
RESEARCH Open Access

Monitoring system for the effective
instruction based on the semi-automatic
evaluation of programs during programming
classroom lectures
Satoru Kogure1*, Riki Nakamura1, Kanae Makino2, Koichi Yamashita3, Tatsuhiro Konishi1 and Yukihiro Itoh4

* Correspondence:
kogure@inf.shizuoka.ac.jp
1Graduate School of Informatics,
Shizuoka University, Hamamatsu
432-8011, Japan
Full list of author information is
available at the end of the article

Abstract

In this study, we developed a programming practice monitoring system to facilitate
teachers to give appropriate instructions to students at the appropriate time during
classroom lectures. To help teachers to provide appropriate instruction to learners,
we identified parameters that would be useful for teachers during programming
exercise in classroom lecture. We constructed a monitoring system with five
functions. The system automatically acquired the programs written by students to
evaluate their performance, and the teacher can obtain their performance using the
five functions. We asked four subjects to test our proposed monitoring system
during a simulation of a classroom lecture. The evaluation revealed that the system
had a high accuracy in evaluating student programs.

Keywords: Programming; Practice monitoring system; Semi-automatic programming
evaluation

Background
In the areas of programming and algorithm education, many studies have developed

learning support system (Fossati, Eugenio, Brown, and Ohlsson, 2008; Kogure, Okamoto,

Noguchi, Konishi, and Itoh, 2012; Malmi et al., 2004; Nakahara, Konishi, Kogure,

Noguchi, and Itoh, 2009; Noguchi, Nakahara, Konishi, Kogure, and Itoh, 2010). However,

during programming courses for beginners in educational institutions, such as univer-

sities, the costs of grading the programs and reports submitted by students are very high.

Thus, several automated methods have been developed for the evaluation of student pro-

grams, such as LAURA (Adam & Laurent, 1980) and PROUST (Johnson, 1990). We also

developed a teacher support environment that focused on supporting teachers during

programming education (Kogure, Takatsu, Konishi, and Itoh, 2010). The environment

made it easier for teachers to grade programs and text reports. However, the teacher

accessed the environment after the classroom lecture finished.

In this study, we address the provision of appropriate instructions from teachers to

students during classroom lectures. Lectures mainly involve the provision of exercise

by teachers. Teachers also give individual instructions to students while walking

around the class and checking what the students are doing. The teacher also provides

© 2015 Kogure et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Kogure et al. Research and Practice in Technology Enhanced
Learning (2015) 10:18
DOI 10.1186/s41039-015-0019-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s41039-015-0019-8&domain=pdf
mailto:kogure@inf.shizuoka.ac.jp
http://creativecommons.org/licenses/by/4.0/

instructions to the whole class. Typically, the number of teachers is extremely low rela-

tive to the high number of students. Therefore, it is very difficult for a teacher to fully

check the status of all the students in the classroom. This means that it is necessary for

a teacher to obtain answers to questions from each individual student to understand

their status fully. Thus, a teacher needs to stop to conduct student exercises to obtain

the necessary information. In addition, teachers can only obtain poor quality informa-

tion in real time. A method is available that uses a clicker-based technique to address

these problems (Kennedy and Cutts, 2005). In this method, the teacher gives students a

dedicated remote control in advance. When a teacher asks questions during the class,

the students answer the questions using a remote control. Thus, the teacher can see

the answers immediately. Suppose that a teacher asks students about their progress in

a particular exercise. The students can answer the question but the answers are based on

their subjective evaluation, and therefore, the answers do not necessarily reflect their ac-

tual progress. Thus, the teacher cannot help students who do not correctly understand

their progress. On the other hand, Spacco, Hovemeyer, and Pugh present AutoCVS

(Spacco, Hovemeyer, and Pugh, 2004), which is Eclipse plug-in for collecting student’s

program. Jadud also constructed a programming editor, called BlueJ (Jadud, 2006), for re-

cording a student’s snap-shot on editing their own program. Their systems, although, can-

not deal with the possibility of automatically judging and analyzing the student’s program.

Therefore, we propose a method that allows teachers to conduct an objective assess-

ment based on clear criteria. During programming exercises, one of the indicators used

as an objective assessment is the program written by the students during the class. In

this study, the teacher is supported by the automatic collection of the programs written

by the students where the environment automatically analyzes the programs. Thus, a

teacher can recognize the progress of students in real time.

