
RESEARCH Open Access

Practices of algorithm education based on
discovery learning using a program
visualization system
Koichi Yamashita1*, Ryota Fujioka2, Satoru Kogure3, Yasuhiro Noguchi3, Tatsuhiro Konishi3 and Yukihiro Itoh4

* Correspondence:
yamasita@hm.tokoha-u.ac.jp
1Faculty of Business Administration,
Tokoha University, 1230 Miyakoda,
Kita-ku, Hamamatsu, Shizuoka
431-2102, Japan
Full list of author information is
available at the end of the article

Abstract

In this paper, we describe three practical exercises relating to algorithm education.
The exercises are based on a learning support system that offers visualization of
program behavior. Systems with the ability to visualize program behavior are effective
to promote the understanding of algorithm behavior. The introduction of these
systems into an algorithm course is expected to allow learners to cultivate a more
thorough understanding. However, almost all existing systems cannot incorporate the
teacher’s intent of instruction that may be necessary to accommodate learners with
different abilities by using a different instructional approach. Based on these
considerations, we conducted classroom practice sessions as part of an algorithm
course by incorporating the visualization system we developed in our previous work.
Our system visualizes the target domain world according to the visualization policy
defined by the teacher. Our aim with the practical classes is to enable learners to
understand the properties of algorithms, such as the number of comparisons and data
exchanges. The contents of the course are structured such that the properties of an
algorithm can be understood by discovery learning in the practical work. In this paper,
we provide an overview of our educational practices and learners’ responses and show
that the framework we use in our practices can be established in algorithm classes.
Furthermore, we summarize the requirements for the inclusion of discovery learning in
the algorithm classes as the knowledge obtained from our practices.

Keywords: Algorithm education, Learning support system, Domain world model,
Classroom practice, Discovery learning

Background
As computer education is recognized to be one of the fundamental aspects of science

education, the range of educational opportunities for introducing students to

algorithms has been expanded. A growing number of universities have implemented

an algorithm course for non-computer science majors, because algorithm education is

expected to foster logical thinking and develop general problem formulation and

solving skills.

Generally, an algorithm course is held in the form of classroom lectures, and this is

accompanied by a corresponding programming course held in the form of exercises to

confirm and establish an improved understanding of the learning material covered by

the lecture. In this way, learning by instruction in the lecture and establishing an

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Yamashita et al. Research and Practice in Technology Enhanced
Learning (2016) 11:15
DOI 10.1186/s41039-016-0041-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s41039-016-0041-5&domain=pdf
mailto:yamasita@hm.tokoha-u.ac.jp
http://creativecommons.org/licenses/by/4.0/

understanding by exercising construct a learning cycle. The cycle enables learners to

understand algorithms as the essence of problem solving and program code as the for-

mal representation of algorithm externalization. However, according to our classroom

experience, a number of learners are unable to develop the learning style required for

this cycle and reach an impasse. We consider this to be the consequence of them pro-

ceeding to the programming exercise without sufficient understanding of the

algorithm.

To date, several learning support systems have been developed to support novice

learners to understand algorithms (Pears et al., 2007). These systems visualize the way

objects of program code and the algorithm are processed (i.e., the target domain world)

and reproduce the behavior of the code and the algorithm. Introducing these systems

into classes is expected to allow learners to cultivate an improved understanding of al-

gorithms (Robins et al., 2003).

However, the expansion of the range of educational opportunities has increasingly re-

quired teachers to teach learners with various levels of background knowledge. De-

pending on learners’ prior knowledge, a teacher would have to adjust the content or

intent of instructions, such as the point where the learners should focus on the algo-

rithm or program, or the abstraction or generalization degree of instruction. Almost all

of the existing systems disallow these variations of the teacher’s intent and visualize the

world of the target domain with a fixed visualization policy. Moreover, although exist-

ing systems tend to focus on reproducing the entire flow of algorithm behavior, know-

ledge related to the algorithm is also important in algorithm education. For example,

properties of an algorithm such as the number of comparisons or exchanges in sorting

tasks are an important learning target.

In this paper, we describe the classroom practice of our algorithm course, based

on these considerations. We introduced the learning support system developed in

our previous work (Kogure et al., 2014) into the class. Our system visualizes the

target domain world according to the visualization policy defined by the teacher.

In addition, the contents of our practice not only include using our system to learn

about the entire flow representing the behavior of an algorithm but also discovery

learning about the properties of the algorithm. Learners’ reactions suggest that it

would be possible to successfully establish the framework of our practice in algo-

rithm classes.

Preceding work
Basic idea

Systems supporting novice learners to learn an algorithm or program visualize its be-

havior in the target domain world. The learners understand the structure of the world

and the principles to control the behavior in the world by using visualization. These

systems include TRALKA2 (Malmi et al., 2004), Jeliot3 (Ben-Ari et al., 2011), ViLLE

(Rajala et al., 2008), iList (Fossati et al., 2008), and LEPA (Yamashita et al., 2016).

Learners understand the structure of the world by observing logical data structures vi-

sualized automatically by the system based on the provided algorithm or program code.

Moreover, learners understand the algorithm or program code as the principles of

behavior in the world by observing the changes in the status of the domain world as vi-

sualized in a step-by-step manner by the system.

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 2 of 19

In many existing systems, the policies for visualizing the target domain world are

pre-defined by the system developer. This may be an obstacle for a teacher who plans

to introduce the system into actual classes. Teachers often explain various concepts by

visualizations and change their policy of visualization depending on the learners. For

example, a teacher may draw an array object using a horizontal layout when the in-

struction target is sorting of the array (as in Fig. 1), whereas the teacher may draw it by

using a vertical layout for a stack. Changes such as these in the visualization policy are

derived by adjusting the contents of the instruction to learners’ background knowledge.

