
RESEARCH Open Access

Code-reading support environment
visualizing three fields and educational
practice to understand nested loops
Koichi Yamashita1*, Takamasa Nagao2, Satoru Kogure2, Yasuhiro Noguchi3, Tatsuhiro Konishi2 and Yukihiro Itoh4

* Correspondence:
yamasita@hm.tokoha-u.ac.jp
1Faculty of Business Administration,
Tokoha University, 1230 Miyakoda,
Kita-ku, Hamamatsu, Shizuoka
431-2102, Japan
Full list of author information is
available at the end of the article

Abstract

In this paper, we describe a code-reading support environment and practical
classroom applications using this environment to understand nested loops.
Previously, we developed a code-reading support system based on visualization of
the relationships among the program code, target domain world, and operations.
We implemented the proposed system in exercises with nested loops. The
evaluation results suggested that students could frequently fulfill learning objectives
using the proposed system. However, we also discovered that some students
experienced a learning impasse in the classroom. We attempted to address these
students with two supporting approaches: bridging the gap between the generalization
structures in the program code and their corresponding operations and enabling
learners to predict the behavior of the nested loops. In this paper, we extend our
previous system with new functions based on our two supporting approaches. Further,
we implement the system in another classroom for nested loops. We describe a
correlation between the proposed system and an understanding of nested loops using
pre-/post-test comparisons. We discuss how code reading using the proposed system
allows learners to cultivate a superior understanding of the program code.

Keywords: Education for programming, Domain world models, Learning environment
for exercise, Classroom practice, Learning by code reading

Introduction
With the continued rapid development and spread of information equipment such as

smartphones, productivity improvements for program codes have been increasingly

required. Software-developing environments have been enhanced, and programming

languages have developed their descriptive capabilities. Programming skills are becom-

ing necessary for not only software engineers. In the context of society informatization,

increasing numbers of learners require an education in computer programming

(Robins et al. 2003; Pears et al. 2007; Konecki & Petrlić 2014).

For several years, we have conducted programming classes for a wide variety of stu-

dents. Through our experience in the classroom, we have paid attention to three fun-

damental skills that novice programming students tend to find difficult to acquire:

© 2016 Yamashita et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Yamashita et al. Research and Practice in
Technology Enhanced Learning (2016) 11:3
DOI 10.1186/s41039-016-0027-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s41039-016-0027-3&domain=pdf
mailto:yamasita@hm.tokoha-u.ac.jp
http://creativecommons.org/licenses/by/4.0/

� Control structure can be and often is nested inside of another one. Students

frequently have difficulty understanding nested structures in control flows and code

descriptions. (Nesting)

� Students often struggle to generalize a set of concrete operations into an abstract

function with variables. They tend to be able to interpret the processing contents of

the first lap of the loop, the second lap of that, the third lap of that, and so on,

while not to the contents of the nth lap of the loop. (Generalization)

� Students sometimes fail to grasp how the values of variables change with the

execution of each statement. (Tracing; we treat tracing as tracing values of variables

used in the code.)

Nested loops are a learning target with which novice learners frequently have an ini-

tial difficulty. This is because to fully comprehend this concept requires that the learner

understands all three of the abovementioned fundamentals. Koppelman and van Dijk

(2010) emphasized the importance of nested loops as one of the targets required to

understand the concept of abstraction. However, limited exposure in programming

courses constrains the efforts of learners to develop a thorough understanding of these

fundamental concepts. The purpose of our study is to encourage students to learn these

concepts efficiently. We have introduced learning support systems into classroom exer-

cises in nested loops for several years (Kogure et al. 2013).

In this paper, we describe our code-reading support environment and the classroom

applications of using this environment to understand nested loops. Previously, we de-

veloped a learning support system for code reading (Kogure et al. 2012). As in our pre-

vious work, we assume that learners will understand programs and algorithms by

recalling an image consisting of three fields: the program code, objects processed by

the program (i.e., the target domain world), and a sequence of concrete operations for

the target domain. Learners must comprehend the relationships and correspondence

among the components in each field. Many existing systems intuitively visualize the target

domain world and reproduce the transition of its status. However, they do not have func-

tions to visualize the correspondence between the program code and the concrete opera-

tions. The proposed system visualizes the three fields and their relationships to support

understanding the relationships and correspondence among their components.

In our previous work (Kogure et al. 2013), we conducted exercise classes implement-

ing our system to assist the understanding of nested loops and determined that some

students experienced a learning impasse in the classroom. Based on the implicit and

explicit feedback in our previous classroom practices, we constructed two approaches

to cope with the impasse: bridging the gap between generalization structures in the

program code and their corresponding operations and enabling learners to predict the

behavior of a nested loop by observing two characteristics in the code.

In this paper, we present an overview of our previous system, new support strategies

and functions that have been incorporated in the proposed system, and renewed class-

room practice in helping students understand nested loops. We describe our previous

learning support system, the two approaches to avoid the learning impasse, and the

proposed extended system in the “Learning environment for programs and algorithms”

section. We provide an overview of our classroom practice, our controlled experiment,

and the evaluation results of the proposed system in the “Educational practice” section.

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 2 of 22

Our evaluation results suggest that there is a correlation between our extended system

and an understanding of nested loops. In the “Related works” section, we clarify the

position of the proposed system, citing representative works. We discuss how code

reading with the proposed system supports learners to cultivate an improved under-

standing of the program code and how the proposed system contributes to the overall

learning of programming in the “Discussion” section. We conclude with a brief sum-

mary and discussion of future work in the “Conclusion” section.