Our study aimed to achieve the following:

1. We summarize the information required by teachers during a lecture.

2. We develop a method for extracting the desired information from the programs,

which are collected automatically.

3. We build a server that automatically extracts the necessary information from the

programs collected.

4. We build a client that presents the extracted information to the teacher.

The programming exercise monitoring system constructed in this study has two

components. First, it has an information extraction server that extracts useful informa-

tion for the teacher. The server collects the students’ programs automatically and ex-

tracts the necessary information. Second, it has an instruction support viewer that

makes it easier to present the extracted information to the teacher.

The purpose of this study is that the two modules can generate useful information

for instruction to all the students. We should discuss whether teachers can give appro-

priate instruction from the point of view of the teacher’s ability of leadership using two

modules, although we do not discuss it in this study.

We assess whether the system could extract the necessary information from the pro-

grams collected during real classes. We also have four subjects using the instruction

support viewer, and we perform a subjective evaluation by the subjects. A virtual

Kogure et al. Research and Practice in Techology Enhanced Learning (2015) 10:18 Page 2 of 12

classroom experimental environment is simulated, which collects the programs pro-

duced in the real class. The results of our subjective evaluation suggest that collecting

the programs produced in classes by students in real time allows the teachers to pro-

vide appropriate instructions to students.

Methods
Definitions of lecture, exercises, and steps

We define lectures L, exercises E, and steps S. Typically, lectures in higher education

institutions are held 15 times or 10 times during a single course. First, we define Li as

the i-th in the course. In each lecture, a teacher will provide exercises to students. Next,

we define Ej as the j-th exercise in all lectures. Each exercise that occurs during a lec-

ture may include several small exercises. We refer to these small units as steps. Finally,

we define Sj,k as the k-th steps of Ej. In addition, a teacher gives the required steps and

optional steps to students during the exercise. Thus, we define isRequired(Sj,k) as a

function that returns true if step Sj,k is required or false if step Sj,k is optional.

Definitions of the step progress and exercise progress of students

In a class Li, some students will write a program Ej while other students may write a

programs Ej’ from last week’s lecture Li–1. In addition, some students will be working

on the same exercise Ej but on different steps. In addition, a teacher will want to know

the progress of each student. We define isStepFinished(s, j, k) as a function that returns

true if student s has finished step Sj,k or false if he/she has not. Thus, a teacher will

know the steps a student has finished. Therefore, we define the step progress sp(s, j) in

an exercise Ej as the step that student s has finished.

In other cases, a teacher may want to know the exercises a student has completed.

Thus, we define isExerciseFinished(s,j) as a function that returns true if student s has

finished all of required Sj,k or returns false if he/she has not finished them. We also

define exercise progress ep(s) as an exercise Ej that a student s is working on.

Definitions of the student program and standard algorithm

During the class, students will compile the same step in a program many times. The in-

formation extraction server automatically collects a student program when a student

compiles the program using the wrapped compiler that a teacher gives to the student

in advance. A student uses the wrapped compiler when he/she compiles their own pro-

gram, then the wrapped compiler compiles the student program using the original

compiler (e.g. gcc1) and sends the program, the student information, and the current

time to the information extraction server using secure cp (e.g., scp2). We define p(s,t)

as a program that student s compiles at time t.

We may want to automatically assess the exercise and step that correspond to p(s,t).

Thus, a teacher prepares the correct program for each step in each exercise and trans-

lates each program into a standard algorithm st(j,k) for step Sj,k in advance. The stand-

ard algorithm is represented using Extended PAD (Konishi, Suzuki, Haraikawa, and

Itoh, 2007). Our evaluation system can convert a macro operation into various patterns

of statements that implement the functions of the macro operation. It is relatively easy

to represent various programs as an algorithm with the same function. In addition, Ex-

tended PAD can represent various types of arbitrariness. Thus, Extended PAD can use

Kogure et al. Research and Practice in Techology Enhanced Learning (2015) 10:18 Page 3 of 12

the two extended expressions: “Non-ordering structure” and “Alternative structure.”

Our proposed programming exercise monitoring system applied an automatic evalu-

ation module to the student program based on comparing the standard algorithm with

Extended PAD expressions derived from the student programs (Konishi et al., 2007).

In addition, if a teacher finds that a program has a distinctive difference from the

standard algorithm, he/she may want to search for the same distinctive point in other

students’ programs. Therefore, the monitoring system also applies an automatic classifi-

cation module to student programs, which detects differences from the standard

algorithm (Kogure et al., 2010).