For example, once learners sufficiently understand a stack, representing an object using

either a horizontal or vertical layout will be acceptable to them. Similarly, when teach-

ing non-novice learners, the teacher would not need to draw the temporary variable in

a task in which the values of two variables are exchanged.

Typically, visualized data structures are displayed to learners by showing them

slides and/or movies produced with presentation and video editing software. Never-

theless, these materials cannot be used for certain learning activities, such as when

learners are required to observe program behavior where input data are changed

individually, because the input data are fixed. Other methods that would allow

learners to change the input data would involve providing target program that in-

cludes graphic drawing functions. However, this would also not be realistic because

it might burden teachers with troublesome coding, such as creating, updating, and

deleting drawing objects with name resolution that involves namespaces, scopes,

and so on.

We resolved this problem by developing a learning support system that enables

teachers to define the policy for drawing the status of the target domain world accord-

ing to their own intent (Kogure et al., 2014). Our system reproduces the behavior of

the program based on the definition. Teachers can define the visualization policy in a

configuration file separate from the target program code, after which our system scans

it, interprets the drawing policy, and visualizes the target domain world accordingly.

This enables learners to observe the program behavior in the target world visualized in

accordance with the teacher’s intent. The relationship among the teacher, learner, and

our system is shown in Fig. 2.

Defining a visualization policy for the target domain world

A configuration file that defines the visualization policy consists of a set of drawing

rules, each of which contains the following information:

Fig. 1 Example of the status of the target world

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 3 of 19

� Condition to actuate the drawing operation

� Operation to edit the target drawing object

� Identifier of the target drawing object

� Type of target drawing object

� Attributes for the drawing operation

We selected the available object and attribute types by examining actual teaching ma-

terials for algorithm and programming education in the faculties to which the authors

are affiliated. Table 1 provides a list of the available types, operations, and attributes.

Circle, square, and rectangle objects are mainly used to express directly the value of the

variable in the target program. The table object mainly expresses an array. Connector

and line objects express a relationship between the two objects, and label and balloon

objects are used to describe program behavior or the role of an object in natural

language.

Teachers can specify a condition for actuating the drawing operation by referencing

the statement number (statement ID) or variables in the target program, such as “when

a certain statement is executed,” or “when the value of a certain variable satisfies the

condition.” A condition can be expressed with six types of comparison operators, ==,

!=, >=, <=, <, and >, and three types of operands, i.e., the immediate number, a variable

in the target program, and the statement ID.

Some examples of drawing rules that include such information are provided in Fig. 3

in CSV format. The description in the first line is a rule that determines that, when the

Fig. 2 Relationship among teacher, learner, and our system

Table 1 Types of objects, drawing operations, and attributes for configuration

Objects Operations Attributes

Circle Create Corresponding variablea

Square Delete Main object IDb

Rectangle Update Position

Table Width

Connector Height

Line Color

Label Line color

Balloon String color
aOnly for circle, square, rectangle, and table objects
bOnly for connector, line, and balloon objects

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 4 of 19

statement with ID “3” in the target program is executed, our system draws a circle ob-

ject and assigns the object ID “OBJ1” to it. The corresponding variable is described as

“low,” and hence the value of the variable low is drawn inside OBJ1. OBJ1 is drawn at

position (“X1,” “Y1”) with a line, background, and inner character colors of “black,”

“white,” and “black,” respectively, according to the description in the rule. The rule in

the second line means that when the statement with ID “5” is executed, the line color

of the already visualized object “OBJ1” is updated to “red.” The last line is the rule that

when variable “j” has a value that is greater than “i” in the target program, the inner

character color of “OBJ1” is updated to “blue.”

Overview of learning environment produced by our system

Figure 4 shows a learning environment generated by our system. The environment con-

sists of three fields: the data structures processed by the program in (A) are visualized

in the two fields in (B) and (C). Our system reproduces a series of memory images of

variables in (B) for each step of the execution of the program and a series of statuses of

the target domain world in (C) that visualizes logical data structures. The definitions in

the configuration file represent the policy to visualize the world in (C). When a learner

clicks the “Next” or “Prev” button, the highlight in (A) moves to the next or previous

statement in the program code, whereupon the memory image in (B) is updated

Fig. 3 Examples of drawing rule descriptions in the configuration file

Fig. 4 Overview of learning environment produced by our system

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 5 of 19

according to the values of the variables after executing the highlighted statement, and

the corresponding status of the target domain world is visualized in (C). Our system

simulates the statement execution step by step so that the learner can understand the

program behavior by observing the changes in the target domain world in (C). More-

over, if there are some connector objects or descriptions with label and balloon objects

reflecting instructions in a class, they will assist the learner to understand the program

behavior. Field (B) represents the status of the memory image, which is implemented

for the learning target that needs to reference the main memory, such as a pointer.

The learning environment in Fig. 4 is an instance for observing the behavior of a bin-

ary search program. We needed to describe 31 drawing rules to define the visualization

in (C) for this environment.

Preliminary experiment

We conducted a small preliminary experiment in order to evaluate the difficulty of

preparing teaching material by the rule definitions in our system. The subjects in the

experiment were one Master’s student and two undergraduate students with their cap-

acity to perform the role as teaching assistant. We measured the time required for the

subjects to prepare teaching materials by using the rule definitions in the following

manner: first, we provided each subject with sufficient tutorials to enable them to pro-

duce teaching materials by the rule definitions in our system. Next, we presented the

subjects with the program code for selection sort and requested them to describe the

rule set required to visualize the program behavior in the target domain world. Our re-

quest included conveying that each subject has to implement the visualization policy

pre-established by us. After completing the rule definition, we requested the subjects to

create slide materials using PowerPoint with the same content and behavior as the ma-

terials produced by the rule definitions. Table 2 provides the times required for each

subject to complete each procedure.

