questions from extended topic in a way indicated that students could predict

how the learnt knowledge would get applied in the new situations.

The main objective of Reciprocative Dynamic Linking was to develop students’ Repre-

sentational Competence that would lead to improvement in learning. Here, the responses

clearly articulated how students were able to develop Representational Competence as

they were better equipped to “relate and link MERs” with Reciprocative Dynamic Linking.

The responses such as “able to find relations,” “chain of representations,” “relate better,”

and “time and frequency domains go hand-in-hand” supported this claim. Overall,

learners who learnt with Reciprocative Dynamic Linking showed improvement in Repre-

sentational Competence for category I and category III questions.
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Impact of Reciprocative Dynamic Linking on the cognitive processing of learner

The self-reported difficulty level ratings collected from learners have been found to be

sensitive to indications of germane processing (DeLeeuw and Mayer 2008). Germane

cognitive load enhances learning and results in task resources being devoted to schema

acquisition and automation; it is a result of mental activities that are directly relevant

to learning. The lower value of learners’ self-reported difficulty levels suggested that

learning environment could offer more support to cognitive resources that directly con-

tributed to the improvement in learners’ performance.

The Mann–Whitney U test on the self-reported difficulty level scores of learners re-

vealed that the score means were found to be statistically significantly different for diffi-

culty level reported for the “Apply and Analyze Procedural knowledge” category of

questions (categories I and III p = 0.021 and p = 0.041, respectively). These statistically

significant p values implied that the means of self-reported difficulty level scores for

questions related to the “Apply Procedural knowledge” and “Analyze Procedural know-

ledge” categories for SIM-RDL group were lower than those for SIM group. This indi-

cated that learners experienced higher germane cognitive load (less difficulty level)

while learning with SIM-RDL as compared with the SIM group for the “Apply and

Analyze Procedural knowledge” type of task. This supported hypothesis H2-C.

There was no statistically significant difference found in the means of difficulty

level rating reported for the category II questions (p = 0.106). This implied that for

category II questions, SIM-RDL group learning material did not offer any help to

learners in improving their germane cognitive load; both the learning materials

were found to be equivalent as far as learners’ germane cognitive load was con-

cerned. For category II questions, the statistical equivalence of mental difficulty,

along with the statistically non-significant difference between test scores, was ana-

lyzed further. We looked at the questions and analyzed the kind of mental efforts

needed to put in for solving these questions. The questions from this category in-

volved concepts related to signal frequency, amplitude, phase, fundamental time

period, and complementary nature of time and frequency domains. Equal perform-

ance of students from both groups for these questions in a way suggested that

both SIM and SIM-RDL offered equal learning support to learners while answering

these questions. Learners perhaps needed no additional support for learning these

basic concepts from the topic. As a result, learners might have felt the presence of

Reciprocative Dynamic Linking in SIM-RDL redundant while catering to these

questions. One of the verbatim responses was supportive of this (.....“if I under-

stand, I do not need both ways manipulation.....one is also enough and suffi-

cient”…). Some questions for which Reciprocative Dynamic Linking could not do

any improvement in the learning scores expected learners to identify a representa-

tion and to write down mathematical expressions. These questions did not expect

learners to construct new representations. Probably, students could solve these

questions without need of any additional support. Students could perform better

only with the help from Reciprocative Dynamic Linking in the questions that

expected them to construct new representations. The very reason of introducing

Reciprocative Dynamic Linking in the learning environment has been to support

learners’ cognitive requirements that would help in the development of Representa-

tional Competence. It was hypothesized that learners demanded cognitive support
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while learning some types of tasks. Features like Reciprocative Dynamic Linking

could offer such support, thus allowing some of the cognitive resources to get

freed up to use while learning actual educational content.