Reused modules
The assessment module for student programs

We had developed an evaluation system that compared the PAD translated from a student

program (s-PAD) with the PAD of a standard algorithm prepared in advance by the

teacher (t-PAD), which classified student programs into four categories (Konishi et al.,

2007). Our system calculates two matching rates to assess the student programs. First, it

calculated the matching rates for s-PAD based on t-PAD. We defined sar(s, j, k) as the

matching rate so that a number of operations in the s-PAD of student s during step Sj,k in

exercise Ej corresponding to the operations in the t-PAD divided by the number of all op-

eration in the s-PAD. Second, it calculates the matching rate for the t-PAD based on the

s-PAD. We also defined tar(s, j, k) as the matching rate so that a number of operations in

the t-PAD during step Sj,k in exercise Ej corresponding to the operations in the s-PAD of

student s divided by the number of all operations in the t-PAD. Table 1 shows the classifi-

cation types, which were assessed automatically. The information extraction server used

modules to calculate sar(s, j, k) and tar(s, j, k). We decided classification thresholds shown

in Table 1 by heuristic approach based on maximizing classification rates of programs

collected in past times from programming course in our university.

The module that searched for programs with a particular difference

During the evaluation of the reports and programs submitted by students, a teacher may

find a distinctive point (e.g., an error or an additional exercise) in a student’s program. We

define positionDiffi(s,j,k) as the range from the previous operation at the beginning of i-th

different position in t-PAD to the next operation at the end of the i-th different position

in the t-PAD for step Sj,k by student s. We also define contentDiffi(s,j,k) as the s-PAD oper-

ations at positionDiffj(s,j,k). For example, Fig. 1 shows positionDiff() and contentDiff()

examples. Thus, a teacher can find programs with the same positionDiffj(s,j,k) or both the

same positionDiffj(s,j,k) and the same contentDiffj(s,j,k) using an existing module (Kogure

et al., 2010).

Table 1 Classifications of student programs

Classification type Condition required for classification

Perfect sar(s,j,k) = 1 && tar(s,j,k) = 1

Excess sar(s,j,k) = 1 && tar(s,j,k) > = 0.7

Partial sar(s,j,k) > = 0.75 && tar(s,j,k) > = 0.7

No match otherwise

Kogure et al. Research and Practice in Techology Enhanced Learning (2015) 10:18 Page 4 of 12

Overview of the programming exercise monitoring environment
Figure 2 shows the relationships among the modules and the database. The teacher

prepared the standard algorithm st(j,k) for step Sj,k during exercise Ej in advance. The

teacher can create the standard algorithm st(j,k) from the correct programs for step Sj,k
or can modify st(j,k) using an existing PAD editor.

Information extraction server

During a lecture, the information extraction server operates in the following steps.

1. A program p(s,t) is collected and stored in the database when the server receives

the program.

2. The server executes the following operations during each step Sj,k. Second item in

the first level

(a) In the k-th step Sj,k, the server calculates sar(s,j,k) from p(s,t) and st(j,k) using the

existing evaluation module.

(b)The server stores information for p(s,t), which is obtained from the evaluation.

Fig. 1 An example of a difference during automatic classification

Fig. 2 The relationships among the modules and the database

Kogure et al. Research and Practice in Techology Enhanced Learning (2015) 10:18 Page 5 of 12

(3)The server assesses step Sj,k’, which corresponds to p(s,t), using the Eq. (4.1).

Sj;k 0 ¼ argmax
Sj;k

0
sar s; j; kð Þ ð4:1Þ

(4)The system stores the assessment information extracted from the database.

The proposed environment had 11 tables in the database, as shown in Table 2. A

teacher prepared the first four data (1–4) in advance. The information extraction server

updated the next four data (5–8) in real time during the class. The teacher could register

the last three data (9–11) before/during/after the class.

Instruction support viewer

The instruction support viewer has five functions, which help the teacher to provide

appropriate instructions to students. The five functions are described in the “Function

that displays the exercise progress of students in lectures” to “Function that displays

the program” sections.