Although the number of subjects was small, the result of this experiment suggests

that teaching materials for our system could be prepared in practical time with some

experience in rule definitions. The times required to complete the rule definitions are

approximately the same as those for slide creations. However, this rule-based teaching

material would be more useful because our system can reproduce the program behavior

without rule modifications, even if the target data processed by the program were to

change.

Related works

The ANIMAL (Rössling and Freisleben, 2002) is mentioned as a system with similar

functions to our system. In the context of learning with ANIMAL, users of the system

visualizing the behavior of programs are regarded as taking on one of the four different

roles defined in (Price et al., 1998):

Table 2 Times required to complete each procedure

Subject A Subject B Subject C

Tutorial 56 min 43 min 52 min

Rule definitions 32 min 30 min 33 min

Slide creations 23 min 33 min 29 min

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 6 of 19

1. User/viewer, agent observing the target domain world visualized by the system.

2. Visualizer/animator, agent defining the visualization of the target domain world

with the system.

3. Software developer, agent developing the visualization system.

4. Programmer, agent designing the algorithm or program code that is the target of

visualization.

The ANIMAL is a system that aims to achieve overall improvement in terms of learning

support by providing sophisticated support for each of the four above-mentioned roles, by

straightening the differences among them. In the context of learning with our system,

learners take on the user/viewer role and the teacher takes on the visualizer/animator and

programmer roles. The software developer role is taken on by us.

The visualizer/animator in ANIMAL needs to use a script language named Animal-

Script to define the visualization of the target domain world. Although the description

capability increases significantly by using the script language, the cost associated with

learning the language is a matter that cannot be ignored. Moreover, the amount of

script required to define the visualization in ANIMAL is generally larger than the

amount of visualization rules used in our system. For example, the sample script for a

bubble sort algorithm bundled in ANIMAL consists of 170 lines of code, whereas our

configuration file for bubble sort consists of 56 lines of rule. Rössling and Ackermann

(2007) attempted to reduce the defining costs by bundling some ready-to-use sample

scripts together with a GUI front-end for arranging the scripts. Likewise, our system is

being extended to enable the visualizer/animator to use a front-end GUI to define the

visualization rules.

Classroom practice sessions
In existing systems including ANIMAL, an action in the domain world is implemented

by the target program code or algorithm rather than by the users; that is, users’ GUI

operations are used mainly to observe changes in the domain world. In contrast, our

system provides a means of data input into the target program by learners themselves.

Data input into the target program implements an action to the domain world without

the need to edit the program code. We consider the use of this function to introduce

discovery learning into algorithm education. Below in this section, we describe three

classroom practical exercises with our system based on this consideration.

The first practical exercise involves fundamental sorting algorithms, incorporated into

actual classes, and conducted in order to confirm that an algorithm class including dis-

covery learning could be established as a form of algorithm education. The second in-

cludes search algorithms and was conducted separately from the actual classes,

confirming that our framework of practice could be applied to classes other than those

covering sorting algorithms. The third was another about sorting algorithms, was incor-

porated into the actual classes covering the same topic, and was conducted to investi-

gate the effects of our framework. In each practical exercise, we planned learning

without referencing the memory image in (B). Participants referred to field (A) as the

formal expression of the algorithm, from which we omitted the syntax details. Partici-

pants also focused on the observations in field (C) to understand the behavior of the al-

gorithms. Table 3 provides a brief summary of our classroom practice sessions.

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 7 of 19

Class #1: sorting algorithms

In the faculty to which one of the authors is affiliated, the lecture course “algorithm” is

held for third year students with a business administration major. We incorporated our

above-mentioned system into two of the classes in the course. The practical classes

covered three fundamental sorting algorithms, namely selection sort, insertion sort,

and bubble sort. The goal of these classes was to achieve an understanding of the be-

havior of the three sorting algorithms and to achieve an understanding of the differ-

ences among them based on the number of comparisons and swaps. We planned to

accomplish the former goal by using our system to enable learners to observe the

changes in the target domain world and the latter goal by using tasks based on discov-

ery learning that find the maximum and minimum number of comparisons and swaps.

There were 24 participants in this practical class, all of whom were business adminis-

tration majors, 21 years old, with less than 1 year of programming experience.

In the first practical class, the teacher who regularly taught the course lectured on

the three sorting algorithms for 75 min. At the end of the class, we conducted a 15-min

pre-test to evaluate the learners’ understanding of the three sorting algorithms before

using our system. The pre-test required learners to determine the values of variables by

tracing the algorithms. In the second class, which was conducted a week later, the teacher

explained how to operate the system containing our learning environment and how to ob-

serve the target domain world in the first ten minutes. After that, we allowed learners to

use our environment to explore and learn about each of the sorting algorithms. The learn-

ing process involved the following steps.

1. The learners observe the changes in the target domain world for the program code

as a whole and confirm the behavior of the algorithm.

2. The teacher makes the learners aware of the executions of comparison and swap

operations, and suggests that the number of these operations could be varied

according to the initial order of the array.

3. The learners input the initial order of the array into our environment, and confirm

the variation in the number of comparisons and swaps.

4. The teacher requests the learners to find the initial order of the array that

maximizes and minimizes the respective number of comparisons and swaps.

5. The teacher inquires of the learners their discovery of the initial array order and

explains the property of the target algorithm based on the learners’ replies.

Although the order in which the three algorithms can be presented to learners is

arbitrary, we introduced the environments in the order of bubble sort, insertion sort,

Table 3 Summary of our classroom practice sessions

Class #1 Class #2 Class #3

No. of participants 24 4 19

Target algorithm Sorting Search Sorting

Actual course Incorporated Not incorporated Incorporated

Learning time 90 + 90 min 120 min 90 + 90 min

Test 1 pre + 1 post 1 post only 3 pre + 3 post

Years and month July 2014 Feb 2015 July 2015

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 8 of 19

and selection sort in these practical classes. We omitted steps 2 and 3 above when pre-

senting insertion and selection sort. The task in step 4 is based on discovery learning,

hence we required the learners to follow this step for all three algorithms. Step 4 con-

sists of the following sub-steps that construct the discovery learning cycle:

4a. Learners generate a hypothesis about the array order that satisfies the

requirements.

