
Research and Practice in Technology Enhanced Learning 
Vol. 6, No. 2 (2011) 83 – 106 
© Asia-Pacific Society for Computers in Education 

83 

DEVELOPMENT AND EVALUATION OF A NEW PRESENTATION 
SOFTWARE PROGRAM (CODEX) FOR TEACHING PROGRAMMING CODE 

HIDEKAZU KAMINISHI 

MASAO MUROTA 

Graduate School of Decision Science and Technology, Tokyo Institute of Technology,  
Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552, Japan 

{hideka,murota}@mr.hum.titech.ac.jp 
http:/www.mr.hum.titech.ac.jp 

In this study, we developed a presentation software program (CodEx) for web programming 
language courses. It has functions to display sample source code, edit it, and display its execution 
result all in one slide. To evaluate the efficiency of this software (CodEx), two experiments were 
conducted. First, reviews done by nine teachers proved its efficiency in teaching programming 
language. Secondly, to evaluate the effectiveness of CodEx, we conducted a micro teaching 
experiment which compared our proposed teaching method (CodEx) with the conventional method, 
based on tests and a questionnaire. The tests included fill-in-the-blank questions, and tests of reading 
and writing programming codes. In the reading test, students taught with CodEx obtained higher 
scores than those taught by the conventional method. Our findings suggest that this software is better 
at helping students to understand the mechanism of programming codes. 
 

Keywords: Presentation software; Programming language education; Split-attention effect 

1.   Introduction 

1.1.   Background 

1.1.1.   Education and presentation software 

Presentation software and devices are commonly used. The most popular presentation 
software program is Microsoft PowerPoint. Microsoft estimated that about 1.25 million 
PowerPoint presentations were given every hour in 2004 (Levasseur & Sawyer, 2006). 
Generally a presentation has many constraints, the most relevant being the limited time to 
present consistent information (Savoy, 2009). 

Although there are no compelling results to prove or disprove that PowerPoint is 
more effective for learner retention than traditional manual presentation methods, various 
educational presentation tools which solve some weaknesses or problems of PowerPoint 
have been developed and used recently. “Classroom Presenter”, a tablet PC-based 
presentation system (Anderson et al., 2004), is one such example. This system combines 
the advantages of existing computer-based systems with those of traditional manual 



84     H. Kaminishi and M. Murota 
 
presentation systems. The program introduced functions of common practical use for 
lectures, such as instructor’s notes, interactive writing, diagrammatic use of ink, and 
attention-getting techniques. “Fly” (Holman et al., 2006) is a presentation system with 
Mind Maps which introduces spatial organization to presentations. This software enables 
one to show hierarchical structures within a presentation. This method was created as a 
solution to the critique of Tufte (2003) which discussed the problems of using 
PowerPoint. “Pallette” (Nelson et al., 1999) is a presentation system with index cards that 
are printed with slide content that is easily identified by both humans and computers. A 
presenter composes a talk by selecting cards from one or more sets. This system supports 
interactivity between teacher and students. 

A lot of presentation software is developed and used in education. This is also 
common in source code education. In a class on computer programming language, the 
computer is an indispensable device for teaching. As Buck and Stucki (2001) and Kölling 
and Rosenberg (2001) insisted, the teacher should give beginning students some 
examples of programming codes. One popular teaching method is for the teacher to 
present sample code using presentation tools and have the students work on coding that 
imitates the sample code. Teachers commonly use commercial or free programming 
environment software programs such as Dreamweaver or Aptana to show the students’ 
executed results. The problem with this method is that students often do not understand 
the sample code and thus are not able to produce the expected results. For this reason, 
teachers should display the execution results of the sample codes they have presented, 
preferably on the same screen or slide as the sample code. 

