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available at the end of the article these classrooms, students are not able to interact with visualization directly; instead,
their interaction is mediated by the instructor who alone may have access to the
visualization. In the current study, we contrasted learning outcome from integrating
program visualization at two different engagement levels in instructor-mediated
classroom setting. The two levels were “Responding” (prediction activity with
visualization) and “Viewing” (watching visualization with instructor commentary) as
per Naps' taxonomy. The study was conducted for a programming topic of
medium complexity. We found the strategy of prediction with visualization
("Responding”) led to statistically significant higher active behavioral engagement
and higher perception of learning among students than the strategy of watching
the visualization with instructor commentary ("Viewing"). We also found statistically
significant higher cognitive achievement in terms of the rate of problem solving
for the “Responding” group, if the students had prior training in active learning. This
study can serve as a reference guide to design effective integration of visualizations in
instructor-mediated classrooms.

Abstract

Keywords: Program visualization; Active learning; Engagement levels; Prediction;
Viewing

Background

Computer-based visualizations involve “the use of computer supported, interactive, visual
representations of data to amplify cognition” (Tory and Moller 2004) like educational ani-
mations and simulations. Well-designed visualizations with affordances that are known to
promote learning, like variable manipulations, dynamic multiple representations, and
others, have been shown to be effective learning resources (Linn and Eylon 2006). They
make the invisible visible and improve prediction and reasoning abilities (Riess and Mischo
2010). In the domain of Computer Science (CS), such visualizations entail the use of graph-
ical entities to depict runtime behaviors of code segments, consequent changes occurring
within the computer system or algorithm executions. The visualizations used in CS are
classified into two broad categories, based on their level of abstraction—algorithm
visualization (AV) and program visualization (PV) (Price et al. 1993). The current study
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focuses on PV, which is visualization of actual program code at a low level of abstraction, in
either static or dynamic form (Price et al. 1993). It includes both animations and simulations
(Sorva et al. 2013), depicting the runtime behavior of a program with graphical elements.
These graphical elements illustrate the changes occurring within the computer system like
changes in the memory map (Fig. 1). These visualizations assist in clearing misconcep-
tions about complex programming topics (Urquiza-Fuentes and Veldzquez-Iturbide 2013;
Sorva et al. 2013), promote conceptual and procedural understanding (Byrne et al. 1999;
Hansen et al. 2000; Laakso et al. 2009), improve verbalization of programming concepts
(Ben-Bassat Levy et al. 2003), and understanding the working of the “notional machine”
(Sorva et al. 2013) for novice programmers.

However, these benefits from visualizations remain unrealized if instructional strategy
used is to simply exhibit the visualization in the classroom (Windschitl and Andre
1998). Such type of passive strategy is prevalent in technology-constrained instructor-
mediated classrooms (Kundi and Nawaz 2010). On the contrary, active learning strat-
egies with visualization like prediction activity (Byrne et al. 1999) and peer instruction
(Keller et al. 2007) have been shown to lead to positive learning outcome. In fact, Naps
et.al. (2002) hypothesized that learning from visualizations will increase across six dif-
ferent student engagement levels with visualization like Viewing (simply watching) to
Responding (responding to questions while watching the visualization) to Changing
(students manipulating the visualization and seeing its effect). But the results of empir-
ical studies testing Naps’ hypotheses are mixed (Hundhausen and Douglas 2000;
Urquiza-Fuentes and Veldzquez-Iturbide 2009; Sorva et al. 2013). (In the rest of the
paper, we refer to Naps' engagement levels as “engagement level with visualization”
which is different from students’ behavioral engagement). These mixed results point to
the impact of moderating variables on the strength of the relationship between the
strategy used with visualization and the learning outcome from it.

Multiple studies with CS instructors have revealed that instructors face difficulty on
how to integrate visualizations in their teaching (Shaffer et al. 2011). This problem gets
compounded for hundreds of instructors in instructor-mediated classrooms, which are
the norm in India and a large part of the developing world. The technological resources

Basic Pointers ~ Text B Addr.. +0 +1 +2  +3 Variable

Program Code: | Back [§ Forward 60| o 0 0 5 x
#include <stdlib.h>
int main0 { & ° ks . i !

intx=5 52

printf(*Value of x is %d \n", x);

printf(*Address of x is %d \n", &x); a8

int*y;

y =& a

printf(*Value of y is %d \n", y);

printf(*Value at the address iny is %d \n", %y); 40

printf(*Address of y is %d \n", &);

=6 36

printf(*Value of x is %d \n", x);
return 0;

Pruiram outiut:
an a

Fig. 1 Screenshot of example program visualization (PV) used in current study (Student project and
University of Pittsburg 2012)
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available in such classrooms are limited to a projector and a laptop with instructors com-
peting for these resources (Kundi and Nawaz 2010). Furthermore, the adoption of techno-
logical tools in teaching is not widespread (Mehra and Mital 2007), and the prevailing
method of instruction is one-way instructor-centered with preference of text materials
over virtual teaching resources (Kundi and Nawaz 2010). Students do not have access to
individual laptops, and their interaction with visualization is instructor-mediated. Conse-
quently, the highest possible student engagement level with visualization is constrained to
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Naps’ “Responding” level. Thus, the challenge for instructors in such classrooms is to de-
sign and implement a visualization integration plan that incorporates active learning strat-
egy with visualization to operationalize the “Responding” level of engagement after
accounting for the relevant moderating variables.

One proposed solution to tackle the integration problem is sharing of best practices
among instructors (Shaffer et al. 2011). Such studies should address a context similar to
that of the instructors for whom it is targeted (Prince 2004). Results of the research will
then be relevant to instructors since there will be high probability of achieving the same
level of learning outcome as reported in the study. The study should also provide exhaust-
ive detail of the visualization integration plan to be meaningful to other instructors. How-
ever, most studies on integration of visualizations have either been conducted in a
laboratory setting or as a field study measuring the total effect of in-class and lab activities
or they invoke the use of additional technological resources like clickers to mediate the
interaction (Keller et al. 2007). There are fewer studies that discuss the use of visualiza-
tions in an instructor-mediated classroom without access to additional technology. Be-
sides, the majority of the studies with visualization in CS domain have been for AVs and
fewer for PVs (also noted by Ben-Ari et al. 2011). These studies can therefore not be taken
as integration guides by instructors planning to integrate PVs in instructor-mediated
classrooms.

Our study addresses this gap by conducting two field experiments with first-year under-
graduate students of CS1 introductory programming course under a condition set typical to
instructor-mediated classrooms. It also identifies student’s prior exposure to active learning
as a moderating variable and tests for its impact on the learning outcome from visualization
by varying this variable across the two experiments. In each experiment, we followed a
multi-method research design involving both qualitative and quantitative measures of learn-
ing outcome from PV. The qualitative part included classroom observation of students’ be-
havioral engagement while the quantitative part was a survey to measure student affect and
perception of learning. It also included a post-test to measure cognitive achievement. In
each experiment, we varied the engagement level with visualization between “Responding”
(prediction activity interleaved with watching visualization) and “Viewing” (watching
visualization only with parallel instructor commentary) levels for the programming topic of
“Pointers.” The students in both groups had no prior knowledge of Pointers. The active
learning strategy of prediction with PV was chosen because it was aligned to the instructor’s
objectives as well as satisfying instructional requirements like designing a short learning ac-
tivity targeting close-ended problem solving. To test the impact of the moderating variable-
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students’ “prior exposure” to active learning on learning outcome, students in experiment II
had prior training in active learning while students in experiment I did not. By “prior” ex-
posure, we mean students who have been extensively trained in active learning such that

they are accustomed to the mechanics of the process and are tuned to their role in it. To
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ensure that the student samples had the intended level of “prior exposure,” we conducted
checks during sample selection through formal instructor interviews and observations of
student behaviors in class as well as informal student interviews. The details of the sample
selection process are given in Sections 5.1 and 6.1.