Function that displays the exercise progress of students in lectures

If a teacher wants to know the exercise progress of all the students, he/she can use a

function that displays the exercise progress ep(s) in a circle graph. The progress ep(s) is

calculated using Eq. (4.2).

ep sð Þ ¼ latest Ejjsar s; j; kð Þof required Sj;k > Threshhold
� �� � ð4:2Þ

Figure 3 shows the viewer for exercise progress. In screenshot, the teacher can under-

stand that five students create a program for exercise ex1. Furthermore, the teacher

can show these students’ names.

Thus, the teacher can provide appropriate instruction to the whole class because they

can monitor the exercise progress of the class as a whole.

Table 2 Database tables

ID Classification type Condition required for classification

1 Classes Information on courses

2 Students Information on students

3 Registrations Registration information for a course

4 Exercises Information on the exercises in a course

5 Personal evaluations Each students’ evaluation results

6 Personal classifications Each students’ classification results

7 Class achievements Summary of the evaluation results for the whole class

8 Class classifications Summary of the classification results for the whole class

9 Criteria Classification criteria

10 Comments Comments tagged by teachers in each programs

11 Attention students Observable students tagged by a teacher

Kogure et al. Research and Practice in Techology Enhanced Learning (2015) 10:18 Page 6 of 12

Function that displays the step progress of students in exercises

If a teacher wants to know the step progress of all students in an exercise, he/she can

use a function that displays the step progress sp(s,j) as a bar graph. The progress sp(s,j),

in an exercise Ej is calculated using Eq. (4.3).

sp s; jð Þ ¼ argmax
Sj;k 0

sar s; j; kð Þ ð4:3Þ

The teacher can check the change of the step progress over time. Therefore, the

teacher can provide detailed instruction on a particular step that most students

have been working on for a long time and give initial instruction on the next step

to all students.

Function that displays the classification results for student programs in an exercise

A teacher may want to know how many students made the same mistake in an exercise. If

most students make the same mistake, the teacher may well want to give instruction to

the whole class. If a small number of students make the same mistake, the teacher may

well want to give specific instruction only to those students.

In this study, a teacher can check each student’s positionDiff(s,j,k) and/or content-

Diff(s,j,k). If the teacher focuses on a particular positionDiff(s,j,k), the system finds the col-

lection p(s,t) that includes the same positionDiff(s,j,k) or both the same positionDiff(s,j,k)

Fig. 3 A sample of viewer for exercise progress

Kogure et al. Research and Practice in Techology Enhanced Learning (2015) 10:18 Page 7 of 12

and contentDiff(s,j,k). The instruction support viewer then shows the list of the students

whose programs include the same positionDiff(s,j,k) or both the same positionDiff(s,j,k)

and contentDiff(s,j,k).

Function that displays a student list tagged with comments

A teacher can tag the student records with comments using the instruction support

viewer if the student has unique characteristics (e.g., a student has very high program-

ming skills or his/her attendance is poor). The teacher can then browse the list of stu-

dents tagged with comments. If there are several teachers or teaching assistants, it is

also possible to share information on students using tagged comments.

The instruction support system can display the list of the comments tagged for a par-

ticular exercise. The teacher can also read a student’s comments tagged for all exercises

if the teacher wants to focus on the student.

Function that displays the program

The teacher can examine students’ programs using the viewer if he/she wants to assess

the programming progress of those students. The viewer displays the student programs

in different windows so that the teacher can compare a student program with those of

other students’.

Integration of the five functions

A teacher may want to assess the step progress during exercises using the function de-

scribed in the “Function that displays the step progress of students in exercises section”

section while looking at the exercise progress using the function described in the

“Function that displays the exercise progress of students in lectures” section. A teacher

may also want to tag comments using the function described in the “Function that

displays a student list tagged with comments” section while looking at a program pro-

duced by a student using the function described in the “Function that displays the pro-

gram” section. Therefore, the five functions described above should be integrated

seamlessly so that several functions can be used together.

Results
Evaluation of the information extraction server

During the experimental evaluation of the information extraction server, we focused on

two variables: the accuracy of the automatic program evaluation module and the accur-

acy of step progress analysis using the information extraction server.

The evaluation was conducted as a part of a programming class held in a humanities

department. We collected all of the programs compiled by the students in the exercises.

The class contained 25 university sophomore students. In this experiment, it was not

possible to use the real time transfer program because of a security issue. Thus, we

modified the compiler wrapper. The compiler wrapper temporarily stored all of the

programs on the student’s PC when they compiled a program. After the class, we

manually collected all of the programs that were stored temporarily.