Learning environment for programs and algorithms
Our previous work

In our previous work (Kogure et al. 2012), we assumed that learners require an image

consisting of three fields and understand the relationships among their components.

The three fields are the program code field, target domain field, and operation field.

With this assumption, we developed a system called learning environment for pro-

grams and algorithms (LEPA) that supported the learner in understanding programs.

Figure 1 presents an overview of the learning support environment provided by LEPA.

The three fields are reproduced in (a), (b), and (c).

LEPA is a code-reading support system for a typical program code in the C language

in programming education for novice learners. Given a C code, unless the input code

includes syntax errors and/or runtime errors, LEPA automatically generates a browser-

based environment supporting learners to read the code. Consequently, it is not

intended that learners use LEPA as a code-developing environment. LEPA provides

learners with an environment to read an example code fragment provided by a teacher

or textbook.

When a learner clicks on any of the operations in (c), the system displays the state of

the target domain after executing the operation in (b). Thus, the learner can under-

stand the role of a certain sequence of operations by comparing or observing the

Fig. 1 Overview of the LEPA environment, which has the program code field visualized in (a), target
domain field in (b), and operation field in (c).

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 3 of 22

visualized target domain field before and after execution. Furthermore, the system

highlights the code fragment in (a) corresponding to the selected operation in (c) and

vice versa when the learner first clicks on a fragment in (a). The correspondence be-

tween a code fragment and an operation is therefore apparent to the learner. We be-

lieve that important information can be understood and retained using LEPA’s

visualization, including what happens in the target domain field when a concrete oper-

ation is executed and what kind of code is required to create this effect.

Learning with LEPA is based on the learner’s externalization of what they have ob-

served. Externalization is demonstrated with a process of packing and tagging using the

GUI interface. The term “packing” in this paper means grouping a certain sequence of

operations with single abstract function into a package. If such sequence of operations

is discovered in (c), then the following two options are available:

1. The learner can push the “pack” button to pack the selected operation sequence

into a package. Packages are permitted in a nested structure.

2. The learner can tag the package with a natural-language description according to

its function (as indicated by the arrow in Fig. 1).

The resulting packed structure of the operation sequence ideally comes closer to the

program code’s structure. The learner will arrive at an understanding of the entire con-

trol sequence for the program code by completing a series of these activities.

Externalization activities can be classified into two groups according to the repetitive-

ness in the target operations: abstraction for operations that are not repetitive and

generalization for operations that are repetitive. LEPA supports the former activity with

packing operations and the latter by tagging the nth lap of a loop (as indicated in Fig. 2).

Extending approach

In our previous work (Kogure et al. 2013), we implemented LEPA in exercise with

nested loops. In these classes, we discovered that some students experienced a learning

impasse. Based on the score differences between pre- and post-tests, the system did not

indicate effects on the learner’s ability to generalize. To address this impasse, we now

extend LEPA based on two supporting approaches. First, we consider that a factor of

Fig. 2 Tagging a package and tagging the nth lap of a package

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 4 of 22

the impasse was the gap between the generalization structures in the program code

and in the corresponding operations. Therefore, we extend LEPA to support learners to

bridge the gap. Then, we consider that a reduced ability to grasp the relationship be-

tween a code fragment and behavior hindered an improved understanding of nested

loops. Therefore, we also extend LEPA to support learners to predict the behavior of a

nested loop based on its classification derived by two characteristics in the code. In this

section, we describe these two approaches. Hereafter, we call our previous system de-

scribed in (Kogure et al. 2012) LEPA1 and the proposed extended system LEPA2.

Gap between the representations of generalization

Packing operations brings their structure closer to the program code. However, a gap

can be found between the structure of a package and the corresponding fragment of

the program code, as illustrated in Fig. 3.

The right side in Fig. 3 presents the program code that displays an N-step pyramid

by outputting an appropriate number of spaces, asterisks, and new lines. The left side

indicates the transition of the package structure corresponding to the code. It is our

opinion that this is the most plausible transition.

We assume that these packages are created with the following steps in terms of the

learner’s learning trajectory. First, the learner observes three fields and consequently

creates two packages such as “output x spaces” and “output y asterisks.” In this case,

the learner assigns concrete numerals for x and y, rather than variables. Then, they are

packed hierarchically with an operation that outputs a new line that is tagged “output

zth step of the pyramid.” At this stage, z is also a concrete numeral. The learner con-

tinues these steps until all of the operations in the operation field are included in the

packages. Finally, N packages are acquired, packed, and tagged for the nth lap.

In LEPA1, the target for generalized tagging is only available at the first hierarchical

level. This means that the learner tags the nth lap with variables that are exclusively

from the package, “output zth step of the pyramid.” LEPA1 hides any levels that are

deeper than this in the operation field (i.e., outputting spaces, asterisks, and new lines).

However, the program code for a nested loop is provided throughout the hierarchy.

Fig. 3 Gap between the generalized operations and the program code

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 5 of 22

Having generalized the first-level hierarchy into “output kth step of the pyramid” with

the variable k, the learner moves on to the deeper levels such as “output N-k spaces” or

“output 2k-1 asterisks.” Given generalizations throughout the hierarchy, the learner can

realize the meaning of the control statements for the nested loops in the program code.