We found the active learning strategy of “Prediction with PV” resulted in significant in-
crease in learning outcome in terms of student behavioral engagement and also on their
perception of learning effectiveness and satisfaction of the strategy. Prior exposure to ac-
tive learning does not appear to be a moderating variable for these metrics. However, we
found prior exposure does have a moderating influence on the rate of problem solving
that was taken as a measure of cognitive achievement. These results are valid for our con-
dition set of instructor-mediated classroom and medium complexity programming topic
in lecture setting. Detailed description and findings of experiments I and II are given in
Sections 4, 5, and 6.

The results from our study provide evidence of feasibility and advantage of implement-
ing active learning strategies with visualization in instructor-mediated situations. The
study also provides a detailed visualization integration plan for “Prediction with PV” strat-
egy along with the condition set under which these results hold. Previous studies with
PVs have identified moderating variables like topic complexity (Urquiza-Fuentes and
Velazquez-Tturbide 2013) and student characteristics like achievement level (Ben-Bassat
Levy et al. 2003), besides engagement level with visualization, as having an impact on
learning outcome from PV. Our study adds to this research on teaching with visualiza-
tions by identifying the student characteristic of “prior exposure” to active learning
with PV as another moderating variable to consider. It also provides researchers with
evidence that students at the “Responding” level exhibited significantly better cognitive
achievement over the students at the “Viewing” level if the topic is of medium com-
plexity and the setting is a lecture class in an instructor-mediated environment. The
field experiment aspect of the current study provides the necessary ecological validity
to the findings.

Theoretical background and related work

In this section, we focus on the existing work done to test learning outcome from program
and algorithm visualizations in response to differing engagement levels with visualization,
operationalized by different instructional strategies with visualization. We describe key the-
ories on the effect of engagement level with visualization on learning outcome followed by
literature survey of positive and negative empirical studies on CS topics. We also report
studies on the students’ behavioral engagement while viewing visualizations and conclude

with studies reporting moderating variables that affect learning from visualization.

Theoretical background

From their meta-analysis of learning effectiveness studies for visualization in CS,
Hundhausen et.al. (2002) postulated that how students interact with visualization
has a significant impact on their learning from visualization. Based on this, Naps
et.al (2002) proposed a taxonomy of six engagement levels for algorithm visualiza-
tions-No Viewing, Viewing, Responding, Changing, Constructing and Presenting-
hypothesizing that learning will increase as the engagement level with visualization
proceeds from “No Viewing” to “Presenting.” Thus, the “Responding” level was
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hypothesized to lead to better learning outcome with visualization than the “View-
ing” level. In the “No Viewing” level, no visualization is involved. In the “Viewing”
level, students simply watch the visualization. In the “Responding” level, students
not only watch but also interact with the visualization by responding to the visual
cues presented like answering exercise or prediction questions. In the “Changing”
level, students interact with visualization by changing variable parameters. In the
“Constructing” level, students create their own visualization whereas in “Presenting”
level, they present their own visualizations to their peers. Myller et al. (2009)
added four additional levels and termed these as the “Extended Engagement Tax-
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onomy” (EET). Thus, the ten levels became “No Viewing,” “Viewing,” “Controlled
Viewing,” “Entering Input,” “Changing,” “Modifying,” “Constructing,” “Presenting,”
and “Reviewing” where “Controlled viewing” means students have control over
navigation through the visualization. EET hypothesized that along with learning,
collaboration among students will also increase with increasing levels of engage-
ment. Sorva et al. (2013) proposed the 2DET engagement taxonomy consisting of
two dimensions of direct engagement with visualization and content ownership
(cognitive engagement). The 2DET hypothesizes that learning from program and
algorithm visualizations increases along both the axes of direct engagement level
and content ownership. Among all the engagement taxonomies with program and
algorithm visualizations, Naps’ engagement levels with visualization have historically
been one of the most explored conditions while measuring learning from visualizations.

Naps’ hypotheses have been tested by multiple studies, but the results are mixed.

Empirical studies testing Naps’ hypothesis

Numerous studies have been done to test these hypotheses by contrasting learning at
multiple levels of student engagement with program and algorithm visualizations.
Among the studies confirming Naps’ hypothesis, Grissom et al. (2003) found learning
gain increased with increasing student engagement for simple sorting algorithms (inser-
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tion and bubble sort) across “No viewing,” “Viewing,” and “Responding” through online
quiz. Similar result was reported by Hansen et al. (2000) where instructional strategy
used for the “Responding” level was interactive prediction and question-answering.
Byrne et al. (1999) did a controlled experiment with CS majors who had algorithm ana-
lysis skills but no prior knowledge of the topic, binomial heap. These students did bet-
ter in procedural understanding in post-test when at the “Responding” level (viewing
with oral prediction) or “Viewing” level compared to the “No viewing-No prediction”
group. However, the effect of visualization and prediction could not be isolated.
Ben-Bassat Levy et al. (2003) did a field study at school level on programming topics
like if while statements with the post-test containing questions on predicting output
of a program code using Jeliot. They found significant learning gain for all students
irrespective of their achievement level with average students gaining the most.
Laakso et al. (2009) found learning gain for conceptual understanding at both
“Viewing” and “Changing” levels with statistically significant gain at the “Changing”
level on the topic Binary heap. However, this result was obtained only after correc-
tion for behavioral engagement of student pairs since all students did not perform
at the expected level of engagement with visualization. Myller et al. (2009) tested
their EET hypothesis and found strong correlation between behavioral engagement
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among students in terms of collaborative activity of pair programming and the en-
gagement levels with visualization in EET.

In contrast to the above studies, there are studies that did not find a difference in learn-
ing outcome at different engagement levels with visualization. Stasko et al. (1993) did not
get any significant difference in procedural understanding between the “No viewing”
group and group that could run the visualization on their input data sets (Changing level)
on the topic of Pairing heap. A possible reason cited was the visualization design was not
suited to novice learners. Jarc et al. (2000) found no difference in learning outcome (con-
ceptual and procedural understanding) between “Responding” and “Viewing” where the
“Responding” level was operationalized through automated prediction questions for a set
of 11 algorithms. A probable reason given was that students in the “Responding” group
adopted trial and error method to proceed with the prediction activity instead of focusing
on learning. Hundhausen and Douglas (2000) compared learning at “Constructing” and
“Viewing” levels for procedural understanding but did not get any significant difference
for the topic of Quick sort.

From the analysis of the above studies, the instructional strategies that have been re-
ported to be successful with program and algorithm visualizations are prediction work-
sheets with visualization (Ben-Bassat Levy et al. 2003), exercise sheets (Laakso et al. 2009),
integrated prediction activity (Hansen et al. 2000), and online quiz (Hansen et al. 2000).

Factors influencing learning from visualization

Closer analysis of results of empirical studies, similar to those reported above, revealed
other factors like topic complexity and learner characteristics, in addition to engage-
ment level with visualization, influences the learning outcome from visualizations.