In the lecture, the teacher gave exercise ex7 to all the students. However, some stu-

dents worked on previous exercises during the lecture. There were seven possible exer-

cises that students worked on, as shown in Table 3. In all exercises, the teacher gave a

Kogure et al. Research and Practice in Techology Enhanced Learning (2015) 10:18 Page 8 of 12

form of program to all the students. For example, the students have defined the func-

tion that returns the minimum value for three numbers in step 3 of ex1.

Accuracy of automatic program evaluation module

Table 4 shows the evaluation results for the automatic evaluation module for each of

20 pairs of a student program and the corresponding standard algorithm. We selected

randomly 20 pairs in order to eliminate the bias of each student and each exercise. The

most important point in this experimental evaluation was the number of false alarms

(the cases in which the system’s evaluation was “equal” and the teacher’s evaluation was

“not equal”). This is because if there are false alarms, the teacher might overlook mis-

takes in the student programs. Table 4 shows that the number of false alarms was zero

and the overall accuracy was 94.1 % (i.e., (299 + 70)/392). The main reason for the miss

(the cases in which the system’s evaluation was “not equal” and the teacher’s evaluation

was “equal”) was that the standard algorithm did not cover all the possible alternatives.

As mentioned, teachers can describe standard algorithm using alternative representa-

tions. However, teachers cannot be prepared in advance all of how to solve an exercise

because the most of how to solve one exists.

Accuracy of the step progress assessment using the information extraction server

To evaluate the step progress, we manually tagged the correct steps in all the programs.

Next, we compared the manually tagged steps with the automatically tagged steps,

which were calculated from maximizing sar(s,j,k) by p(s,t). Among the 507 programs

collected, the system results and manual results were both correct for 381 programs

(case A). For 124 programs (case B), the system result was wrong and the manual result

was correct. For case A, the accuracy of the step progress assessment was 75.1 %. For

case B, the step progress of 24.5 % of the programs was undetectable using the system.

This problem occurred because the automatic evaluation module could translate none

of the 124 programs into the correct s-PAD due to syntax errors. Since the compiler

wrapper stored the student programs when the programs were compiled, hence, the

Table 3 Exercises and steps in the exercises

Exercises Steps

ex1 Step 1, step 2, step 3, step 4 and step 5

ex2 Step 1 and step 2

ex3 Step 1 and step 2

ex4 Step 1 and step 2

ex5 Step 1 and step 2

ex6 Step 1, step 2 and step 3

ex7 Step 1, step 2 and step 3

Table 4 Evaluation results for the automatic evaluation module

System evaluation Total

Equal Not equal

Teacher’s evaluation Equal 299 (76.3 %) 23 (5.8 %) 322 (82.1 %)

Not Equal 0 (0.0 %) 70 (17.9 %) 70 (17.9 %)

Total 299 (76.3 %) 93 (23.7 %) 392 (100 %)

Kogure et al. Research and Practice in Techology Enhanced Learning (2015) 10:18 Page 9 of 12

system could not translate those programs with syntax errors into well-formed s-PAD.

Thus, we constructed another method that compared programs including syntax errors

with the correct program in order to estimate whether the student has conducted any step

in each exercise. In this method, the system executed the diff command in UNIX (i.e., the

command extracting the difference between files). One student program was compared

with each of the possible correct programs using the diff command. The result with the

minimum different lines was adopted as the target of the evaluation. Using this simple

method, the system tagged the correct steps in the 124 programs. For the remaining two

cases (case C), the students were working on irrelevant programs during a class, and the

system correctly judged that those programs involved none of the steps in Table 3.

Experimental evaluation of the instruction support viewer

To evaluate the instruction support viewer, we registered 25 students in the student

database. We performed the experimental evaluation using a virtual environment be-

cause our instruction support viewer was a prototype, and we did not want to disadvan-

tage the real students. The virtual environment was a lecture that involved exercise ex7

(as shown in Table 3). The lecture duration was 80 min. In the experimental evaluation,

we simulated four situations: 20 min, 40 min, 60 min, and 80 min (the end of the lec-

ture) after the beginning of the lecture. There were four subjects in the evaluation. One

was a teacher who lectured for each exercise described in Table 3. The other three sub-

jects had experience as teaching assistants in a department of informatics. We asked

the four subjects to emulate the teacher’s actions in these situations using the instruc-

tion support viewer. We asked them to obtain the necessary information for answering

those questions in Table 5 by using the instruction support viewer.