Based on these discussions, we have implemented a function that enables users to

generalize a package while retaining the explicit hierarchy. Thus, the learner can tag

the nth lap of the inner loops. Further, we have implemented a function that automatic-

ally generates a template for the general tag with the following steps:

1. Discriminating variable words from invariable words in the set of tags on the

packages to be generalized

2. Replacing variable words with a series of symbols such as “_”

For example, in displaying a pyramid, the proposed system generates templates such

as “output XXX spaces,” “output ??? asterisks,” and “output ___th step of the pyramid”

from the set of tags. By providing these templates, the proposed system encourages

learners to formulate “XXX,” “???,” and “___” with loop control variables in the pro-

gram code. The screenshot in Fig. 4 depicts the implemented functions. They are

intended to assist learners to understand the structure of nested loops.

Fig. 4 Generalized packages while keeping the hierarchy explicit

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 6 of 22

Two characteristics in nested loop code

Programmers implement loops to include both identical operations and a wide variety

of repetitive operations by appropriately referencing the loop’s control variables. For ex-

ample, different values are displayed by iterative execution of a statement to display the

value of the variable i in a loop controlled by i. Therefore, the iteration package corre-

sponding to the statement consists of a sequence of operations with different descriptions.

Generalization in the proposed system involves two phases: identifying operations that

regularly vary in the iterative package of the operation field and formulating this regular-

ity. Nested loops increase the diversity of repetitiveness in the corresponding operations.

We must consider not only the inner and outer loops where the control variables are ref-

erenced but also loops with references to variables that control the outer loop. This diver-

sity can be regarded as a factor that novice programmers tend to find difficult to

comprehend the relationship between the code of a nested loop and its behavior.

We constructed the second supporting approach to understand relationships by de-

veloping a classification of nested loops. By investigating textbooks and exercises, we

have focused on the following two characteristics in nested loop code:

Ch1. A statement to iterate in the inner loop references control variables from the

outer loop.

Ch2. A conditional statement in the inner loop references control variables from the

outer loop.

A nested loop with Ch1 includes operations of varying representations at each iter-

ation step of the outer loop—that is, for each inner loop. For example, the left side in

Fig. 5 is the program code for outputting different values according to each iteration

step of the outer loop. Conversely, a nested loop with Ch2 has a different number of

operations corresponding to the inner loop according to each iteration step of the outer

Fig. 5 Program codes with Ch1/Ch2 and its operation sequence

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 7 of 22

loop. For example, the right side in Fig. 5 is the program code where a different num-

ber of operations corresponds to the inner loop according to each iteration step of the

outer loop.

We define “changing-step-contents type” as a type of nested loop with Ch1 and

“changing-step-counts type” as a type with Ch2. The behavior of a nested loop can be classi-

fied into the following four classes based on the absence or presence of each characteristics:

� Without either Ch1 or Ch2—the operations corresponding to each inner loop and

the number of them will never change.

� With Ch1—the operations corresponding to each inner loop will change in each

outer loop step; however, the number will not.

� With Ch2—the number of operations corresponding to each inner loop will change

in each outer loop step; however, the operations themselves will not.

� With both Ch1 and Ch2—both the operations corresponding to each inner loop

and the number of them will change in each outer loop step.

In their packing series, learners must appropriately recognize the repetitiveness of an

operation sequence as to whether it has these characteristics. Furthermore, to recognize

the repetitiveness, learners must anticipate the regularity in the operation field based

on the characteristics in the program code field. If learners can classify a nested loop

code, they can reproduce the behavior of the nested loop based on the behavior pattern

of the class. Moreover, by determining the behavior pattern of an algorithm in the cod-

ing, novice programmers can identify the characteristics to incorporate into the pro-

gram code.

Based on these discussions, we attempt to teach students these characteristics, aiming

to develop in them a better understanding of nested loops. Furthermore, we have im-

plemented a function that involves requesting users to identify the type of nested loop

provided in the program code field and whether it is the changing-step-contents type,

the changing-step-counts type, both, or neither. For users who cannot provide an an-

swer, LEPA2 suggests hints:

1. Hints related to where in the program code they should focus

2. Hints as to what characteristics they should be reading in the code revealed by the

above hints

3. The characteristics that should have been read

Our extended system

In this subsection, we present an overview of the proposed extended system, LEPA2.

Although the external appearance of LEPA2 is similar to that of LEPA1 (Fig. 1), LEPA2

places more emphasis on learning nested loops than LEPA1. LEPA2 helps learners to

understand based on the following scenarios:

Ex1—Tracing: First, learners trace the program code and understand the behavior

and control flow of the entire program. Figure 6 provides an overview of the environ-

ment constructed by LEPA2 at this phase. If the learners push the “Next” button,

LEPA2 performs the following actions:

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 8 of 22

� Highlights the statement that will be executed next

� Displays the status of the target domain world after executing the statement

� Highlights the operation corresponding to the statement (if one exists)

Moreover, if the learners click an operation in the operation field, LEPA2 highlights

the statement in the program code field corresponding to the operation. If the learners

push the “Store” button, LEPA2 copies the current status of the target domain world

displaying in the area (b) into (a). This function support learners to observe the differ-

ences between the status of the target domain before and after executing specific state-

ments or operations.

Ex2—Abstraction: Learners pack operations and recognize the abstract function of

the package. Packing with nested structures helps learners to understand the nested

structures of the entire program. Figure 7 provides an overview of environment con-

structed by LEPA2 at this phase. Learners find a certain sequence of operations that

is making a change with a specific meaning in the target domain world, based on the

findings in Ex1. The “Store” button is useful to fulfill this. Learners select the range of

the sequence of operations in area (c) and pack the operations by clicking the “Pack”

button. The resulting package is indented and put different colors on each other, and

LEPA2 encourages learners to tag the package. Learners put the meaning of the chan-

ging into a natural-language phrase and input the phrase in the textbox set in the

package.