Topic complexity

Jarc et al. (2000) found the “Responding” group performed better on difficult topics
(graph search, Heap sort), though not significant. Ben-Bassat Levy et al. (2003) found
no effect of visualization on simple topics. Urquiza-Fuentes and Veldzquez-Iturbide
(2013) found no difference in learning outcome between the three groups at “No view-
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ing,” “Viewing,” and “Constructing” levels when the topic is simple like in-fix operators.
For topics of medium complexity like user-defined data types, visualization does show
an effect when contrasted with “No Viewing,” though no significant difference occurred
between “Viewing” and “Constructing” levels. However, significant difference was ob-
tained when the topic was of high complexity like recursive data types but in favor of
the “Viewing” level rather than the “Constructing” level on analysis and synthesis level

questions.

Learner characteristic

Effect of different learner characteristics on learning outcome from program and algo-
rithm visualizations has been studied. Byrne et al. (1999) varied algorithm analysis skill of
learners but did not find any significant effect of this skill on the learning outcome from
visualizations. Another often studied learner characteristic is the achievement level. Jarc
et al. (2000) found interactive prediction with visualization in a lab setting helped the bet-
ter students but not the poorer ones. A possible reason given was the poorer students
treated the prediction activity as a video game, focusing on being entertained rather than
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on learning. Ben-Bassat Levy et al. (2003) found mediocre students of tenth grade class
gained significantly more on using PVs in lecture and lab classes than high- and low-level
students, though they also showed some gain but not significant. They also reported
learning gain only from the fifth assignment onwards citing time required by students to
get accustomed to working with the PV tool. Isohanni and Knobelsdorf (2011) did a quali-
tative study of student interaction with the PV tool, VIP. They found students were able
to adopt productive ways of using VIP for learning programming concepts only when they
were sufficiently familiar with the tool. Besides, students take a long time to adapt to ac-
tive learning strategies (Niemi 2002). They require training on how to execute active
learning like collaborating with an unfamiliar classmate (Seidel and Tanner 2013) or
reflecting on their solutions (Niemi 2002).

Research questions and hypotheses

The broad research question for the study was: How does the learning outcome differ be-
tween “Responding” and “Viewing” levels with PV when the setting is an instructor-
mediated classroom? To answer this question, we did two control-group field experiments
following a multi-method research design. The independent variable was engagement
level with visualization varying between the levels of “Responding,” operationalized
through prediction activity with PV (experimental group) and “Viewing,” operationalized
through watching the visualization with parallel instructor commentary (control group).
The dependent variable was learning from PV measured along the metrics of behav-
ioral engagement, affect and perception of learning, and cognitive achievement
(rate of problem solving and average post-test scores). The experiments were con-
ducted on the topic of “Pointers” where the learning content was of medium topic
complexity. The larger goal of conducting two field experiments was to identify
and establish the moderating effect of “prior” training in active learning on the
learning outcome from active learning with PV. Thus, in experiment II, we an-
swered the same set of research questions by measuring learning outcome along
the three metrics with a student sample who had prior training in active learning.

The three research questions explored in the study were as follows:

e RQ1I: Does prediction activity with PV (Responding) lead to higher levels of
behavioral engagement than viewing the visualization (Viewing) for a programming
topic of medium complexity?

e RQ2: What are the student perceptions about learning effectiveness and satisfaction
for the respective strategies used with PV in the classroom?

e RQ3: Does prediction activity with PV (Responding) lead to higher levels of
cognitive achievement than viewing the visualization (Viewing) for a programming

topic of medium complexity?

The alternative hypothesis, corresponding to RQ1, can be stated as: The “Prediction”
group will show higher behavioral engagement in the class compared to the “Viewing”
group (H;_;). The alternate hypothesis corresponding to RQ2 can be stated as: Student
perception of learning effectiveness and satisfaction will be higher for the active learn-
ing strategy of prediction with PV compared to simply watching the PV (H;_,). Two al-
ternative hypotheses flowing from RQ3 can be stated as follows: (i) Prediction activity
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interleaved with visualization will lead to higher rate of problem solving than simply
viewing the visualization with parallel instructor commentary in a programming class
(Hy_3) and (ii) the “Prediction” group will show higher average post-test scores than
the “Viewing” group (Hj_q).

Research and method

This section gives an overview of the multi-method research methodology followed
across both the experiments. The sample characteristic across the two experiments
differed only on the characteristic of prior exposure to active learning. The learning
outcome between “Responding” and “Viewing” levels in both experiments was ana-
lyzed along the three different metrics of behavioral engagement, student affect and
perception, and cognitive achievement. The results from both experiments were com-
pared to analyze the impact of the moderating variable, students’ “prior exposure” to

active learning on learning outcome with PV.

Sample

To test the above hypotheses, samples of first-year undergraduate engineering students
were drawn from students enrolled in introductory courses in computer programming
at engineering institutes in Mumbai, India. These students had self-declared no prior
knowledge of “Pointers.” The sample characteristics in both the experiments differed

o«

only on students’ “prior exposure” to active learning. In both experiments, students
were divided into two sections by the respective institutes for scheduling reasons. Being
field experiments, we had to work with these predetermined groups in both experi-
ments. So, there was no chance of randomizing or matching the two groups in either
experiment. However, we did prior testing on a criterion that was crucial to our study,
i.e,, programming skills. The groups were tested for equivalence on the basis of a prior
quiz. Assignment of the treatment (“Prediction” vs. “Viewing”) to the groups in each
experiment was done on a random basis. Further details containing justification for
varying the student characteristic of “prior exposure” to active learning from experi-
ment I to experiment II and how we implemented the sample selection checks on this

parameter are given in subsections 5.4, 5.1, and 6.1, respectively.

Learning materials

The topic “Pointers” deals with variables that store computer memory addresses. This
topic was deemed suitable for learning with visualization since it involved making the
invisible memory address manipulations visible to the students. The topic was also
chosen for its medium topic complexity level. In the absence of a clear definition for
topic complexity, we related topic complexity to amount of prior knowledge required
to comprehend the topic. The judgment of medium complexity of the learning mate-
rials used for “Pointers” was left to the instructor’s content and pedagogical knowledge.
We chose medium complexity programming topic since in a prior study with PVs,
Urquiza-Fuentes and Veldzquez-Iturbide (2013) had found active learning strategy with
PV had positive effect on learning of programming topics of medium complexity in
contrast to topics of low and high complexity. The PV chosen covered basic pointers
and pointer arithmetic with user-controlled navigation. This was PV animation with
predefined content (content ownership level in 2DET taxonomy = “Given Content”).
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The reason for choosing this PV was it satisfied the requirements of visualizations at
the “Responding” level as specified by previous research studies (Urquiza-Fuentes and
Velazquez-Iturbide 2009) like the presence of explicit feedback and additional narrative
or text explanations of what is happening. This visualization displayed the change in
memory map in response to execution of each line of code as also its output with expli-
cit explanation of how the output was obtained (Fig. 2).

Instruments

We did qualitative study for behavioral engagement using a standard observation
protocol and used quantitative instruments for measuring affect and perception along
with cognitive achievement.