4b. Learners input the array order based on their hypothesis in 4a.

4c. Learners verify the hypothesis by observing the behavior of the algorithm using the

array order in 4b.

4d. Learners return to step 4a and regenerate a more plausible hypothesis as necessary

based on the verification results in 4c.

We incorporate the input process in the target program code for realizing steps 3

and 4 to enable learners to input the initial order of the array when tracing the

program. After the entire 60-min learning period devoted to the three algorithms, we

conducted a 15-min post-test to evaluate learners’ understanding of the three sorting

algorithms after using our system. The post-test consisted of tasks involving tracing the

same algorithms as in the pre-test except for the target array.

The teacher created three configuration files to enable learners to learn by following

the above-mentioned steps before the practical classes. The configuration files con-

sisted of 56, 65, and 62 drawing rules for bubble sort, insertion sort, and selection sort,

respectively. Many of the drawing rules are defined in order to enable the target do-

main world to be visualized in a way similar to which existing systems visualize these

worlds. Meanwhile, some of the rules are defined to visualize the teacher’s intents such

as ensuring that the instruction contents correspond to a learner’s background know-

ledge and providing guidance during the discovery process. Specifically, the intents of

instruction included in our environment by the teacher were the following:

� To suggest the role of the variables to learners by drawing an arrowed connector

from the variables indexing the array to the corresponding array elements.

� To clarify the difference between sorted and unsorted elements by coloring sorted

elements only.

� To clarify the difference of a role by drawing circle objects for the index variables,

with a rectangle object for the temporary variable in swaps.

� To suggest the viewpoints in discovery learning by using label objects to notify the

execution of comparison and swap.

All of these intents of instruction were suggestive rather than codified, because we

intended to encourage learners to focus on the number of comparisons and swaps by

themselves in step 4. Figure 5 provides an example of the status of the target domain

world visualized by our system.

Both the pre- and post-tests elicited values for all the variables on the specified watch

points in a series of processes for each algorithm. The teacher scored the tests on an all

or none basis, i.e., one point for correct answers and zero for wrong answers for every

value at every watch point. The pre-test and post-test contained 64 and 56 questions,

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 9 of 19

respectively. Table 4 presents the scores of the two tests. We placed the scoring rates in

parentheses to allow for a comparison between both tests and for comparison with the

class to be mentioned later. We determined whether the difference in the scoring rate

between the pre- and post-test is statistically significant by performing a two-sided

independent t-test with a significance level of 5 %. The calculation showed t(23) = 3.98,

p < 0.01; hence, we found the difference to be significant.

Note that there are no participants with a lower post-test rate than a pre-test rate. Par-

ticipants with no difference in their rates are those who either obtained a full score or a

Fig. 5 Example of the status of the target domain world for a sorting algorithm

Table 4 Pre- and post-test scores of each participant in class #1

ID Pre-test Post-test Difference

1 7 (0.11) 24 (0.43) (0.32)

2 23 (0.36) 39 (0.70) (0.34)

3 27 (0.42) 33 (0.59) (0.17)

4 0 (0.00) 0 (0.00) (0.00)

5 24 (0.38) 23 (0.41) (0.04)

6 41 (0.64) 45 (0.80) (0.16)

7 64 (1.00) 56 (1.00) (0.00)

8 0 (0.00) 0 (0.00) (0.00)

9 10 (0.16) 20 (0.36) (0.20)

10 0 (0.00) 0 (0.00) (0.00)

11 19 (0.30) 24 (0.43) (0.13)

12 0 (0.00) 0 (0.00) (0.00)

13 0 (0.00) 3 (0.05) (0.05)

14 0 (0.00) 0 (0.00) (0.00)

15 0 (0.00) 0 (0.00) (0.00)

16 32 (0.50) 40 (0.71) (0.21)

17 25 (0.39) 56 (1.00) (0.61)

18 22 (0.34) 28 (0.50) (0.16)

19 50 (0.78) 55 (0.98) (0.20)

20 0 (0.00) 0 (0.00) (0.00)

21 14 (0.22) 42 (0.75) (0.53)

22 0 (0.00) 0 (0.00) (0.00)

23 20 (0.31) 20 (0.36) (0.05)

24 31 (0.41) 31 (0.55) (0.15)

Ave. 16.3 (0.26) 22.5 (0.40) (0.14)

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 10 of 19

zero score. Although the scoring rate of all participants increased by 0.14 on average,

those who had pre-test scores greater than zero increased the rate by 0.22 on average.

Class #2: search algorithms

We conducted another practical session for fundamental search algorithms separate

from the actual classes during which instruction was provided. Search algorithms

had not been introduced during the time of instruction because of the shortage of

time. Three search algorithms were introduced during this class: sequential search,

binary search, and hash search. The goal of the class was to allow learners to de-

velop an understanding of the behavior of and the differences among the three

search algorithms based on the search key and the search target. We planned to

achieve the goal by observing the changes in the target domain world using our

system and by the tasks based on discovery learning. The tasks assessed whether

learners were able to find the maximum and minimum number of comparisons

and the synonym records. Four learners participated in this practical session, all of

whom were business administration majors, 21 years old, and had less than 1 year

of programming experience. All of them had participated in the practical session

described in the previous subsection and none had any learning experience in

search algorithms.

The practice class was of 120-min duration. The teacher first explained how to oper-

ate our learning environment and how to observe the target domain world and then

conducted the class in the following steps:

1. The teacher provides the learners with the definition of the search problem. The

teacher then explains that the class focuses on searching from an array rather than

from a file and encourages the learners to think about a search algorithm

spontaneously.