There is a common problem when teachers display execution results; teachers have to 
switch among different applications: presentation software to deliver the lecture, a text 
editor to show sample codes, and a programming environment to show the corresponding 
results of execution. This might cause a split-attention effect in learners as described in 
the following section. Therefore, this study deals with two specific purposes related to the 
instructor's problem of needing to use multiple applications at the same time: first, the 
usability of the application by teachers; second, the efficiency of the application for 
students. In section 1.2 these objectives are described accordingly. 

1.1.2.   Teaching computer programming and the split-attention effect 

Split-attention occurs in the classroom when learners are required to mentally integrate 
several sources of physically or temporally disparate information and thus split their 
attention among the sources. Learners studying information that is presented from 
multiple sources (i.e. screens, slides, or programs) in the same lesson are outperformed 
by learners studying the same information presented in an integrated format. When 
information is not integrated, cognitive load is increased by the need to mentally integrate 
multiple sources of information. This increase in extraneous cognitive load is likely to 
have a negative impact on learning compared to conditions where the information has 
been restructured to eliminate the need to split attention. When presenting disparate 
sources of information that must be mentally integrated in order for the information to be 



Development and Evaluation of a Presentation Software for Programming Language Lecture     85 
 
understood, those sources of information should be presented in an integrated format 
(Ayres & Sweller, 2005). Several studies of split-attention effect in multimedia learning 
have been conducted. A work of Tarmizi and Sweller (1988) is an example in geometry 
problem acquisition. The researchers scaled and compared the students’ elapsed time for 
acquisition and answer, and the post-test score when they provided materials using an 
integrated format and when they did not. They showed that an integrated format reduces 
the time needed to acquire new skills and concluded that an integrated format reduces the 
cognitive load. This research examined the difference between the split-attention effect 
found when studying visual information and textual information which have different 
properties of information. 

The works of Sweller and Chandler (1994) and Chandler and Sweller (1996) provide 
examples in computer-based learning. They concluded that paper-based fully integrated 
instructions for a computer application were superior to simultaneous use of a computer. 
These results suggest that learning with a computer is not always the most effective. 
They remarked that this was because of the increase in cognitive load caused by split-
attention. Following the success of the integrated manual approach, Cerpa et al. (1996) 
reasoned that its effectiveness could be plausibly caused by differences in media rather 
than split-attention. They found a split-attention effect with integrated materials and 
conventional ones using spreadsheet learning. They compared integrated computer-based 
educational software with conventional manuals used with computer software. They 
showed that integrated software reduced the split-attention effect more than conventional 
programs. In the post-test, the integrated group (computer program only) significantly 
outperformed the conventional groups in the test questions tapping knowledge that was 
high in element interactivity, such as creating a formula. This study also demonstrated 
that computers could be used effectively provided the split-attention effect was avoided. 
These studies compared the split-attention effect among different media. 

Multiple sources of information that must be integrated to be understood can also be 
separated in time, resulting in temporal separation. It is reasonable to suppose that 
temporal separation also generates an extraneous cognitive load for exactly the same 
reasons as physical separation (Ayres & Sweller, 2005). For example, Mayer and Sims 
(1994) found evidence that a concurrent presentation and animation was superior to a 
sequential presentation of either narration followed by animation or animation followed 
by narration on problem-solving tasks. Mayer (2001) argued that because of the 
limitations of working memory, words and pictures should not be separated temporally. 

Our purpose is to reduce the split-attention effect in presentations of lectures on 
computer programming. As mentioned before, presentation software for delivering the 
lecture, a text editor for showing sample codes, and a programming environment for 
showing the results of execution are all essential elements of such lectures. The problem 
is that it is difficult to present these applications all at the same time, which means that 
teachers present them in a temporally separated manner. One solution to reduce the split-
attention effect is to use dual screen environments. There are some studies on 
presentation software that uses a dual screen environment. 