Behavioral engagement

Fredericks et al. (2004) categorized engagement studies into three categories—beha-
vioral, emotional, and cognitive. In our study, we measured behavioral engagement of
students in terms of student participation in classroom activity with PV. The results of
the classroom observations were used to answer RQ1 and test the hypothesis H;_;.
The observations were based on the standard classroom observation protocol of Behav-
ioral Observation of Students in Schools (BOSS) (Shapiro 2003) (Table 1). It presents a
set of codes to analyze student behavior in the classroom into three categories—active
engagement, passive engagement, and non-engagement. The in-class observations were
coded based on BOSS terminology to report active engagement. For example, behaviors
like reading aloud, raising hand, or talking about learning material were coded as active
engagement whereas behaviors like listening to lecture/peer answer or reading silently
were coded as passive engagement. Some of the non-engagement codes are talking at
inappropriate times, manipulating non-related objects and looking around the room. In
the current study, we focused on active behavioral engagement. To measure behavioral
engagement with the visualization in the classroom, in-lecture observations of students’
behavior were done by multiple researchers in each experiment and inter-coder reliabil-

ity for the researchers were established through separate pilot studies.
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Table 1 BOSS Observation protocol (Shapiro 2003). Observation codes

Engagement

Active engagement Passive engagement

e Writing e Listening to lecture

® Reading aloud ® Reading silently

® Raising hand ® [ ooking at assigned material

® Talking about learning material e Listening to peer answer related to work
e Talking to peer about learning material e L ooking at locus of attention

Non-engagement (motor, verbal, and passive off-task)

O—out of seat S—making audible sounds
MO—manipulating objects non-related Tl—talking at inappropriate times
TO—touching another students/adult IR—inappropriate remark

TA—turning his body away/head down; fidgeting in seat LA—looking around room; staring away

Based on BOSS terminology

Affect and perception of learning

The students of both groups answered two questions on a five-point Likert scale
questionnaire that captured their perception of the learning effectiveness and also
satisfaction of the instructional strategy used with PV in their respective classroom.
The student responses on this Likert scale survey were used to answer RQ2 on stu-
dents’ perceptions on learning through different instructional strategies with PV and
test hypothesis H;_,.

Cognitive achievement

Cognitive achievement was measured in terms of the rate of problem solving and aver-
age post-test scores to answer RQ3. The post-test paper contained three post-test ques-
tions whose subparts tested conceptual and procedural understanding of basic pointers
and pointer arithmetic. The questions were generated by the instructor who was also
an educational technology (ET) expert and validated by another ET expert. A sample
post-test question is given below.

Example post-test question: Predict the output of the following program:

int main () {

int A[4], *p;

for (inti=0;i<4; i++) Ali] = 1§

p = &A[0];

printf (“ %d %d %d /n”, *p, *(p + =2) ,*(p + 1) + *(p-1));
return 0;

}

The total post-test mark was ten marks. Partial marking was done for questions con-
taining subparts. To compute the rate of problem solving, the average time taken to
solve the post-test paper for the entire group was recorded.
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Experimental procedure
We did a multi-method research study of student learning with PV. The independent
variable was engagement level with visualization. It was varied between the “Responding”
level, operationalized through prediction activity with PV (experimental group) and
“Viewing” level, operationalized through watching the visualization with parallel in-
structor commentary (control group). The dependent variable was learning from PV mea-
sured along the metrics of behavioral engagement, affect and perception of learning, rate
of problem solving, and average post-test scores. The student behavioral engage-
ment was measured through in-lecture observation during the prediction activity
with PV for the “Experimental/Prediction” group. For the “Control/Viewing” group,
observation was done when the same code segment was shown through the PV.
The quantitative part included a two-group post-test only study along with an affect
and perception student survey. In the control group experiment, the instructional activ-
ity with visualization for the “Prediction” group was designed to include theory-
recommended design components that map to our instructional objectives (Fig. 3). The
“Prediction” group was given a short theoretical introduction to pointers and pointer
arithmetic subtopics during the lecture. In each case, the theoretical explanation was
followed by the PV. The PV was run in step-run mode, and students were asked to pre-
dict and write down the result of the next step before comparing their answers with
what is shown in the visualization. They got immediate, explicit feedback from the PV
supplemented with parallel instructor explanation for each step (Fig. 4). Such short pre-
diction activity was done four times within the single code shown in the visualization.
We chose the strategy of “Prediction with PV” because it included theory-recommended
design components to achieve alignment with our instructional objectives like behavioral
engagement of students in the class and application of conceptual and procedural

Instructional Objective Instructional Strategy Design Operationalized in Experimental
With Visualization Components Group Activity
[recommended by Theory]
A] Behavioral A] Interactive activities that make A] Activity with student
Engagement students think (Prince, 2004) instructor interaction + makes
students express their thinking
B] Apply B] Apply Knowledge in problem solving B] Applying knowledge to
Conceptual i) ‘Provide procedural assistance to predict:
& Procedural |  organize learning process’ —> 1) Question prompts in
Understanding (Mayer & Wittrock, 2006) sequence = procedural
ii) ‘Decompose complex tasks into assistance
individual knowledge components, ii) Question prompt =
emphasize on their practice, decompose code segments into
independent of larger task. smaller sections
Subsequently give scaffolding to iii) Prediction process=
integrate into more complex tasks’ activates prior knowledge +
(Anderson et.al., 1995a) connection to new knowledge
iii) Activate prior knowledge (Mazzolini et.al., 2010)
(Mayer & Wittrock, 2006) iv) Multiple question prompts =
iv) Show multiple examples generates multiple examples
(Krathwol, 2002) v) Comparing answers with
v) ‘Raise cognitive conflict’ solution shown by visualization
(Limon, 2001) = raises cognitive conflict
Fig. 3 Designing learning activity with instructional strategy design components mapped to objective
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[ 'Prediction with PV' Learning Design ]

ndex:
Q Visualization use
STEP Step 1 Step 2
Phase Prediction Correction
Time 2-3 minutes 3-5minutes
Who Instructor Student Instructor Student
I. Ask random set of students | I. Compares their solution
. R - lizati f cod to share their prediction with with what is shown
N sel;"'r“;'::‘z l;ae:z:r; "“:gpe 1. ‘Thinks" class on-screen
involving pointer basics + (E531, YhSt Il. Ask them t their | Il Listens to instruct
arithmetic with parallel Yy . Ask them to compare their . Listens to instructor
What Commenta prediction with what is shown feedback
Ill. Pause at rrz—declded Il. Writes down | on-screen
A code |Inep their individual Ill. Corrects prediction,
" prediction in Ill. Resume visualization & if wrong
L% C::‘ f:t"'dems to predict O 'worksheet explain output o
P IV. Asks questions, if in
IV. Proceed with visualization doubt
D‘;;‘i’l‘x Pause at those code lines that address Clear deliverable should be correct reasoning leading to
Tipsg 4 a . correct prediction
" . . a) Compare your prediction with what will be shown
Example  Predict the value of pointer variables p1 TR

& p2'whenithisicodsils:run? b) Note the difference with your own prediction.

Fig. 4 Stepwise implementation plan of “Prediction with PV"

understanding in problem solving (Fig. 3). This strategy also satisfied our requirements of
designing a short activity of 10-15 min targeting close-ended problem solving. The pre-
diction activity was followed by the post-test and affect and perception survey.

The “Viewing” group in each experiment was given a longer verbal introduction for
the same two subtopics to avoid the confounding variable of two groups having differ-
ent learning times. The visualization was demonstrated in step-run mode with parallel
instructor commentary without explicitly asking the students to make predictions. Both
groups were taught by the same instructor with the same lecture content and same PV
on the same day with the “Viewing” group going first. The treatment duration was 1 h
for both. After the treatment, each group took the same post-test to be solved within a
time limit of 20 min followed by the affect and perception survey (Fig. 5).