2. The teacher introduces the basic idea of a sequential search algorithm as one of the

simplest solutions and allows the learners to observe its behavior using our

environment.

3. The teacher requests the learners to input some search keys and observe

the change in the number of comparisons and then requires the learners

find the search key that maximizes and minimizes the number of

comparisons.

4. The teacher inquires of the learners their discovery of the search key and

consequently explains the property of a sequential search algorithm, naïve but

inefficient, based on their replies.

5. The teacher mentions that there are more search algorithms, introduces the basic

idea of a binary search algorithm, and allows the learners to observe its behavior

using our environment.

6. The teacher requests the learners to input some search keys, observe the change in

behavior, and find the search key that maximizes and minimizes the number of

comparisons.

7. The teacher inquires of the learners their discovery of the search key and

consequently explains the property of a binary search algorithm, fast but requires

the search space to be sorted, based on their replies.

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 11 of 19

8. The teacher introduces the basic idea of a hash search as yet another algorithm,

and allows the learners to observe the behavior of a hash search from a dataset with

no synonyms using our environment.

9. The teacher allows the learners to observe the behavior of generating a hash table

using a certain dataset and observe the occurrence of collisions. Here, the collision

resolution of the algorithm used in the practical session is based on open

addressing.

10.The teacher inquires of the learners why collisions occur and how the searching

process changes. Then, the teacher requests the learners to find the dataset and

search keys that trigger collisions.

11.The teacher encourages learners to report what they have discovered and what they

have realized, and explains the properties related to a hash search such as hash

function requirements and the size of hash tables, based on learners’ replies.

12.The teacher allows the learners to use our environment to observe the behavior of

a hash search from a dataset with synonyms.

The configuration files are created by the teacher before the class, as in class #1. The

configuration files consisted of 28 drawing rules for sequential search, 33 rules for bin-

ary search, 30 rules for hash search from a dataset with no synonyms, 41 rules for hash

table generation, and 36 rules for hash search from a dataset with synonyms. The intent

of instruction included in our environment by the teacher for reasons other than the

visualization of elemental objects in the target domain world was the following:

� To suggest the role of variables to learners by drawing an arrowed connector from

the variables indexing the array to the corresponding array elements.

� To clarify the difference in the roles by drawing circle objects for the index

variables and a rectangle object for the search key.

� To clarify the difference between the search range and other array elements by

coloring only out-of-range elements when using the sequential and binary search

algorithms.

� To suggest the viewpoints in discovery learning by coloring two objects that are the

target of the comparison process.

Fig. 6 Example of the status of the target domain world for a binary search algorithm

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 12 of 19

We intended to support learners’ discovery experience by providing suggestive visual-

izations similar to those in the practice session described in the previous subsection.

The tasks based on discovery learning are included in steps 3, 6, and 10. Figure 6

provides an example of the status of the target domain world when the binary search

algorithm is visualized by our system. The search key is stored in the variable k. The

search range is presented by using gray color for the array elements that are out of the

search range. A comparison between two objects is presented by using red color for

the target of the comparison process, 93204 and 93309. These visualizations suggest

the objects on which the learners should focus and support the learners’ discovery

learning.

After the practice session, we instructed the learners to write a briefing paper on

search algorithms by briefly explaining their behavior and properties as a 15-min

post-test. The teacher examined their responses from the viewpoint of whether the

learners adequately described the three algorithms and their properties based on

what they learned in this practice session. Consequently, we found that, although

the learners were able to describe all three algorithms and roughly explain the be-

havior and properties of each, they tended to use informal terms in their descrip-

tions. We consider the learners to have grasped the behavior and properties of the

algorithms but have not acquired the terminology, because this practice did not in-

clude an instruction session.

Class #3: sorting algorithms

The last practice class among the three was conducted in July 2015. The contents and

goal of the class were the same as for class #1; that is, to understand the behavior of

three sorting algorithms and to understand the differences among them based on the

number of comparisons and swaps. We incorporated class #3 into the actual course “al-

gorithm” as two consecutive sessions. We also included the same intent of instruction

as those in class #1 in the configuration files. Learners followed steps 1 to 5 of class #1

when learning about each of the sorting algorithms with our environment. This time,

19 learners participated in the practice sessions, all of whom were business administra-

tion majors, 22 years old, with less than 1 year of programming experience. Four of

them had participated in class #1 but had received zero for both of the pre- and post-

tests.

Class #3 differed from class #1 in two respects. First, we used questionnaires to ob-

tain leaner feedback at the end of the second practice session. We discuss these results

in Section 4.Second, whereas the pre- and post-tests in class #1 required the values of

variables to be obtained by tracing the three algorithms, those administered in class #3

consisted of the following three questions:

Q1. Asks the values of variables obtained by tracing the single provided algorithm in

order to check the overall understanding of algorithm behavior.

Q2. Asks the number of comparisons and swaps to determine whether the learners

could find the correct number for the provided algorithm and initial array.

Q3. Asks which algorithm is the most efficient to sort the provided initial array and

why, to establish whether the learners could explain the differences among the

algorithms appropriately.

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 13 of 19

The algorithms provided in Q1 and Q2 were different, as were the initial array provided

in Q2 and Q3. These also differed between the pre-test and post-test.

The scoring was done by the teacher as in class #1. Q1 required the values of all vari-

ables on ten specified watch points in a series of processing the algorithm. The teacher

scored one point for correct values at every watch point and zero for answers including

the wrong value for Q1. Every answered number of comparisons and swaps for Q2

scored one point for each correct answer and zero if the answer was wrong. The

teacher scored each answer in response to Q3 using a five-point scale, examined from

the viewpoints as to whether the algorithm in the answer is the most efficient one, the

description contains comparisons among the algorithms, the comparative perspective is

appropriate, and the description contains a sufficient degree of details.