86     H. Kaminishi and M. Murota 
 
1.1.3.   Computer programming lectures with multi screen 

For example, “MultiPresenter” (Lanir et al., 2008) is a presentation system designed to 
work on very large display spaces (with multiple displays or physically large high-
resolution displays). This system enables teachers to show various slides simultaneously. 
However, this system is not concerned with showing the computer programming 
environment. Chang et al. (2009) tried to reduce the temporal split-attention effect by 
using a dual screen to display presentation software and the programming environment at 
the same time. They divided their examinees into two experimental groups. One group 
was taught in a traditional classroom with a single screen, while the other group was 
taught with a dual-screen setup. They showed that the dual-screen group scored 
significantly higher based on the results of a pre-test and a post-test. 

Endo and Murota (2010) developed a dual-screen presentation tool with zooming user 
interface (ZUI). This tool allows teachers to show several application windows, such as 
presentation slides and the programming environment on a dual screen. However, this 
method requires a dual-screen setup which is often not available for the classroom. In 
addition, this method may cause a spatial split-attention effect. A single screen 
environment seems to be preferable for students when possible. Therefore, we have 
developed a single-screen presentation software program which allows teachers to 
simultaneously display both sample code and its corresponding execution results on a 
single slide. 

1.2.   Purpose of this study 

In this study, we developed a presentation software program with the following features: 

Facilitating students’ learning by reducing the split-attention effect: We aimed to 
reduce the split-attention effect on students and facilitate their learning by displaying both 
a source code and its execution results on the same screen simultaneously. 

Reducing the need to switch between applications: With our presentation software, 
teachers can display both the sample code itself and its execution results in the same 
application. This function enables teachers to display both code and results 
simultaneously without worrying about switching back and forth between applications. 

2.   Feature and Function of the Software CodEx 

2.1.   Features of CodEx 

Our new presentation software program, CodEx, consists of an environment that makes it 
possible to both edit and execute programming code in one slide. The code and the results 
of executing that code are displayed in the same screen at the same time. CodEx stands 
for Code and Execution displayed simultaneously in one single slide. 

CodEx is an HTML presentation software program, based on W3C Slidy (Raggett, 
2005). We have expanded the functions of that software. 



Development and Evaluation of a Presentation Software for Programming Language Lecture     87 
 

 

Figure 1. Layout of a slide and its component in CodEx. 

 
To create presentation slides with CodEx, the user edits a text file with Wiki-like 

notation. This notation was previously proposed by Kaminishi and Murota (2009), but we 
have expanded it with new functions. The user can convert Wiki-like notation into an 
HTML presentation file by using converter script. 

An example of a possible slide layout in CodEx is shown in Figure 1. The slide in 
Figure 1 has a text of a sample slide, a “code box”, an “execution box”, and an execution 
button. The “code box” is the area where sample code is displayed and edited. The 
“execution box” is the area where the execution results for that code are displayed. 

To display the execution results of the sample code in the “execution box”, the user 
simply clicks the “execution button”. It is possible to edit this sample code without 
switching to another application. It is always possible, with just one click, to display in 
the execution box the result of any changes made to the sample code. 

2.2.   Components and functions of CodEx 

2.2.1.   Components on a slide 

Code box: The “code box”, as mentioned above, is the area for displaying and editing 
sample code. HTML/CSS/JavaScript/PHP (requires web server for execution) is now 
available. 

Execution box: The “execution box” is the area which displays the execution results of 
the code in the code box. The execution box is made up of the “iframe”, one of the 
HTML elements. In other words, HTML for showing results (HSR) is displayed there. 



88     H. Kaminishi and M. Murota 
 

Executable code is executed and displayed in HSR. HSR must import the JavaScript 
library named “exectext.js” to execute the code from the code box. This file includes 
functions which enable the user to execute code such as the manipulation of DOM 
(Document Object Model), and so on. A teacher can similarly prepare HTML sample 
code as usual except he or she must add one line of code to import the statement of 
library. 

Teachers who use CodEx have to prepare the HSR files before making the slides. 
Generally, one can display HTML pages out of domain in iframe. However, we must set 
local HTML file in the execution box, because of the limitation caused by the web 
browser’s security restrictions. 