Data analysis
The in-class observations of active behavioral engagement for each group, based on BOSS

protocol, were tested for significant difference using Pearson’s chi-square test. This test

Control Group Experimental Group
Instructor Student Instructor Student |
6 minutes | Lecture on ‘Pointer Listen & 6 minutes | Lecture on ‘Pointer Listen &
Basics’ using blackboard > Watch Basics’ using blackboard [ Watch
and Powerpoint and Powerpoint
14 minutes Run visualization on Listen & 14 minutes Run visualization on Listen &
‘Pointer Basics’ with Watch ‘Pointer Basics’ with > Watch
parallel commentary parallel commentary
S minutes | Lecture on ‘Pointer Listen & 2 minutes | Lecture on ‘Pointer Listen &
Arithmetic’ using —»  Watch Arithmetic’ using —»! Watch
blackboard and blackboard and
Powerpoint Powerpoint
15 minutes Run visualization on Listen & 18 minutes Run visualization on >
‘Pointer Arithmetic’ with — Watch ‘Pointer Arithmetic’
X - Solves
parallel commentary Pause visualization at A
. . [ prediction
pre-decided code line
worksheet +
Ask students to predict compares
output + share with class solution with
Ask students to compare visualization
their solution with what
is shown in visualization

20 minutes Give Post-test on Solve Post-test on 20 minutes Give Post-test on Solve Post-test on

‘Pointer Basics + ‘Pointer Basics + ‘Pointer Basics + ‘Pointer Basics +
Arithmetic’ Arithmetic’ Arithmetic’ Arithmetic’

Fig. 5 Flowchart of intervention process for the “Prediction” and “Viewing” groups
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was deemed suitable since both independent (engagement levels with visualization) and
dependent variables (behavioral engagement) were categorical with two levels, and the fre-
quency distributions were found to be non-normal from Shapiro-Wilk test. The cell count
of the 2 x 2 contingency table was more than 5.

The affect and perception survey responses were analyzed by the non-parametric test
of Mann-Whitney U to check for significant difference between group responses. This
test was chosen since the dependent variable (survey responses) is ordinal and inde-
pendent variable (treatment) is categorical with two levels. Also, both distributions
were found to be non-normal from the Shapiro-Wilk test.

The rate of problem solving is defined as the number of correct responses given to
problem solving questions in unit time. To calculate the rate of problem solving for
each student (R), we divided the post-test score (C), representing the number of correct
responses of each student in a group, by the average time taken by the group to solve
the post-test (¢), i.e., R = (C/t). The average time of the group was taken since it was not
possible to get solving time taken by individual students. Since the distribution of R
was found to be non-normal by the Shapiro-Wilk test, the non-parametric Mann-
Whitney U test was done to compare the medians of the two groups. Similarly, the dif-
ferences between median post-test scores were tested for statistical significance through
Mann-Whitney U test. This non-parametric statistical test was deemed suitable since
the achievement scores showed non-normal distribution as per Shapiro-Wilk test.

Experiment |

In this section, we describe the sample characteristics and outline the process followed
for in-class observation of student engagement distinct to experiment I along with the
experimental results.

Sample characteristics

A sample of 78 first-year undergraduate students was taken. Interviews with a random
sample of five of their instructors revealed that these students have never been exposed
to active learning strategies in their classroom. They were instead accustomed to the
traditional instructor-centered lecture style of teaching with occasional class discussion
on instructor-posed questions. This claim was reconfirmed through informal interviews
with the students themselves.

Students were divided into two sections by the institute for scheduling reasons. The
first section was made the “Prediction” group (N =39; male = 32; female =7), and the
second section was the “Viewing” group (N = 39; male = 27; female = 12). The male:fe-
male ratio for the “Prediction” (4.6:1) and “Viewing” groups (2.3:1) was comparable.
The groups were found to be equivalent on programming skills on the basis of a prior
quiz using independent samples ¢ test (Mexperimental = 21.21 (SD = 9.94); M ongror = 18.82
(SD = 8.60); p > 0.05).

Procedure for in-class observation

The in-lecture observation of student behavioral engagement was carried out by two
observers. Inter-coder reliability for the researchers was established through a separate
pilot study with Cohen’s Kappa = 0.64. Each observer observed a random set of 15 stu-
dents, twice during the prediction activity, for the “Prediction” group and the
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corresponding code segment for the “Viewing” group using the BOSS codes for active
behavioral engagement. Individual students were observed for a fixed time interval of
5 s at a stretch. The total number of observations recorded for each group was 60. The
fraction of the class thus observed in each group was 30/39 (76.92 %). The lecture was
followed by the post-test and student affect and perception survey.

Results
Behavioral engagement
The observation codes in each group were categorized into engagement (active and pas-
sive) and non-engagement as per BOSS protocol. To answer RQ1, we report the percent-
age of observations out of the total that were in active engagement category (Table 2).
Forty percent of the “Prediction” group was found to be actively engaged compared
to 11.67 % of the “Viewing” group. The chi-square (y*) test on the active engagement
observation for each group revealed a significant difference (p =0.00) in favor of the
“Prediction” group (Table 2). The prediction activity with PV led to significantly more
active behavioral engagement in classroom than viewing alone. Thus, the alternate hy-
pothesis, H ;_; stating the “Prediction” group will show increased active behavioral en-

gagement, was accepted.

Affect and perception of learning

To answer RQ2, the survey questions asked were as follows: (Q.1) “The instructional
strategy used (watching visualization/solving prediction worksheet with visualization)
helped me learn.” (Q.2) “I would recommend using the strategy (watching
visualization/solving prediction worksheet with visualization) for rest of the course?” In
Table 3, we report the total number of responses obtained for each question in the sur-
vey. A comparative analysis of the student perception of the strategy used in their re-
spective classrooms was done through the non-parametric Mann-Whitney U test
results. The result analysis revealed a statistically significant difference in favor of the
“Prediction” group for learning effectiveness (p =0.016) and satisfaction (p =0.003) of
the “Prediction with PV” strategy. Thus, the hypothesis, H ; , stating there will be
higher perception of learning effectiveness and satisfaction for the active learning strat-
egy of “Prediction with PV” compared to simply watching the visualization, is accepted.

Cognitive achievement

The “Prediction” and “Viewing” groups were both given 20 min to solve the post-test
paper. The analysis of the Mann-Whitney U test for both the rate of problem solving
and average post-test score did not yield any statistically significant difference between
the “Prediction” and “Viewing” groups (Table 4). Thus, the hypotheses, H ;_3 and H ;_4

Table 2 In-lecture active behavioral engagement with PV

Prediction group Viewing group
Total observations 60 60
Active engagement observation frequency (percentage) 24 (40 %) 7 (1167 %)

Chi-square results X (1)=17.79, p=0.00
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Table 3 Mann-Whitney U test results for affect and perception survey

Question Group Mean rank U p values
Q1. Instructional strategy used with Prediction(N = 37) 43.11 482 0.016
visualization helped me learn Viewing (N = 38) 3918

Q2. | would recommend using the Prediction (N=37) 4524 435 0.003
strategy for rest of the course Viewing (N = 38) 3095

indicating better performance on cognitive achievement for the “Prediction” group vis-

a-vis “Viewing” group, could not be accepted.

Discussion of experiment |

From experiment I, we were able to conclude that the instructional strategy of “Predic-

tion” with PV in an instructor-mediated classroom increases students’ active behavioral

engagement in a first-year undergraduate introductory programming class compared to

simply “Viewing” the PV, when the topic is of medium complexity. Students also per-

ceive the active instructional strategy of “Prediction” with PV to be significantly more

likeable and more learning effective than the passive strategy of watching the PV with

parallel instructor commentary. These positive results led us to infer that the null result

obtained for cognitive achievement may be a function of the students’ first-time expos-

ure to active learning.