All the four subjects had no trouble in using the instruction support viewer. The sub-

jects also gave appropriate answers to those questions in Table 5 by using the viewer.

We also conducted a subjective evaluation about merits/demerits of using the viewer

through a questionnaire. We received positive evaluations for each of the five functions

and some comments for further improvements.

Discussion
Function that displays the exercise progress of students in lectures

In the evaluation experiment, subjects actively use the function that displays the exer-

cise progress of students on pie chart. This result indicates that this function has

Table 5 The questions provided to the subjects in each situation

Question

20 min How many students worked on exercise ex7? How many students worked on each step in exercise ex7?

Who worked on ex1 or ex2?

40 min Who worked the fastest on the exercise? Check the student program and tag the student.

Who had poor programming skills? You may use the search function in the student annotation database.

60 min Who was the student who needed special attention? What was the step progress of the student?

How many students worked on step1 in ex5? Assess whether you needed to provide instruction to all
of the students or specific students.

80 min How many students finished exercise ex7? Assess whether there is a need to teach a catch-up class.
If so, what would be the exercise in the catch-up class?

Kogure et al. Research and Practice in Techology Enhanced Learning (2015) 10:18 Page 10 of 12

enough features necessary to view the progress of the class. However, we obtain the

subjective evaluation that operation method is not intuitive. That is, it is not possible

to also click on pie chart and view the details of each. It is necessary to improve the

interface to allow user to operate intuitively.

Function that displays the step progress of students in exercises

By looking at the bar graph for step progress, it is possible to grasp the step progress of

students of particular exercise in more detail. If almost all the students were working

the same exercise, the step progress could be considered of value. In the evaluation of

this experiment, we have assumed that the majority of students are promoted to exer-

cise ex7. However, only 2 of 24 students reached exercises ex7 actually. Therefore, the

effective use of this function was not so much.

Function that displays the classification results for student programs in an exercise

By using this feature, teachers can grasp immediately the number of students who

wrote the similar program to particular program. However, we obtain a subjective as-

sessment that it is difficult to understand how to use the function. It is necessary to im-

prove the interface to allow users to operate intuitively.

Function that displays a student list tagged with comments

For teachers, ability to leave comments is very beneficial. Further, even when multiple

teachers lecture, there is an advantage that teachers can share detailed information.

However, we obtain a subjective evaluation that it is difficult to grasp the comment one

by one by increasing the comments. It is necessary to add the ability to search for

comments and to improve the view ability of the comments.

Function that displays the program

The teacher can confirm a program written by a student and can check a comment

written by the teacher for him/her using the function. The teacher also can use the

function by clicking the student name on viewer when he/she uses other four functions.

Furthermore, it is possible to introduce the instruction to individual student. However,

we obtain a subjective evaluation that it is difficult to handle interfaces when compar-

ing a student’s program with other student’s program or correct program.

Others

From the subjects’ questionnaire after the experiment, we obtained the opinion that

they want to use the system on mobile devices. We had assumed that the teacher use

the system on the stationary PC. However, it is not possible to effectively use the

system during an individual guidance.

Conclusions
We developed a programming exercise monitoring system to facilitate teachers to give ap-

propriate instructions to students at the right time during classroom lectures. Our pro-

gramming exercise monitoring system has five functions. The system collects the

programs written by students automatically. Teachers can assess the collected programs

Kogure et al. Research and Practice in Techology Enhanced Learning (2015) 10:18 Page 11 of 12

using the integrated five functions. We collected 507 programs during an actual program-

ming exercise in a classroom lecture. We asked four subjects to use our proposed moni-

toring system in a simulated classroom lecture. The evaluation revealed that the system

had high accuracy in evaluating student programs and that the five functions were useful

in real classroom settings.

In the future, we will construct new monitoring system for individual instruction.

The teacher can use this system on mobile device, and teachers and teaching assistants

will share the information of an individual instruction and will use the stored informa-

tion for other student’s individual instruction.

Endnotes
1The GNU Compiler Collection (GCC) is a compiler system produced by the GNU

Project supporting various programming languages.
2The Secure Copy (SCP) is a means of securely transferring computer files between a

local host and a remote host or between two remote hosts.

Competing interests
All authors have no competing interestes.

Authors’ contributions
SK summarized the whole researh and wrote this paper. RN implemented the core modules on proposedenvironment.
KM implemented the user interface for viewing various information. RN, KM and KY evaluated proposedsystem. KY, TK
and YI gave advice based on actual teaching programming experience. All authors read and approved the final
manuscript.