The function of executing code: The contents (executable text code) written in the code 
box are transferred to HSR and displayed in the execution box. HSR reads exectext.js as 
mentioned before. Functions in exectext.js drive these codes that are executed by set 
language (HTML/CSS/JavaScript), then the results are displayed in the execution box. 

Execution button: The execution button (labeled “execute”) is displayed below the code 
box. When execution button is pressed, the executable code in the code box is executed, 
and the result is displayed in the targeted execution box. This “execute code function” 
enables teachers to edit sample codes, and execute them in a slide. 

2.2.2.   Execution according to each language 

In this section, we explain the functionality of each mode of computer programming 
language as used in CodEx. The word “execution (execute)” is used to mean “displaying 
HTML” or “applying CSS” in this paper. 

HTML mode: In HTML mode, CodEx displays the execution results of HTML code in 
the execution box. When one particular portion of HTML code has already been 
displayed in the code box, it will be replaced by the new result of execution, it will not be 
appended. 

HSR (HTML for showing results) reads the JavaScript library execute.js. HSR 
receives executable codes in the code box; then, it displays the result with the scripted 
functions. 

As an executable code of HTML, code with <body> tag or without <body> tag 
(partial HTML) is either acceptable. Teachers can show each type of HTML. The latter 
case enables teachers to display only the necessary portion of code. The functions 
scripted in exectext.js recognize the two types of HTML code. When executing HTML 
code, the functions in exectext.js analyze the code. They distinguish whether the code 
includes <head>, <body> tag or not. 

If the received HTML code does not have <body> tags, the functions operate the 
DOM of HSR. That is to say, they replace the <body> tag’s “innerHTML” property of 
HSR, with the received code. 



Development and Evaluation of a Presentation Software for Programming Language Lecture     89 
 

If the received HTML code has a <body> tag, the portion of the inner <body> tag is 
extracted. Then, the resulting process is similar to the latter case. The features of this 
process are shown in Figure 2. 

In this case, the contents in <head> tag are extracted and reflected in HSR. If a <title> 
tag is included, the functions replace the existing <title> tag with a new one. If a <style> 
tag is included, the functions pass the style data to the function for applying CSS, which 
is described in the follow section. 

CSS mode: In CSS mode, we can see the applied results of CSS in HSR displayed in the 
execution box. If the user presses the execute button, he or she can change the style of 
HSR. In this mode, existing CSS script is replaced by a new code, as in HTML mode (not 
appended, but overwritten). 

HSR displayed in the execution box (CSS is applicable too) is available in two types: 
a prepared HTML file before making slides, and a displayed result through the function 
of HTML mode. In the latter case, we must show the two code boxes (for HTML and 
CSS) and the execution box all on one slide. In this case, one execution box is targeted by 
two code boxes as shown in Figure 3. 

Additionally, if the user scripts CSS as embedded style in HTML, he or she must 
choose HTML mode instead of CSS mode. 

Figure 2. Displaying HTML code with <body> tag in execution box. 



90     H. Kaminishi and M. Murota 
 

The process driven by the function in exectext.js is a replacement of existing CSS 
data with new data in executable code. The function deletes existing <link> tags or 
<style> tags in HSR related to CSS, and then appends new CSS code received 
from the code box. 

JavaScript mode: In JavaScript mode, we can see the results of what is displayed by the 
execution of JavaScript code in the code box. The user may work with the functions of 
HTML or CSS. In this case, additional code boxes are required. Figure 4 shows the 
example of executing in JavaScript mode. In this figure, an alert message is shown; this 
alert occurs in HSR, not in HTML. 

In JavaScript mode, HSR receives code from the code box. Then, the functions 
process the code, executing it as JavaScript and the results are displayed in the execution 
box. The functions pass the code as an argument to eval( ) function (equipped function in 
JavaScript), which evaluates the string data as JavaScript code. 

Figure 3. An example of execution of HTML and CSS in one execution box.

Figure 4. Execution of JavaScript. 