Table 5 presents the scores of the pre- and post-tests that were administered in class

#3. We again provide the scoring rates in parentheses. We performed a two-sided inde-

pendent t test with a significance level of 5 % for every question to determine whether

the difference of each scoring rate between the pre- and post-tests is statistically signifi-

cant. The calculation showed tQ1(18) = 3.71, tQ2(18) = 3.52, tQ3(18) = 2.39, and pQ1 < 0.01,

pQ2 < 0.01, and pQ3 < 0.03; hence, we found all differences to be significant. Supposing that

the averages of the scoring rates represent the entire scores of the pre- and post-test, the

resultant scores largely have a similar tendency to those of class #1. We also performed a

two-sided independent t test with a significance level of 5 % on all the averages of the

scoring rates. The calculation showed t(18) = 4.22, p < 0.01, and hence we found

Table 5 Pre- and post-test scores of each participant in Class #3

ID Pre-test Post-test Difference

Q1 Q2 Q3 Ave. Q1 Q2 Q3 Ave. Q1 Q2 Q3 Ave.

1 1 (0.10) 0 (0.00) 1 (0.00) (0.03) 0 (0.00) 2 (1.00) 3 (0.50) (0.50) (-0.10) (1.00) (0.50) (0.47)

2 1 (0.10) 1 (0.50) 1 (0.00) (0.20) 0 (0.00) 2 (1.00) 1 (0.00) (0.33) (-0.10) (0.50) (0.00) (0.13)

3 0 (0.00) 2 (1.00) 1 (0.00) (0.33) 0 (0.00) 1 (0.50) 1 (0.00) (0.17) (0.00) (-0.50) (0.00) (-0.17)

4 0 (0.00) 0 (0.00) 1 (0.00) (0.00) 0 (0.00) 1 (0.50) 1 (0.00) (0.17) (0.00) (0.50) (0.00) (0.17)

5 0 (0.00) 0 (0.00) 1 (0.00) (0.00) 0 (0.00) 0 (0.00) 1 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

6 5 (0.50) 0 (0.00) 1 (0.00) (0.17) 10 (1.00) 2 (1.00) 5 (1.00) (1.00) (0.50) (1.00) (1.00) (0.83)

7 0 (0.00) 1 (0.50) 1 (0.00) (0.17) 5 (0.50) 1 (0.50) 3 (0.50) (0.50) (0.50) (0.00) (0.50) (0.33)

8 1 (0.10) 2 (1.00) 1 (0.00) (0.37) 6 (0.60) 1 (0.50) 3 (0.50) (0.53) (0.50) (-0.50) (0.50) (0.17)

9 0 (0.00) 0 (0.00) 1 (0.00) (0.00) 0 (0.00) 0 (0.00) 1 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

10 0 (0.00) 0 (0.00) 1 (0.00) (0.00) 0 (0.00) 1 (0.50) 1 (0.00) (0.17) (0.00) (0.50) (0.00) (0.17)

11 4 (0.40) 1 (0.40) 3 (0.50) (0.47) 10 (1.00) 2 (1.00) 1 (0.00) (0.67) (0.60) (0.50) (-0.50) (0.20)

12 4 (0.40) 0 (0.00) 3 (0.50) (0.30) 10 (1.00) 2 (1.00) 5 (1.00) (1.00) (0.60) (1.00) (0.50) (0.70)

13 3 (0.30) 0 (0.00) 1 (0.00) (0.10) 5 (0.50) 2 (1.00) 3 (0.50) (0.67) (0.20) (1.00) (0.50) (0.57)

14 0 (0.00) 0 (0.00) 1 (0.00) (0.00) 0 (0.00) 0 (0.00) 1 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

15 0 (0.00) 0 (0.00) 1 (0.00) (0.00) 5 (0.50) 1 (0.50) 1 (0.00) (0.33) (050) (0.50) (0.00) (0.33)

16 0 (0.00) 0 (0.00) 1 (0.00) (0.00) 10 (1.00) 2 (1.00) 5 (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

(0.00) (0.00) (0.00) (0.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

17 0 (0.00) 0 (0.00) 1 (0.00) (0.00) 0 (0.00) 1 (0.50) 1 (0.00) (0.17) (0.00) (0.50) (0.00) (0.17)

18 0 (0.00) 0 (0.00) 1 (0.00) (0.00) 5 (0.50) 1 (0.50) 1 (0.00) (0.33) (0.50) (0.50) (0.00) (0.33)

19 0 (0.00) 0 (0.00) 1 (0.00) (0.00) 5 (0.50) 0 (0.00) 1 (0.00) (0.17) (0.50) (0.00) (0.00) (0.17)

Ave. (0.10) (0.18) (0.05) (0.11) (0.37) (0.58) (0.26) (0.41) (0.27) (0.39) (0.21) (0.29)

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 14 of 19

the difference of the entire set of scoring rates to be significant. There was only

one participant with a post-test rate lower than their pre-test rate. The average im-

provement in the scoring rate was 0.29, which suggests the effectiveness of the

framework in our practical work.

Discussion
Discovery learning of the properties of an algorithm

Our intension was to enable learners to discover the properties of an algorithm ra-

ther than the algorithm itself because of the goal of the actual algorithm course.

The course is expected to use case learning to promote general problem solving

skills, rather than develop the fundamental skills required for program design.

Hence, the teacher has placed great emphasis on instilling knowledge about exist-

ing algorithms. The evaluation results of Class #1 and #3 based on the pre- and

post-test suggest that the learners cultivated an improved understanding of sorting

algorithms through the practice sessions. The briefing papers written in Class #2

suggest that the learners understood the behavior of a search algorithm to some

extent, despite being unsuccessful in mastering the terminology. We consider these

results to confirm that the framework implemented in our practice sessions can be

established in algorithm classes.

During coding exercises or when learning with a learning support system,

learners develop the learning activity individually; hence, they would focus on ir-

regular and inconsistent points for discovery. Kirschner et al. (2006) has pointed

out that unguided learning is ineffective based on examples from science and med-

ical education, and insisted on the necessity of guidance in discovery learning.