Ex3—Generalization: After completing the packing for all the operations, learners

generalize the packages corresponding to the nested loops, following the guidance of

LEPA2. LEPA2 generates templates for the general tag based on the approach described

in the “Gap between the representations of generalization” section. Learners complete

the template according to the resemblance between the structure of the generalized

package and that of the program code. Figure 8 provides an overview of the environ-

ment constructed by LEPA2 at this phase.

Fig. 6 Ex1 on LEPA2

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 9 of 22

Fig. 8 Ex3 on LEPA2

Fig. 7 Ex2 on LEPA2

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 10 of 22

In nested loops, the repetitiveness to be discovered during the generalization phase

does not appear in the concrete operations. Rather, it appears in the tags to packages

packed by the learner. We have implemented the following functions to notify the

learner in Ex3:

� Auto-complete function to support creating repetitive packages by displaying the

learner’s tagging history

� Function to support focusing on repetitive packages by displaying similar tags in the

same color

� Function to support searching for the repetitiveness in the tags by hiding the

concrete operations

� Function to support appropriately tagging the nth lap by providing a generalization

template

Ex4—Observing characteristics of the nested loop: Lastly, learners observe the char-

acteristics of the nested loop in the program code field to increase their understand-

ing of nested loops. LEPA2 requests learners to identify the characteristics of nested

loops based on the approach described in the “Two characteristics in nested loop

code” section. Figure 9 provides an overview of the environment constructed by

LEPA2 at this phase.

Educational practice
Hypotheses on learning effect with the proposed system

We conducted exercise classes to understand nested loops with LEPA2 as described in

the previous section. Our previous educational practice (Kogure et al. 2013) suggested

that learning with LEPA1 had the following effects:

Fig. 9 Ex4 on LEPA2

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 11 of 22

� Learners could acquire the skills of tracing values of variables in the entire program

code through observing the statuses in the target domain field.

� Learners could understand nested structures in control flows and code descriptions

through packing sequences of operations hierarchically.

� Tags and structures of packages of operation sequences could visualize each

learner’s level of understanding and could provide information for better

instructions to teachers.

The exercises practiced in our previous work consisted of tracing the program code

with nested loops and packing sequences of operations corresponding to the code. The

learning scenario described in the “Our extended system” section includes the same

tasks as the previous one, further tasks that generalize the packages corresponding to

the nested loops based on the guidance of LEPA2, and tasks that observe the character-

istics of the nested loop. Consequently, learning with LEPA2 is expected to help

learners to cultivate better understandings of nested loops. Through the educational

practice in this work, we evaluate the following learning effects for LEPA2:

Hypo1. The redeveloped function of package generalization will promote an

understanding of the behavior and structure of a nested loop.

Hypo2. The function that requests an answer to a question based on the

characteristics of the nested loop will promote an understanding of the relationships

between the implementation and behavior of a nested loop.

Overview of the classroom practice

To verify the two hypotheses described above, we conducted an educational practice as

a controlled experiment. We introduced LEPA2 in the experimental practice and did

not introduce any learning support system in the controlled practice. There were 17

subjects in the entire experiment. In the experimental practice, two consecutive exer-

cise classes were incorporated into a series of actual classes held in a university in

Japan. The department holds two courses, Programming I and Programming II, for

second-year students. Our experimental classes were conducted in the latter course.

There were 12 participants in the experimental practice. All 12 participants were Busi-

ness Administration majors, 20-year-old males, and had less than a year’s experience in

programming. In the control practice, two consecutive exercise classes were held out of

the actual classes. There were five participants in the control practice. All five partici-

pants had the same properties as the experimental group, that is, they were Business

Administration majors, 20-year-old males, and had less than a year’s experience in pro-

gramming. Table 1 presents a summary of the experimental and control classes.

Table 1 Summary of experimental and controlled classes

Experimental Controlled

Style of class Lecture and exercise Lecture and self-study

Learning time 90 min and after a week, 90 min 90 min and after 10 min, 90 min

Learning strategy LEPA2 Traditional textbooks

The number of participants 12 5

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 12 of 22

For the experimental practice, the teacher who regularly taught the course lectured

on single and nested loops for 1 h as a review in the first class. The lecture included an

explanation of the characteristics of nested loops, as described in the “Two characteris-

tics in nested loop code” section. At the end of the class, we conducted a 15-min pre-

test to evaluate the students’ understanding of nested loops before using LEPA2. In the

second class, we allowed the students to use LEPA2 to learn nested loops. The program

for this exercise displayed a five-step pyramid with spaces, asterisks, and new lines.

Before the exercise in the class, the teacher described the aims of the exercise and the

environment provided by LEPA2. During the exercise, neither the teacher nor our team

provided assistance to the students for understanding the program. We recorded screen

videos of the student’s interactions with the environment. After the 60-min exercise, we

conducted a 15-min post-test to evaluate the students’ understanding of nested loops

after using LEPA2. In the beginning of the first class, we informed that the students

would have pre- and post-tests but the resultant scores of both test would not affect

the course grades.

The programs used in the pre- and post-tests were different. However, the questions

were almost identical. Question 1 (Q1) asked for the execution results expected from

tracing the entire program by hand, including the nested loop. Question 2 (Q2) asked

for the code fragment in the control of the inner loop with the execution results pro-

vided; question 3 (Q3) asked for the same for the outer loop. Question 4 (Q4) asked

for the characteristics of the nested loops expected to appear in the program code,

given the execution results only. Q1, Q2, and Q3 were designed to verify Hypo1; Q4

was designed to verify Hypo2. Table 2 presents a summary of each question in the pre-

and post-tests.