In their first exposure, the “Prediction” group performed at par with the “Viewing”

group. This finding is backed up by literature evidence that shows sustained exposure to a

PV tool led students to devise productive ways to use the tool for learning (Isohanni and

Knobelsdorf 2011). Ben-Bassat Levy et al. (2003) also shows learning gains occurring from

only the fifth programming assignment onwards, involving both lab and lectures, for the

Viewing group (Viewing vs. No viewing). Both these studies involved building up student

familiarity with the PV tool during one-to-one interaction. This, along with our results,

led us to suspect that there are other factors at play like “prior exposure” to active learn-

ing, besides engagement level that influenced learning from PV in the classroom. There-

fore, we hypothesized that cognitive achievement (rate of problem solving and average

post-test scores) will increase for the “Prediction” group vis-a-vis the “Viewing” group in

an introductory programming course if students are given prior training in active learning

with PV (H 1_33) .

To test this hypothesis, we could have trained the same group of students in ac-

tive learning and carried out further experiments on their learning. But this would

have entailed experimenting on different topics of varying complexity. In the ab-

sence of clear definitions for topic complexity, this would have inadvertently intro-

duced one more independent variable in the study—topic complexity, which is

known to affect learning from program and algorithm visualizations (Urquiza-

Table 4 Mann-Whitney U test for the rate of problem solving and post-test scores

Dimension Group Standard deviation Mean u p values

Rate of problem solving Prediction (N=39) 0.99 023 573 0.12
Viewing (N =39) 0.12 0.26

Average post-test score Prediction (N=39) 1.99 454 592 0.09

Viewing (N =39) 242 5.28
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Fuentes and Veldzquez-Iturbide 2013). Hence, we carried out experiment II in
which we test the effect of “prior exposure” to active learning on the learning out-
come at two different levels of engagement with PV, “Responding” vs. “Viewing” in
instructor-mediated classroom setting. We selected student samples for both our
experiments such that they differed on the variable, “prior exposure” to active
learning. Checks on sample selection were enforced through formal instructor in-
terviews and observations of student behaviors in class as well as informal inter-
views with students. The claim of the student sample of experiment I having no
“prior exposure” was confirmed through interviews with instructors and students
and that for experiment II was confirmed through observational studies and in-
structor interview. Being a field experiment, we had to work with predetermined
groups in both experiments. So, there was no chance of randomizing or matching
the two groups in either experiment. However, we did prior testing on a criterion
that was crucial to our study, i.e., programming skills. We found no statistically
significant difference in a ¢ test on programming skill marks. Student sample in
the “Prediction” and “Viewing” groups in each experiment was drawn from the

same sample population.

Experiment I

Experiment II re-explored the three research questions with students who had prior
training in active learning. In this section, we describe the sample characteristics and
outline the process followed for in-class observation of student engagement distinct to
experiment II along with the experimental results.

Sample characteristics

To test the above hypotheses, a sample of 231 first-year undergraduate students
was taken. These students had extensive prior exposure to active learning which
was confirmed through a separate observational study of student behavior in the
classroom that was carried out for a series of eight classes prior to this experiment
(Kothiyal et al. 2013). In these classes, the instructor exposed the students to for-
mal active learning for at least 20 min. It was found that in the first few classes,
instructor had to explicitly spell out what students are expected to do in course of
the active learning process. But after these few initial classes, we observed the stu-
dents were cued in to their expected roles and did not require explicit instructions.
This was also corroborated from interview with the instructor.

The first group of students was the “Prediction” group (N = 136; male = 120; female = 16),
and the second group was the “Viewing” group (N = 95; male = 85; female = 10). The male:-
female ratio in the “Prediction” (7.5:1) and “Viewing” groups (8.5:1) was comparable. The
groups were found to be equivalent on the basis of a prior quiz on programming skills using
independent samples ¢ test (Mexperimental = 16.96 (SD = 5.86); Mconol = 15.72 (SD = 6.09);
p>0.05).

Procedure for in-class observation

The in-lecture observation of student behavioral engagement was carried out by a
total of six observers. The inter-rater reliability with BOSS protocol was found to
be good (Fleiss’s Kappa=0.68). Each observer observed a random set of 20
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students, twice during the prediction activity, for the “Prediction” group and the
corresponding code segment for the “Viewing” group using the BOSS codes for ac-
tive behavioral engagement. Individual students were observed for a fixed time
interval of 5 s at a stretch. The total number of students thus observed per group
was (20 x 6) =120, and the total number of observations was 240 per group. The

lecture was followed by the post-test and student affect and perception survey.

Results

Behavioral engagement

The 240 observation codes in each group were categorized into engagement (active and
passive) and non-engagement as per BOSS protocol codes. Both groups showed high be-
havioral engagement in the classroom with total engagement of the “Prediction” group
(89.13 %) being higher than the “Viewing” group (80.41 %). We analyzed the engagement
data further based on BOSS terminology and focused on the active engagement of stu-
dents in the classroom. We found the “Prediction” group (23.33 %) to be more actively
engaged than the “Viewing” group (9.58 %). Pearson’s chi-square (y°) test yielded a signifi-
cant difference between the groups on active engagement (Table 5).Thus, the hypothesis,
H ;_;, is accepted. The prediction activity with PV does lead to significantly more active
behavioral engagement in classroom than viewing alone.

Affect and perception of learning

The responses of both groups to the two-question survey, the same that was ad-
ministered in experiment I, were analyzed. In Table 6, we report the total number
of responses obtained per question in the survey. The analysis of the responses
showed both groups highly recommended the respective instructional strategies
used with the PV in their lecture though the “Prediction” group favored their strat-
egy more than the “Viewing” group. For the “Prediction” group, 91.9 % recom-
mended prediction with PV for use in the rest of the course and agreed that this
strategy helped them learn. For the “Viewing” group, 87.4 % favored the use of
visualization with instructor’s parallel commentary whereas 84.2 % agreed that this
strategy helped them learn. We did Mann-Whitney U test with these survey re-
sponses on a five-point Likert scale and did not find a statistically significant dif-
ference in responses of the two groups on either question (Table 6). Thus, the
response of the “Prediction” group students was higher but not significantly higher
than the “Viewing” group. Hence, the hypothesis, H ; 5, could not be accepted.

Cognitive achievement
The experimental group was able to complete the post-test in half the time (10 min) al-
lotted for the post-test (20 min). We found a statistically significant difference in the

Table 5 In-lecture active behavioral engagement

Prediction group Viewing group
Total observations 240 240
Active engagement observation frequency (percentage) 56 (23.33 %) 23 (9.58 %)

Chi-square results K (1)=442,p=000
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Table 6 Mann-Whitney results for affect and perception survey

Question Group Mean rank U p values
Q1. Instructional strategy used with Prediction (N =136) 113.24 6085 0.81
visualization helped me learn Viewing (N'=91) 11513

Q2. | would recommend using the Prediction (N=136) 117.21 5887 0.38
strategy for rest of the course Viewing (N = 92) 11049

rate of problem solving (p = 0.00) in favor of the “Prediction” group (Table 7) with an
effect size of 1.46. Thus, the hypothesis, (H;_s,) stating students have prior exposure to
active learning will lead to higher rate of problem solving for the “Prediction” group
than the “Viewing” group, is accepted. However, the average post-test scores did not ex-
hibit a significant difference between the two groups (Table 7) with both groups exhi-
biting a good representation of high scores.

Discussion

Combined analysis of experiment | and experiment II

Experiment I measures learning outcome from PV along the metrics of behavioral en-
gagement, affect and perception, and cognitive achievement along the two engagement
levels of “Responding” and “Viewing.” The students in this experiment did not have
prior training in active learning. In experiment II, learning outcome was measured
along the same metrics along the same engagement levels but the students had prior
training in active learning. From the findings of both the experiments, we are able to
conclude that active learning strategy of prediction with PV shows significantly active
behavioral engagement in the “Prediction” group compared to the “Viewing” group for
a medium complex topic in introductory programming course. This result is independ-
ent of students’ “prior exposure” to active learning in an instructor-mediated
classroom.