Thus, we included visual objects in the visualized domain world, which serves as a

guide for discovery. Not only does our system provide objects consisting of the tar-

get domain world but also suggestive viewpoints to reduce the irregularity and in-

consistency. The visualizations defined in our practice exercises are not intended

to explain the role of each object or the behavior of the algorithm, rather to sug-

gest points on which the learners should focus, that is, to provide guidance for dis-

covery learning. In our practical classes, participants replied actively by sharing

their discovery with the teacher. Therefore, we consider our visualization to work

effectively with the desired effect in terms of discovery learning.

Factors influencing score improvements

Class #1 and #3 had an interval of 1 week between the pre- and post-test because

of schedule restrictions. This was because we incorporated each of the practice ex-

ercises into a series of actual classes. These intervals are not short and conse-

quently allowed the learners to learn out-of-class with textbooks and course notes.

In this section, we discuss the questionnaire administered in class #3 and the sur-

vey results to evaluate the extent to which out-of-class learning influences the

post-test score.

The questionnaire covered the following six aspects:

E1. Enquires about the amount of out-of-class preparation and reviews using a

five-point scale.

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 15 of 19

E2. Enquires about the level of confidence in programming skills using a five-point scale.

E3. Enquires about the level of interest in computer science using a five-point scale.

E4. Enquires about the usability of our learning environment using a five-point scale.

E5. Enquires about the learning target that cultivated an improved understanding.

E6. Enquires about the learner’s impression or suggestions to improve our environment.

We included items E5 and E6 for the purpose of applying qualitative analysis, but un-

fortunately, most of the participants left these items unanswered. Table 6 provides the

answers of each participant for E1 to E4.

We estimated the relationships between the scoring rate improvements in the pre-

and post-tests and answers on the questionnaire by applying the following growth

model: Both test rates were modeled as linear functions to obtain the distribution of

slopes and intercepts. The slopes and intercepts serve as dependent variables, and

questionnaire items serve as independent variables. We examined how each question-

naire item (i.e., the independent variables) affects both test scores (i.e., dependent vari-

ables) by applying regression analysis. Figure 7 provides an excerpt of our analysis. The

numerical values accompanying the arrows in the diagram represent the partial regres-

sion coefficients which are standardized to a scale in the range [−1, 1]. The rectangle

and circle nodes represent independent and dependent variables, respectively. We ex-

cerpt the numerical values concerning the following discussions for simplicity. Our

model revealed a good fit to the data (GFI = 1.00, AGFI = 1.00).

According to Fig. 7, learning out-of-class (asked in E1) has a weak negative relation

to both the slopes and intercepts. This can be interpreted that the slopes refer to the

scoring rate improvements between pre- and post-tests and the intercepts refer to the

Table 6 All answers on questionnaire in class #3

ID E1 E2 E3 E4

1 3 2 4 4

2 1 3 4 4

3 2 2 4 2

4 1 1 2 3

5 1 1 1 3

6 3 2 4 5

7 1 1 1 4

8 2 3 4 3

9 1 1 2 3

10 2 2 3 4

11 2 2 2 3

12 1 1 3 5

13 1 1 2 5

14 2 2 3 4

15 2 2 4 3

16 2 3 4 5

17 3 2 3 4

18 2 2 4 4

19 4 2 3 4

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 16 of 19

pre-test rates, roughly. Based on the interpretation, both of the score improvements

and pre-test scores had been influenced very little by out-of-class learning. That is, al-

though there was an interval of one week between Class #1 and #3 because of schedule

restriction, we can ignore the influence of the interval on the scores of the pre- and

post-test. This evaluation result does not have sufficient reliability for generality be-

cause we could not procure a sufficient number of participants for the practice ses-

sions. However, at least in Class #3 the score improvements would be influenced little

by out-of-class learning.

Questionnaire items intended to probe effects other than out-of-class learning also

had the expected outcome. The confidence in programming skills (E2) were found to

have weak relations to intercepts. This suggests that the pre-test scores would be tan-

gible confidence of programming skills. The interests in computer science (E3) have

weak relations to slopes, suggesting that participants with an interest in computer sci-

ence would be eager to attempt the classroom practice with the program visualization

system. Evaluations of the usability of our system (E4) have an extremely strong rela-

tion to slopes. We think it is natural that participants who cultivated an improved un-

derstanding of algorithms graded the usability higher.

Conclusion
In this paper, we described the educational practices based on the learning support

system we developed in our previous work. The system, which offers visualization

of program behavior, supports learners to understand algorithms, and hence intro-

ducing these systems is expected to allow learners to cultivate an improved under-

standing. However, existing systems tend to focus on reproducing the entire flow

of the algorithm behavior, which means that it is necessary to structure the con-

tents of classes such that the properties of an algorithm such as the number of

comparisons or swaps are taught. Furthermore, almost all of existing systems disal-

lows variation in the teacher’s intent of instruction to accommodate the learners.

Fig. 7 Path diagram representing our model in questionnaire analysis

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 17 of 19

Based on these considerations, we introduced the system developed in our previous

work. Our system visualizes the target domain world according to the visualization

policy defined by the teacher. We included contents based on discovery learning

about the properties of algorithms in our classroom practices. The teacher made

learners externalize their discovery by inquiries and explained knowledge based on

their externalized discovery.

We conducted three classroom practical sessions introducing our system. The evalu-

ation results of the pre- and post-test in class #1 and #3 provided that the learners cul-

tivated an improved understanding through our practices. The results of the post-test

of class #2 showed that the learners gained an understanding of the general behavior of

algorithms to a certain degree, though they gained little understanding of the termin-

ology. These results suggest that the framework of our practices can be established in

algorithm classes. Although we must consider that a statistically insufficient number of

learners participating in the practice sessions may influence the accuracy of verification,

we believe that continuous practice will suppress this reliability matter.