For the control practice, students were first given the same 1-h lecture on nested

loops as the experimental group, including an explanation of the characteristics of

nested loops. We subsequently conducted the 15-min pre-test. Then, they studied

nested loops using textbooks and the lecture material, without using LEPA2. Before

studying, the teacher explained that the aim of the study was to understand nested

loops using a sample program. The sample program was identical to the one in the ex-

perimental practice. The teacher also explained that, in particular, they should study

tracing the program. After a 1-h study period, we conducted the 15-min post-test. Both

pre- and post-tests were the same as those given to the experimental group.

Table 3 presents the differences in the average score for each question between the

pre- and post-tests for both groups. We graded each question in the tests as follows:

Q1 was worth three points; Q2 was worth nine; Q3 was worth three points; and Q4

Table 2 Summary of questions in pre- and post-tests

Content of question Maximum point

Q1 Describe the execution result of the program code. 3 (3 pts × 1)

Q2 Modify the control statement of the inner loop so as to output the
indicated execution result.

9 (3 pts × 3)

Q3 Modify the control statement of the outer loop so as to output the
indicated execution result.

3 (3 pts × 1)

Q4 What characteristics should be written in program code to output the
indicated execution result.

48 (3 pts × 16)

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 13 of 22

was worth 48. There was a tendency for the experimental group’s scores to improve

significantly as indicated by the differences between pre- and post-tests, whereas in the

control group they did not.

We think that the improved results for the control group with regard to Q1 were a

consequence of emphasizing tracing as the aim of the study. It is likely that the control

group applied a significant portion of their time tracing. Therefore, we consider this

group to have an advantage over the experimental group, whose study consisted of four

stepwise exercises.

The experimental group had an interval of 1 week between pre- and post-tests

because of schedule restriction. This was because we incorporated the classroom

practice into a series of actual classes. This interval is not short and consequently

allowed the experimental group to learn out of class with textbooks and course notes.

Although the influences of this possibility on the score of the post-test must be con-

sidered, it is difficult to quantify them. However, we infer that the influences are prac-

tically trivial because all the experimental subjects had learned nested loops in

Programming I classes held in an earlier semester. If the subjects had understood

nested loops in that earlier class or by out-of-class learning, they would have tended

to score high in the pre-test. Note that we conducted classes for nested loop again

because the lack of student’s understanding of nested loop hinders the exercise in

Programming II. There was no actual tendency to score high; thus, we consider the

influence of out-of-class learning as a negligible factor.

If we conducted both the pre- and post-tests in the same class session, the subjects

would have a week interval between the pre-test and the classroom lecture because of

the schedule restriction. In this case, the possibility of forgetting lecture contents would

influence the score of the pre-test.

Evaluation based on learner’s activities

We carefully reviewed the footage recorded from each student in the experimental

group to analyze the learning effects in additional detail. Thereby, we found that the in-

teractions with the learning environment provided by the proposed system differ sig-

nificantly by student. For some activities made by using functions we expected to use,

we classified the students into those who performed the activity (the positive group)

and those who did not (the negative group). We rejected the activities that have greater

than double times difference between the positive and negative groups to reduce the

bias between the numbers of the both groups. Consequently, we focused on the follow-

ing four activities:

A1. The student consumed sufficient time (more than 3 min) tracing the program (Ex1).

A2. The student packed all operation sequences corresponding to the inner loops and

tagged all of the packages (Ex2).

Table 3 The differences in the average scores between the pre- and post-tests

Q1 Q2 Q3 Q4

Experimental 0.83 0.75 0.50 1.50

Control 1.20 0.20 −0.60 −5.70

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 14 of 22

A3. The student formulated a general tag provided in the form of a template, using the

guidance function from the outer loop generalization (Ex3).

A4. The student used the function to observe the characteristics of nested loops (Ex4).

In A1, 3 min is the time we supposed to take to trace the entire program code with

observing three fields. In actual exercise, there was bipolarization between the time to

trace by the positive group, who take much more than 3 min, and the time to trace by

the negative group, who take less than 1 min.

We consider these activities to lead to the following learning effects:

� A1 advances an understanding of the behavior of an entire nested loop from which

the student will acquire tracing skills.

� A2 promotes an understanding of the step contents in the inner loops from which

the student will understand the structure of a nested loop.

� A3 assists the understanding of the step contents in the outer loop from which the

student will acquire the skills required to generalize concrete operations.

� A4 leads to an understanding of the characteristics of nested loops from which

the student will understand the relationships between the behavior and the

characteristics in the program code.

We expect that students performing these activities will improve their marks as fol-

lows: students who performed A1 will score better on Q1; those who performed A2 will

score better on Q2; and likewise for those performing A3 and A4 for Q3 and Q4,

respectively.

Table 4 presents the differences in the average scores for each question between the

pre- and post-tests in the positive and negative groups for A1 through A4. By perform-

ing an independent t test, if the difference between the negative and positive groups is

statistically significant such that the progress level reached p = 0.05, we placed an aster-

isk next to the number. As expected, each positive group demonstrated significant pro-

gress for their marks on the corresponding question.