To summarize, learners exhibited need for additional support in the form of Recipro-

cative Dynamic Linking for the development of Representational Competence while

attempting tasks that required them to interpret each representation independently, re-

late multiple representations, and construct new representations based on the know-

ledge developed. This finding also indicated that Reciprocative Dynamic Linking led to

improvement in Representational Competence owing to the increased germane cogni-

tive load of learners. MERs have been widely used in science, technology, engineering,

and mathematics (STEM) learning, and their learning potential has been widely ac-

cepted. Nevertheless, what technological and pedagogical affordances should be offered

to learners in MER-based learning environments to facilitate learning have been still a

widely explored research issue (Wu and Puntambekar 2012; Kozma 2003; Bodemer et

al. 2004). The authors (Wu and Puntambekar 2012) have suggested various affordances

such as dynamic linking, model progression, and sequencing as scaffoldings to assist

learners while learning from MERs. The positive effect of an affordance of structured

interaction while learning with different representations was reported by the authors

(Bodemer et al. 2004). Irrespective of the precise nature of the affordances or scaffold

designed in MER-based learning environments as suggested in these articles, the key

point highlighted has been the need to assist learners while deriving learning potential

of MERs. In this paper, working on the similar lines, the effect of the affordance of Re-

ciprocative Dynamic Linking designed to assist cognitive processing of learners has

been presented. The positive learning impact of Reciprocative Dynamic Linking as ob-

served in the presented study emphasized the need to focus on features that recognize

and fulfill cognitive demands of learners in technology-enhanced learning (TEL)

environments.

Limitations of the study

The small sample size is one limitation of this study. The logistics issues related to

availability of students during pre-planned academic activities constrained the sample

size. However, a serious attempt was made to triangulate the data from multiple

sources. The inferences were drawn not only from the quantitative analysis but also

from detailed qualitative analysis of screen-captured data and interviews. Even in the

quantitative analysis, the test results were not based upon binary decision of correct/in-

correct, but the assessment was done as per validated rubrics. The screen capture ana-

lysis revealed important exploration pattern of learners, and the interview analysis

confirmed the inferences drawn from the analysis of screen captures. Adding more

subjects to the sample size could further improve level of confidence about the contri-

bution of results. Another limitation is that learners’ specific characteristics have not

been considered as variable in the study. This was due to constraints from educational

setup and the need to accommodate a variety of learners in the same educational setup.

The third limitation is that, the study has been conducted in a single domain. Confirm-

ing the learning benefits of Reciprocative Dynamic Linking in another associated

domain would further help in establishing generalizability. Another limitation may be
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the small duration of the treatment. The treatment intervention was for 35–40 min.

However, the duration was found to be sufficient to learn the topic presented in the

simulation. During pilot study, as well as during the main study, none of the partici-

pants demanded more time, neither while learning from simulation, nor while answer-

ing questions. From this observation, we decided that the learners spent sufficient time

as was needed by their cognitive requirement to learn the content.

Conclusions
The study was set with the objectives to investigate the role of “Reciprocative Dynamic

Linking in developing students” Representational Competence and to investigate its effect

on students’ learning in an interactive learning environment. Additionally, it also analyzed

impact of Reciprocative Dynamic Linking on cognitive load of learners. The results con-

firmed that Reciprocative Dynamic Linking contributed in the development of Representa-

tional Competence as needed for higher cognitive level tasks. It also attributed development

of Representational Competence to increase in germane cognitive load of learners.

The main contribution of this study has been the newly designed feature of Recipro-

cative Dynamic Linking to improve Representational Competence while learning from

multiple external representations in interactive learning environments. Additionally,

the linkage between learning effectiveness of this feature and learners’ germane cogni-

tive load as established by the findings of this study could be considered as one of the

means to create learning environments that optimize learners’ cognitive resources.

With popularity of MERs in today’s computer-based educational content, developing

effective learning environment that would match learners’ learning requirement is im-

portant. The rationale behind proposing and designing the Reciprocative Dynamic

Linking was a blend of technology affordances, contemporary theories of cognition,

and pedagogical requirement of the domain. The learning success of Reciprocative Dy-

namic Linking thus also advocates the need for such an approach while designing edu-

cationally effective learning environments.

Extending this study for some more topics from the same domain and from other

relevant domains in future will help in validating its findings further. Incorporating

more advanced research in the field of cognitive science in the study to assess cognitive

constructs will bring more insight to the role of cognitive processing while learning

from interactive learning environments.
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