Affect and perception of learning, measured through student responses on learning
effectiveness and satisfaction, is higher for the “Prediction” group than the “Viewing”
group. It was significantly so for students with no prior training in active learning but
non-significant for students with prior training. This was probably because trained stu-
dents in the “Viewing” group could not isolate out the difference in learning effective-
ness and satisfaction of a passive strategy like simply watching the PV in a one-off class
resulting in no significant difference in student perception between the “Prediction”
and “Viewing” groups. We explored the affect and perception of learning further by
comparing the responses of the “Prediction” groups across the two experiments when
the groups were matched on the basis of common post-test marks. We found signifi-

cantly higher positive response for the active learning strategy with PV for the student

Table 7 Mann-Whitney U results for cognitive achievement

Dimension Group Standard deviation Mean u p values

Rate of problem solving Prediction (N=136) 0.26 0.62 966.5 0.00
Viewing (N =95) 0.13 032

Average post-test score Prediction 2.55 6.18 6435 0.96

Viewing 2.52 6.35
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group that was exposed to active learning for the first time (Table 8). This result indi-
cates the strong acceptance of the use of active learning strategies with PV among stu-
dents in instructor-mediated college classrooms.

Prior training in active learning appears to have an effect on cognitive achieve-
ment in terms of significantly increased rate of problem solving for students with
prior training in active learning but no increase for students without prior training.
To explore whether this variable “prior exposure” to active learning is indeed act-
ing as a moderator variable on learning outcome besides engagement level with
PV, we re-analyzed the data from both experiments together, by doing a factorial
design across the two experiments with groups matched on basis of the common
post-test marks. The analysis of the ANOVA results (Table 9) showed a significant
interaction effect (p =0.00) between the two independent variables (IVs)—engage-
ment level with PV and prior exposure to active learning (Fig. 6). This result is in-
formative for instructors planning to use PV in an instructor-mediated classroom.
The rate of problem solving, indicating higher learning outcome, will be higher by
using prediction with PV than simply playing the PV with parallel commentary,
once the students get accustomed to the strategy. We could not do any detailed
analysis for gender differences on learning outcome with PV since the number of
female students in our sample was too small.

Discussion of our results

Our results show that by aligning the Prediction activity with our instructional objec-
tives with the PV (based on theory-recommended strategy design components), we
were able to achieve significant increase in behavioral engagement. We were also able
to obtain increased cognitive achievement in terms of higher rate of problem solving
through the strategy of “Prediction with PV” when students had prior training in active
learning. We discuss our results in light of each of our research questions below.

e RQI: Does prediction activity with PV (Responding) lead to higher levels of active
behavioral engagement in an instructor-mediated classroom setting than simply
viewing the visualization (Viewing) for a programming topic of medium complexity?

To answer this research question, we measured active behavioral engagement
through the BOSS observation protocol. The results of experiments I and II re-
vealed that irrespective of prior exposure to active learning, students in the “Pre-
diction” group are significantly more actively engaged than those of the “Viewing”
group. It may be argued that prediction with PV being an active instructional strat-
egy, the result is obvious. But in light of study by Laakso et al. (2009) where

Table 8 Mann-Whitney U results for matched “Prediction” groups

Question Group Mean rank U p values
Q1. Instructional strategy used with Experiment | (N =39) 91.13 853 0.00
visualization helped me learn Experiment II (N = 93) 5617

Q2. | would recommend using the Experiment | (N =39) 91.27 8475 0.00

strategy for rest of the course Experiment II (V = 93) 5611
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Table 9 Two-way ANOVA results of factorial design for the rate of problem solving

Dependent variable: rate of problem solving

Independent variable df F Significance
Engagement level 1 2393 0.00
Prior exposure 1 5845 0.00
Engagement level * prior exposure 1 38.08 0.00

students did not perform at the engagement level expected of them, this result is
informative for instructors. The result shows that an active learning strategy can
be implemented in lecture class with PV to ensure students are actively engaged,
even if they do not have prior experience in active learning.

o RQ2: What are the student perceptions about learning effectiveness and satisfaction
for the respective strategies used with PV in the classroom?

To answer the above research question, we administered a short survey to record
student affect and perception about the active instructional strategy used with PV
in their class. The results from both experiments indicate that students experien-
cing active learning for the first time in a lecture class perceive prediction with PV
to be statistically significantly more learning effective and likeable than the “View-
ing” group who simply watched the PV with parallel instructor commentary. Even
for students with prior exposure to active learning, the “Prediction” group had bet-
ter perception of learning effectiveness and satisfaction of the strategy compared to
the “Viewing” group but not statistically significant. The probable reason for the
non-significant difference is that the “Viewing” group, being conditioned to active
learning, could not demarcate the effect of the passive strategy used with them in
a one-off lecture. The take-away from this result for instructors is that active
learning in the classroom is perceived to be learning effective and likeable by the

students themselves, irrespective of prior exposure to active learning.

e RQ3: Does prediction activity with PV (Responding) lead to higher levels of
cognitive achievement in an instructor-mediated classroom setting than simply
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viewing the visualization (Viewing) for a programming topic of medium
complexity?

Cognitive achievement in the current study is measured in terms of the rate of prob-
lem solving and average post-test scores. From the results of both experiments, we
found a significant difference in the rate of problem solving in favor of the “Prediction”
group when students had prior exposure to active learning. But we got no significant
difference in average post-test scores between the two groups in both the experiments.
The possible reason could be the questions in the post-test were not able to capture
the difference in learning.

Further analysis of our results led us to contemplate the effect of learning behavior of
Indian students on the results. Empirical studies have shown positive correlation be-
tween culture and learning approaches (Sulkowski and Deakin 2009). Asian learners,
including Indians, have been shown to possess learning characteristics such as relying
on authority figures like instructors to impart knowledge, dislike of ambiguity and un-
certainty, being less autonomous, and more obedient and conforming to rules as com-
pared to Western students (Subramaniam, 2009). In our study, the students in both
experiments were accustomed to instructor-driven “chalk & talk” classroom teaching.
Their exposure to technological tools used within the classroom was restricted to
powerpoint presentations. Nevertheless, these students are tech-savvy, being active
users of social networking sites and mobile applications, and conversant with English.
Thus, they were familiar with technological tools like visualization. The above charac-
teristics of Indian students may explain why “prior exposure” to active learning
emerged as an important moderating variable. The positive student perception of learn-
ing from “Prediction with PV” signals acceptance of the active learning strategy by the
students. However, our results show that to derive cognitive achievement from the
strategy, the students need to get accustomed to the execution process of the strategy
and their role in it.

Limitations of our study

One of the limitations of the current study is we did a post-facto factorial analysis
of the results to study the moderating effect of “prior exposure” to active learning.
The ideal condition would have been to set up a factorial design with “prior expos-
ure” to active learning and engagement level as two independent variables and
learning outcome from PV as the dependent variable. Also, this study was done on
a single programming topic of medium complexity. To improve the generalizability
of the results, we need to extend the experiments to other programming topics of
medium complexity. To test if our results extend to topics of high complexity
under the same condition set of instructor-mediated classrooms, further experi-
ments need to be conducted. The third limitation is the way the cognitive achieve-
ment was measured. We were also not able to get any significant difference in
average post-test scores. The post-test questions that tested cognitive achievement
may not have been challenging enough to capture the difference in conceptual and
procedural understanding between the “Prediction” and “Viewing” groups. This in-
dicates more work is needed to identify the specific type of learning that occurs
due to the visual aspect of PV and the corresponding questions that need to be
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included in the post-test to capture the learning from PV. The fourth limitation of
the study is the length of the intervention which was 20 min for both groups. In-
creased intervention time with a second set of prediction activities with PV could
have possibly led to greater knowledge acquisition for the “Prediction” group. An-
other limitation of the study was that being a field experiment, we had to work
with predetermined groups. We could not get randomized or matched groups in
either experiment. However, the groups were tested for equivalence on the crucial
criterion of programming skills.