Acknowledgements
This study was supported by the Japanese Grant-in-Aid for Scientific Research (B) 24300282.

Author details
1Graduate School of Informatics, Shizuoka University, Hamamatsu 432-8011, Japan. 2Faculty of Informatics, Shizuoka
University, Hamamatsu 432-8011, Japan. 3Faculty of Business Administration, Tokoha University, Hamamatsu 431-2102,
Japan. 4Shizuoka University, Hamamatsu 432-8011, Japan.

References
Adam, A, & Laurent, JP. (1980). LAURA, a system to debug student programs. Artif Intell, 15(1), 75–122.
Fossati, D, Eugenio, BD, Brown, C, & Ohlsson, S. (2008). Learning linked lists: Experiments with the iList System (Proc. of the

9th International Conference on Intelligent Tutoring Systems, pp. 80–89).
Jadud, MC. (2006). Methods and tools for exploring novice compilation behaviour (Proc. of the Second International

Workshop on Computing Education Research, pp. 73–84).
Johnson, WL. (1990). Understanding and debugging novice programs. Artif Intell, 42(1), 51–97.
Kennedy, GE, & Cutts, QI. (2005). The association between students’ use of an electronic voting system and their

learning outcomes. J Comput Assist Learn, 21(4), 260–268.
Kogure, S, Okamoto, M, Noguchi, Y, Konishi, T, & Itoh, Y. (2012). Adapting guidance and externalization support features

to program and algorithm learning support environment (Proc. of the 20th International Conference of Computers in
Education, pp. 321–323).

Kogure, S, Takatsu, H, Konishi, T, & Itoh, Y. (2010). Development and evaluation of learning support system based on
automatic classification of students’ programs according to difference from standard algorithm (Proc. of International
Conference of Advanced Learning Technologies, pp. 227–228).

Konishi, T, Suzuki, H, Haraikawa, T, & Itoh, Y. (2007). Three phase self-reviewing system. In Knowledge Management for
Educational Innovation (pp. 203–210). US: Springer.

Malmi, L, Karavirta, V, Korhonen, A, Nikander, J, Seppala, O, & Silvasti, P. (2004). Visual algorithm simulation exercise
system with automatic assessment: TRAKLA2. Informatics in Education, 3(2), 267–288.

Nakahara, T, Konishi, T, Kogure, S, Noguchi, Y, & Itoh, Y. (2009). Learning environment for algorithm and programming
where learners operate objects in a domain world using GUI (Proc. of the 17th International Conference on
Computers in Education, pp. 59–66).

Noguchi, Y, Nakahara, T, Konishi, T, Kogure, S, & Itoh, Y. (2010). Construction of a learning environment for algorithm
and programming where learners operate objects in a domain world. International Journal of Knowledge and Web
Intelligence, 1(3), 273–288.

Spacco, J, Hovemeyer, D, & Pugh, W. (2004). An Eclipse-based course project snapshot and submission system (Proc. of the
2004 OOPSLA workshop on eclipse technology eXchange, pp. 52–56).

Kogure et al. Research and Practice in Techology Enhanced Learning (2015) 10:18 Page 12 of 12

	Abstract
	Background
	Methods
	Definitions of lecture, exercises, and steps
	Definitions of the step progress and exercise progress of students
	Definitions of the student program and standard algorithm

	Reused modules
	The assessment module for student programs
	The module that searched for programs with a particular difference

	Overview of the programming exercise monitoring environment
	Information extraction server
	Instruction support viewer
	Function that displays the exercise progress of students in lectures
	Function that displays the step progress of students in exercises
	Function that displays the classification results for student programs in an exercise
	Function that displays a student list tagged with comments
	Function that displays the program
	Integration of the five functions

	Results
	Evaluation of the information extraction server
	Accuracy of automatic program evaluation module
	Accuracy of the step progress assessment using the information extraction server

	Experimental evaluation of the instruction support viewer

	Discussion
	Function that displays the exercise progress of students in lectures
	Function that displays the step progress of students in exercises
	Function that displays the classification results for student programs in an exercise
	Function that displays a student list tagged with comments
	Function that displays the program
	Others

	Conclusions
	The GNU Compiler Collection (GCC) is a compiler system produced by the GNU Project supporting various programming languages.
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