We must consider that a statistically insufficient number of the subjects may influence

the accuracy of verification. Our evaluation results do not have sufficient reliability be-

cause we could not procure a sufficient number of subjects in the classroom practice. The

course we selected for our class is optional for the faculty, and the number of applicants

Table 4 Differences in the average scores for positive and negative groups

Number of students Q1 Q2 Q3 Q4

A1 Positive 7 1.43* 1.57 1.29*

Negative 5 0.00 −0.50 −0.75

A2 Positive 5 0.80 2.60* 0.60

Negative 7 1.00 −0.67 0.50

A3 Positive 4 1.17 1.67 1.50*

Negative 8 0.60 −0.20 −0.60

A4 Positive 4 2.63*

Negative 8 −0.75

A1 to A4 are the four learning activities; *p < 0.05

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 15 of 22

varies from year to year. Whereas practice in actual classes provides practical learning in-

formation, the number of subjects is related to the number of applicants. However, we be-

lieve that continuous practice will suppress this matter. The progress with regard to Q1,

Q2, and Q3 suggests in favor of Hypo1 and that of Q4 for Hypo2. Hence, although pre-

liminarily, the results suggests that the proposed system results in an improved under-

standing of nested loops provided the user performs the expected activities. We must

consider that a statistically insufficient number of the subjects may influence the accuracy

of verification. However, we believe that continuous practice will suppress this matter.

Related works
In general, programming students learn algorithm, code readings, and coding in turn.

They attend a lecture and receive algorithm instruction from their teacher. Then, they re-

produce the behavior of the algorithm using certain input data and produce a sequence of

concrete operations that represents the behavior of the algorithm. Subsequently, they ab-

stract sequences of operations, grasp the relationship between the abstracted operations

and the program code, and consequently understand the entire program code. Finally,

they perform a coding exercise to confirm their understandings.

Thus far, several intelligent tutoring systems have been developed to support program-

ming learners. These include RoboProf (Daly & Horgan, 2004), JITS (Sykes & Franek,

2003), J-LATTE (Holland et al. 2003), and BITS (Butz et al. 2006). Moreover, several

learning support systems based on visualizing algorithms have received attention, includ-

ing TRAKLA2 (Malmi et al. 2004), Jeliot 3 (Moreno et al. 2004; Čisar et al. 2011), and

ViLLE (Rajala et al. 2008). These systems can be classified from the standpoint of the tasks

required for understanding an algorithm or program code and tend to support one or the

other. We believe that an attractive learning target can be found in the gap between these

two tasks. These systems, however, do not offer a suitable means for bridging the gap.

Learners who have a proper understanding of an algorithm can reproduce its behavior

with concrete data. A sequence of operations in LEPA is a sequence of natural-language

descriptions representing the algorithm’s behavior. Hence, the operation sequence can be

regarded as an externalization of the learner’s understanding of the algorithm. Other

existing systems visualize the relationship between the program code and its target

domain world. LEPA provides this as well and furthermore visualizes the relationship

between a sequence of operations and its target domain. It also visualizes the correspond-

ence of a code fragment to its operation. We expect that the visualization of these three

fields and the relationships among them contributes to bridging the gap between the two

tasks.

When a program-comprehension task is assigned to a programmer, the procedure

for reading the code is normally a dual process: first, recognizing the function of

groups of statements and then piecing together these chunks to form ever-larger chunks

(Shneiderman & Mayer, 1979). Programmers proceed through these steps hierarchically

until the entire program is understood. LEPA offers a function to support learners in their

endeavor to envisage behavior similar to that in the operation field. Learners can learn an

entire series of code-reading process using LEPA by this function.

Recently, learning support systems with an integrated development environment have

been developed, aiming to support the entire programming exercise (Đanić et al. 2011;

Gerdes et al. 2012; Neve et al. 2012). These systems do not focus on the code-reading

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 16 of 22

stage. Consequently the learners only externalize their understanding of the algorithm

and program code by coding. Learners and teachers cannot determine the cause of a

learner’s lack of understanding: lack of algorithm understanding, program code under-

standing, or coding skills. Further, we can identify systems based on externalization

with other methods than coding (Cooper et al. 2012). However, they are intended to

support younger learners and cannot directly support users to read and write the

program code. More discussions are required to introduce these systems into current

programming education at the university level.

In contrast, LEPA encourages the learner to abstract groups of statements in the pro-

gram code and to externalize the abstracts in the form of tags. Learners trace the pro-

gram code, observe the changes in the target domain field, pack the operations in the

operation field according to the observation, and tag the packages according to the

function. The learner’s package structure is the product of externalization with a series

of these activities. LEPA does not include correct package structure solutions, hence

never provides a solution, and never leads the learner to the correct solution. Thus,

teachers can consider the package structures as the learner’s understandings external-

ized by the proposed system. As will be shown in the next section, we consider that

these functions improve the quality of programming education.

There are systems available that target nested loops, including AlgoTutor (Yoo et al.

2012) and the tutoring system developed by Dancik and Kumar (2003). However, it is

not clear how they lead learners to understand or acquire the fundamental concepts de-

scribed in the “Introduction” section. If any chunk corresponds to an iteration such as

a loop, it is often the case that the learner’s recognition involves generalizing with vari-

ables. LEPA2 bridges the gap between hierarchical structures of chunks in a sequence

of operations and those of descriptions in the program code and aims to improve the

learning supports for nested loops by elaborating the strategy of a hierarchical proced-

ure for reading code.

Discussion
In this section, we discuss the contribution of the proposed system to learning pro-

gramming. The correlations suggested by the classroom practices described in the

“Educational practice” section and in our previous work (Kogure et al. 2013) can be

summarized as follows:

� Learning with the proposed system can contribute to acquiring fundamental skills

to understand programs.

� Tags and structures of packages of operation sequence can visualize each learner’s

level of understanding and can provide information for better instruction to

teachers.