One of the limitations of our framework is that it is difficult to encourage adoption

of the terminology such as the name of an algorithm. The transfer of knowledge in lec-

ture classes would require the teacher to balance the lecture and time learners are

allowed to practice with the system. We plan to find ideal material for use in classes by

continuously conducting classroom practice sessions with our system. Further, the

questionnaire administered in class #3 had inquiries concerning mainly the learner’s

attributes; hence, our analysis based on the answers could not reveal factors that have

(or do not have) a learning effect. We intend to continue improving the questionnaire

inquiries in order to determine the direction for improving our class design and our

system. Other future work is to conduct a more quantitative evaluation of the learning

effects and efficiency of our classroom practices. We also plan to continue investigating

how efficiently the framework in our practices is prepared and how effectively and effi-

ciently the algorithm classes are conducted.

Our practices suggest that if the algorithm course is held as part of fundamental sci-

ence education, the teacher could conduct the classes based on discovery learning by

introducing an appropriate learning support system. We can summarize the require-

ments of classroom practice for algorithms including discovery learning such as our

practice described in this paper as follows:

� Teacher needs to introduce the learning support system into the class for use by

each of the learners individually.

� The system needs the functionality to allow the design of actions to the target

domain world and user interface to apply actions other than coding.

� The system needs the functionality to construct the target domain world based on

the teacher’s intent to suggest focusing points and support the learner’s discovery.

Acknowledgements
This study was supported by JSPS KAKENHI Grant Numbers JP24300282, JP15K1610, JP16K01084.

Authors’ contributions
KY participated in the development of the system, conducted the classroom practices, summarized the research and
wrote this paper. RF and SK implemented and evaluated the system. YN, TK, and YI gave advice based on actual
teaching experience. All authors read and approved the final manuscript.

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 18 of 19

Competing interests
All authors declare that they have no competing interests.

Author details
1Faculty of Business Administration, Tokoha University, 1230 Miyakoda, Kita-ku, Hamamatsu, Shizuoka 431-2102, Japan.
2Graduate School of Informatics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan.
3Faculty of Informatics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan. 4Shizuoka
University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan.

Received: 14 December 2015 Accepted: 8 August 2016

References
Ben-Ari, M, Bednarik, R, Ben-Bassat Levy, R, Ebel, G, Moreno, A, Myller, N, & Sutinen, E. (2011). A decade of research and

development on program animation: the Jeliot experience. Journal of Visual Languages & Computing,
22(5), 375–384.

Fossati, D, Eugenio, BD, Brown, C, Ohlsson, S. (2008). Learning linked lists: experiments with the iList system. Proceedings
of the 9th International Conference on Intelligent Tutoring Systems, 80-89. doi:10.1007/978-3-540-69132-7_13.

Kirschner, P, Sweller, J, & Clark, RE. (2006). Why unguided learning does not work: an analysis of the failure of discovery
learning, problem-based learning, experiential learning and inquiry-based learning. Educational Psychologist, 41(2),
75–86.

Kogure, S, Fujioka, R, Noguchi, Y, Yamashita, K, Konishi, T, Itoh, Y. (2014). Code reading environment according to
visualizing both variable’s memory image and target world’s status. Proceeding of the 22nd International Conference
on Computers in Education, 343-348.

Malmi, L, Karavirta, V, Korhonen, A, Nikander, J, Seppälä, O, & Silvasti, P. (2004). Visual algorithm simulation exercise
system with automatic assessment: TRAKLA2. Informatics in Education, 3(2), 267–288.

Pears, A, Seidman, S, Malmi, L, Mannila, L, Adams, E, Bennedsen, J, Devlin, M, & Paterson, J. (2007). A survey of literature
on the teaching of introductory programming. ACM SIGCSE Bulletin, 39(4), 204–223.

Price, B, Beacker, R, & Small, I. (1998). An introduction to software visualization. In J. Stasko, J. Domingue, M. H. Brown, &
B. A. Price (Eds.), Software Visualization (pp. 15–32). MIT Press: Cambridge.

Rajala, T, Laakso, MJ, Kaila, E, & Salakoski, T. (2008). Effectiveness of program visualization: a case study with the ViLLE
tool. Journal of Information Technology Education, 7, 15–32.

Robins, A, Rountree, J, & Rountree, N. (2003). Learning and teaching programming: a review and discussion. Computer
Science Education, 13(2), 137–172.

Rössling, G, & Ackermann, T. (2007). A framework for generating AV content on-the-fly. Electronic Notes in Theoretical
Computer Science, 178, 23–31.

Rössling, G, & Freisleben, B. (2002). ANIMAL: a system for supporting multiple roles in algorithm animation. Journal of
Visual Language & Computing, 13(3), 341–354.

Yamashita, K, Nagao, T, Kogure, S, Noguchi, Y, Konishi, T, & Itoh, Y. (2016). Code-reading support environment
visualizing three fields and educational practice to understand nested loops. Research and Practice in Technology
Enhanced Learning, 11(1), 1–22. doi:10.1186/s41039-016-0027-3.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Yamashita et al. Research and Practice in Technology Enhanced Learning (2016) 11:15 Page 19 of 19

http://dx.doi.org/10.1007/978-3-540-69132-7_13
http://dx.doi.org/10.1186/s41039-016-0027-3

	Abstract
	Background
	Preceding work
	Basic idea
	Defining a visualization policy for the target domain world
	Overview of learning environment produced by our system
	Preliminary experiment
	Related works

	Classroom practice sessions
	Class #1: sorting algorithms
	Class #2: search algorithms
	Class #3: sorting algorithms

	Discussion
	Discovery learning of the properties of an algorithm
	Factors influencing score improvements

	Conclusion
	Acknowledgements
	Authors’ contributions
	Competing interests
	Author details
	References