Implications of our study

Our study is relevant for instructors in instructor-mediated classrooms in multiple
ways. Such classrooms are characterized by limited availability of technological re-
sources and predominance of one-way instructor-centered teaching (Kundi and
Nawaz 2010). Here student interaction with visualization has to be mediated
through the instructor. This study provides evidence of feasibility of implementa-
tion of active learning strategy with visualization in the aforesaid context. The
study also shows the benefits that can be accrued from active learning strategy like
prediction with PV in instructor-mediated classrooms even if the class size is large.
Our results are a pointer to instructors that if complete cross-over to active learn-
ing with visualization appears challenging, they can start with subtle changes like
integrating a small prediction activity with the visualization within their lecture.
This can make a difference in learning outcome from visualization in instructor-
mediated classrooms as compared to the traditional method of lecturing with
visualization.

Additionally, the study makes the instructors aware of the condition set under which
the current results will hold. For instance, our study shows that in a field setting of
instructor-mediated college classrooms, active learning with visualization leads to in-
creased learning outcome in terms of behavioral engagement and affect and perception
of learning when compared to the lecture method, if the topic is of medium complex-
ity. It also leads to increased cognitive achievement provided the learners have prior
training in active learning, i.e., accustomed to the mechanics of the strategy. The study
also addresses the reported problem on how to effectively integrate visualization in
classrooms (Shaffer et al. 2011). It provides instructors with a pedagogically sound step-
wise integration plan using the active learning strategy of “Prediction with PV” (Fig. 4).

Our study is also relevant to researchers in the field of teaching with visualization. The
study identifies “prior exposure” to active learning as another moderating variable to con-
sider while teaching with visualization. Existing studies have found increased cognitive
achievement with increasing familiarity with the PV tool (Ben-Bassat Levy et al. 2003; Iso-
hanni and Knobelsdorf 2011). We add to this literature by identifying “prior exposure” to
active learning, i.e., increased familiarity with the active learning strategy leads to in-
creased cognitive achievement with PV. Another contribution of the study is reporting in-
creased learning outcome from visualization, along the metric of behavioral engagement,
affect and perception of learning, and cognitive achievement, at the “Responding” level
compared to the “Viewing” level with visualization where context is instructor-mediated
classroom and topic complexity is medium. This result is interesting when contrasted
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with the results of existing studies with visualization along the axis of topic complexity.
When teaching with visualization, topic complexity is an important moderating variable
to consider. In the absence of clear definition of topic complexity, we relate topic com-
plexity to the extent of prior knowledge required to comprehend the topic. Examples of
programming topics of low, medium, and high complexity were given by Urquiza-Fuentes
and Veldzquez-Iturbide (2013) as infix operators, user-defined data types, and recursive
data types, respectively. Prior studies give evidence that PV is not required for simple
topics (Urquiza-Fuentes and Veldzquez-Iturbide 2013; Ben-Bassat Levy et al. 2003). For
highly complex topics, Urquiza-Fuentes and Veldzquez-Iturbide (2013) found passive
strategy of watching the visualization leads to better learning outcome than an active
learning strategy of students constructing their own PV. Contradicting this result is the
study by Jarc et al. (2000) which found students in the “Responding” level did better than
those at the “Viewing” level for complex topics, though not significant For medium com-
plexity programming topics, Urquiza-Fuentes and Veldzquez-Iturbide (2013) found active
learning strategy with PV was as beneficial as simply viewing. In our study, we have found
active learning strategy with PV is significantly better than simply viewing the PV for
medium complexity topic for cognitive achievement provided students had prior training
in active learning. The major difference between these studies and ours is in the prevailing
condition set. Comparing the study of Urquiza-Fuentes and Veldzquez-Iturbide (2013)
with our study, we found in the former study, students were given the intervention in
self-study context with no instructor role. It involved problem solving with visualization
in laboratory setting post a lecture class on the topic with students having direct access to
the visualization. In our study, the intervention was in a lecture class setting where the in-
structor introduced them to the topic using the visualization and students did not have
direct access to the visualization. Thus, through our study, we were able to determine the
condition set under which “Responding” gives better results than “Viewing” for medium
complexity programming topics in an instructor-mediated setting.

Another factor to consider for effective teaching with visualization is the align-
ment between instructional strategy used and the instructional objective with
visualization (Boyle 2010). This alignment between strategy and objective can be
achieved by incorporating a set of theory-recommended design components within
the chosen strategy. Figure 3 shows how the chosen strategy of “Prediction with
PV” was designed to incorporate the recommended design components mapped to
our instructional objective with visualization which were (i) behavioral engagement
in class and (ii) application of conceptual and procedural knowledge in problem
solving. Thus, “Prediction with PV” incorporates design components like activating
students’ prior knowledge and connecting it to new knowledge, raising cognitive
conflict, providing procedural assistance among others to align with the stated ob-
jectives (Fig. 3). Our results show by incorporating these design components in
our strategy, we were able to achieve significant increase in behavioral engagement.
We were also able to obtain increased cognitive achievement in terms of higher
rate of problem solving through the strategy of “Prediction with PV” when students
had prior training in active learning. Thus, an active learning strategy is a means
to operationalize the recommended design components.

Further analysis of our results led us to contemplate the effect of learning behav-
ior of Indian students on the results. Empirical studies have shown positive
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correlation between culture and learning approaches (Sulkowski and Deakin 2009).
Asian students, including Indians, are accustomed to follow instructor-driven
teaching in the classroom. Indian students are tech-savvy, conversant with English,
and familiar with technological tools like visualization. The above characteristics of
Indian students may explain why “prior exposure” to active learning emerged as an
important moderating variable. The positive student perception of learning from
“Prediction with PV” signals acceptance of the active learning strategy by the stu-
dents. However, our results show that to derive cognitive achievement from the
strategy, the students need to build familiarity with the execution process of the

strategy and their role in it.

Summary and conclusion

The goal of this study was to contrast learning with PV in instructor-mediated
classrooms between two different engagement levels with visualization—"“Viewing”
and “Responding.” From our field experiments, we found significant increase in ac-
tive student behavioral engagement and their perception of learning in favor of the
“Prediction” group for a programming topic of medium complexity. We also found
significant increase in cognitive achievement for the “Prediction” group in terms of
the rate of problem solving, provided students had prior training in active learning.
Our study is relevant for both the researchers and the instructors. It identifies the
learner characteristic of “prior exposure” to active learning as another moderating
variable for researchers to consider. This study also provides evidence for instruc-
tors on feasibility of implementation of active learning strategy with visualization
in instructor-mediated classrooms. The study also shows the benefits that can be
accrued from active learning strategy like prediction with PV in the aforesaid con-
text. Thus, our study reinforces the need for instructors to choose an active learn-
ing strategy with program and algorithm visualizations dependent on the set of
conditions linked to their context like topic complexity and learner characteristic
(prior exposure to active learning with visualization, achievement level). The
current results are however applicable for programming topic of medium complex-
ity. To make the results generalizable, further experiments are planned as future
work to cover other medium complexity programming topics as also include topics
of high complexity.
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