In traditional education for programming in the code-reading stage, the teacher

explains the functions and the behavior of the sample code in the textbooks. Learners

require a detailed understanding of the sample code because it is typical of each learn-

ing target. However, code reading is a difficult learning activity to externalize achieve-

ments. Teachers attempt to understand indirectly the learner’s level of understanding

by exercises in writing similar code or tracing values of the variables. It is not obvious

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 17 of 22

that the achievements of these exercises reflect appropriately the level of understanding

of the sample code.

As described in the previous section, learners with the proposed system externalize

their understandings in observable forms for themselves and their teachers through

packing, generalizing, and tagging operations in the operation field. To confirm the val-

idity of the proposed system’s externalization, we invited six students to read code with

the proposed system as a pilot experiment. The students had not attended the practices

and experiments described in the “Educational practice” section. The code was from an

early section of our textbooks. Figure 10 presents the code and the corresponding se-

quence of operations. Figure 11 presents the packages generated by the students. There

are several observations of the students’ understandings:

� Some students packed the operations assigning constants and operations assigning

calculated values separately, whereas others combined them into a single package.

� Some students recognized that data is stored to a letter rather than a variable.

� Some students recognized the settings of the values into variables a, b, and c as

calculations rather than assignments.

The intent of the sample code was to calculate and display the value 10 + 20. A lack

of understanding of intention could possibly yield the first and third developments.

Students with recognition as in the second development could possibly not appropri-

ately grasp the concept of variables.

We consider that the proposed system improves the quality of programming educa-

tion based on these observations. In the classroom exercise with the proposed system,

teachers can observe the status of the students’ code reading by walking around the

class. Because the students are externalizing their understanding using the proposed

system, the teachers can grasp the students’ understandings by observing operation

field in each student’s environment. If there is a misunderstanding regarding package

structures and tags generated by a certain student, the teacher can offer the student

high-quality instructions by separate interaction. If the teacher identifies a tendency of

the class to misunderstand as a whole, they can provide the supplemental instruction

in the form of classroom lectures. Enabling teachers to choose the appropriate style of

Fig. 10 Program code from textbooks and its operation sequence

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 18 of 22

instruction improves the quality of education and leads students to a superior under-

standing of the program code.

For example, in the results of the pilot experiment, there is a student (student D) sus-

pected of not appropriately understanding the concept of variables. There is also a ten-

dency of the class not to distinguish between using a constant number from reference

variables. This information provided by LEPA allows teachers to make a decision as to the

required instruction, especially to make opportunity discovery. In the pilot experiment,

we did not evaluate the contribution degree. We plan to conduct further experiments to

obtain more information regarding this.

In programming education, there are minimal reports available on the learning effect of

code reading. In our opinion, this is caused by the difficulty in externalizing learning out-

comes. As indicated in Fig. 11, package structures in the proposed environment provide

useful information to teachers regarding a learner’s understanding. Thus, we consider that

Fig. 11 Package structures generated by six students

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 19 of 22

the proposed system not only directly supports learners to cultivate a superior under-

standing of the program code but also indirectly by improving teacher’s performance.

Conclusion
In this paper, we described our learning support system and classroom practices with

the proposed system for an improved understanding of nested loops. Nested loops are

an appropriate target for learning the fundamental skills of programming. We believe

that learning support systems efficiently and effectively contribute to an understanding

of fundamental programming concepts and the acquisition of the skills required to

utilize them.

In the classroom practice with LEPA1, we determined that some students had experi-

enced a learning impasse. We attempted to address this with two supporting ap-

proaches: bridging the gap between generalization structures in the program code and

their corresponding operations and enabling learners to predict the behavior of nested

loops by observing two characteristics in the code. For the former approach, we devel-

oped a function for generalizing packages by maintaining an explicit hierarchy. For the

latter, a function allowing learners to observe the characteristics of nested loops was

provided.

We conducted a controlled experiment to evaluate in detail the effect of LEPA2 with

the abovementioned functions incorporated. In the experimental practice with 12 stu-

dents forming an experimental group, we incorporated LEPA2 in an actual classroom.

In the controlled experiment with five students forming a control group, we evaluated

learning effects using traditional teaching materials such as textbooks. The evaluation

results based on the scores calculated from a pre- and post-tests suggest that there was

a correlation between using LEPA2 and an understanding of nested loops although

preliminarily.

Package structures and tags generated in learning with the proposed system can be

regarded as an externalized learner understanding that is observable by teachers. Feed-

back provided by these is useful information for teachers’ instruction. Consequently,

qualitative improvements of instruction are expected. Hence, we consider that the pro-

posed system directly and indirectly supports learners to read the program code and

cultivate a better understanding of the program code.

We can highlight two limitations of the proposed works derived from classroom

practices incorporated into a series of actual classes. First, our evaluation results do not

have sufficient reliability because we could not procure a sufficient number of subjects

in the classroom practice, as described in the “Evaluation based on learner’s activities”

section. We expect that continuous practice will overcome this matter. We plan to con-

tinue to conduct classroom practices using the proposed system in the future.

Furthermore, we must allow a 1-week interval between pre- and post-tests in experi-

mental practice because of the schedule restriction. We infer that the influences of this

are minimal, as described in the “Overview of the classroom practice” section. It is diffi-

cult or almost impossible to quantify and eliminate these factors. We continue to delib-

erate from various viewpoints such as conducting educational practice outside of actual

classes and constructing an efficient learning scenario where we can evaluate learning

effects more accurately during a class.

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 20 of 22

In future work, we will consider how the proposed system contributes to improve edu-

cation for programming, as described in the “Discussion” section. We will collect package

structures from the operation fields packed by learners through further classroom practice

and evaluate the relationships between the students’ understandings and those structures.

Moreover, we will develop an evaluation method to measure how the proposed system

contributes to the decision-making on teachers’ instruction. Furthermore, we will con-

tinue to develop a desirable learning scenario that naturally causes the learners to perform

the appropriate learning activities expected by the proposed system.

Competing interests
The authors declaire that they have no competing interests.

Authors’ contributions
KY participated in the development of the system, conducted the classroom practices, summarized the whole research
and wrote this paper. TN and SK implemented and evaluated the system. YN, TK and YI gave advices based on actual
teaching experience. All authors read and approved the final manuscript.

Acknowledgements
This study was supported by Japanese Grant-in-Aid for Scientific Research (B) 24300282.

Author details
1Faculty of Business Administration, Tokoha University, 1230 Miyakoda, Kita-ku, Hamamatsu, Shizuoka 431-2102, Japan.
2Graduate School of Informatics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan.
3Faculty of Informatics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan. 4Shizuoka
University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan.

Received: 28 December 2015 Accepted: 4 January 2016

References
Butz, C. J., Hua, S., & Maguire, B. R. (2006). A web-based Bayesian intelligent tutoring system for computer

programming. Journal of Web Intelligence and Agent Systems, 4(1), 77–97.
Čisar, S. M., Pinter, R., Radosav, D., & Čisar, P. (2011). Effectiveness of program visualization in learning java: a case study

with Jeliot 3. International Journal of Computer, Communications & Control, 6(4), 669–682.
Cooper, S., Jae Nam, Y., & Si, L. (2012). Initial results of using an intelligent tutoring system with Alice. In Proc. of the

17th ACM annual conference on Innovation and technology in computer science education, 138–143
Daly, C., & Horgan, J. M. (2004). An automated learning system for Java programming. IEEE Transaction on Education,

47(1), 10–17.
Dancik, G., & Kumar, A. (2003). A tutor for counter-controlled loop concepts and its evaluation. Frontiers in Education

Conference, 1(T3C), 7–12.
Đanić, M., Radošević, D., & Orehovački, T. (2011). Evaluation of student programming assignments in online

environment. In Proc. of the 22nd Centerl European Conference on Information and Intelligent Systems, 111–116
Gerdes, A., Jeuring, J., & Heeren, B. (2012). An interactive functional programming tutor. In Proc. of the 17th ACM Annual

Conference on Innovaion and Technology in Computer Science Education, 250–255
Holland, J., Mitrovic, A., & Martin, B. (2003). J-LATTE: a constraint-based tutor for Java. In Proc. of the 17th Int. Conference

on Computers in Education, 142–146
Kogure, S., Okamoto, M., Noguchi, Y., Konishi, T., & Itoh, Y. (2012). Adapting guidance and externalization support

features to program and algorithm learning support environment. In Proc. of the 20th Int. Conference of Computers
in Education, 321–323.

Kogure, S., Okamoto, M., Yamashita, K., Noguchi, Y., Konishi, T., & Itoh, Y. (2013). Evaluation of an algorithm and
programming learning support features to program and algorithm learning support environment. In Proc. of the
21st Int. Conference of Computers in Education, 418–424.

Konecki, M., & Petrlić, M. (2014). Main problems of programming novices and the right course of action. In Proc. of the
25th Central European Conference on Information and Intelligent Systems, 116–123.

Koppelman, H., & van Dijk, B. (2010). Teaching abstraction in introductory courses. In Proc. of the 15th Annual Conference
on Innovation and Technology in Computer Science, 174–178.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O., & Silvasti, P. (2004). Visual algorithm simulation exercise
system with automatic assessment: TRAKLA2. Informatics in Education, 3(2), 267–288.

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs with Jeliot 3. In Proc. of the Working
Conference on Advanced Visual Interfaces, 373–376.

Neve, P., Gunter, G., Livingstone, D., & Orwell, J. (2012). NoobLab: an intelligent learning environment for teaching
programming. In Proc. of the 2012 IEEE/WIC/ACM Joint Conferences on Web Intelligence and Intelligent Agent
Technology, 3, 357–361.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., et al. (2007). A survey of literature on the teaching
of introductory programming. ACM SIGCSE Bulletin, 39(4), 204–223.

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T. (2008). Effectiveness of program visualization: a case study with the ViLLE
tool. Journal of Information Technology Education, 7, 15–32.

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 21 of 22

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: a review and discussion. Computer
Science Education, 13(2), 137–172.

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in programmer behavior: a model and
experimental results. International Journal of Computer and Information Sciences, 8(3), 219–238.

Sykes, E. R., & Franek, F. (2003). An intelligent tutoring system prototype for learning to program Java. In Proc. of the 3rd
IEEE Int. Conference on Advanced Learning Technologies, 485–492.

Yoo, J., Yoo, S., Seo, S., Dong, Z., & Pettey, C. (2012). Can we teach algorithm development skills? In Proc. of the 50th
Annual Southeast Regional Conference, 101–105.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Yamashita et al. Research and Practice in Techology Enhanced Learning (2016) 11:3 Page 22 of 22

	Abstract
	Introduction
	Learning environment for programs and algorithms
	Our previous work
	Extending approach
	Gap between the representations of generalization
	Two characteristics in nested loop code

	Our extended system

	Educational practice
	Hypotheses on learning effect with the proposed system
	Overview of the classroom practice
	Evaluation based on learner’s activities

	Related works
	Discussion
	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