Development and Evaluation of a Presentation Software for Programming Language Lecture     91 
 

3.   Experiment 1: Teachers Review of CodEx Software 

3.1.   Procedure of the experiment 

To prove the efficiency of CodEx for teachers, we conducted experiments for review. 
The procedure was as follows: 

The subjects were nine people who have experience in teaching computer classes in 
universities. The experiment included a micro teaching session and a usability test, with 
pre/post questionnaire. The procedure is illustrated in Figure 5. 

Before starting the experiments, an experimenter explained to the subjects how to use 
CodEx, and let them use it for several minutes. After that, the subjects were asked to fill 
in a pre-questionnaire. 

In a micro teaching session, the experimenter taught a section of a programming 
course to the subjects. The content of the class was “Introduction to CSS”, which 
included the grammar of CSS with examples. The experimenter then showed another 
related example (for example, the experimenter replaced the class selector of CSS with 
another one in a sample code) using the function for editing codes. 

The course target was university students whose major was not computer science. We 
chose the content because sample source codes are collaborated with HTML and CSS. 
Subjects were provided with printed paper handouts of the slides and a pen. They could 
use a computer with CodEx software that had the same slides as the experimenter did. Or, 
they could watch the slides on the computer and try to use CodEx software to, for 
example, type source code and display its execution results. 

Figure 5. Procedure of Experiment 1. 



92     H. Kaminishi and M. Murota 
 

In a usability test, the subjects were asked to recreate the experimenter’s operations 
from the micro teaching session with CodEx software. Afterwards, the subjects were 
asked to complete a post-questionnaire. 

3.2.   Results of questionnaire 

For the pre-questionnaire, all subjects used conventional presentation tools to show slides 
and application software to give a lecture. They had to switch between the presentation 
software and application software to display executed code. The score of the question on 
whether or not changing applications caused interruption for the lecture was 3.67 (SD: 
1.05), which is a wide deviation. 

Results of the post-questionnaire (maximum score five points) are shown in Figure 6. 
Figure 6 shows the result of the test of hypothesis on the mean (null hypothesis: the 
average of the questionnaire is equal to three points). 

Questions 1 and 4, related to visual issues, scored low, because of the small size of 
characters. 

Questions 6 to 10, related to the main purposes of this study, scored significantly 
higher than three points in p < 0.01 level. They are appreciable results in the evaluation.  

The teachers made the following suggestions in the “Comments” section of the 
questionnaire: display slides without scrolling (five teachers); show error messages (three 
teachers); support other languages (two teachers). 

Figure 6. The results of post-questionnaire (1:bad; 5: good). 



Development and Evaluation of a Presentation Software for Programming Language Lecture     93 
 
3.3.   Considerations 

3.3.1.   Displaying slides 

In any programming lecture, characters on the screen tend to appear small. This 
experiment was not an exception, the teachers did not give high scores to CodEx when 
asked about visual issues. 

When implementing new functions for the screen (in this case the execution box), the 
area left remaining to display conventional content (in this case the sample code) 
inevitably becomes small. To solve this problem, we should use a larger screen with 
higher resolution, or use two or more screens. 

3.3.2.   Usability of displaying and editing code without application switching 

Question 9 asked the teachers to rate the “usability of displaying or editing code without 
switching between applications”. Teachers gave CodEx high scores in this area. CodEx 
was beneficial to the teachers in giving their lesson as compared to conventional software. 

3.3.3.   “Comments” section of the questionnaire 

The problem of scrolling was mentioned as stated above. 
The issue of displaying error messages may be solved by a debug tool. Firebug, 

which is an add-on of Firefox, is a tool for notification of errors in 
HTML/CSS/JavaScript, et cetera (Hewitt, 2011). But at present, some messages in the 
CodEx program still appear unclear, consequently some modifications are required. 

To support other languages, we may use “ideone API”. This is an online compiler and 
debugging tool which allows the user to compile and run code online in more than 40 
programming languages (Sphere Research Labs, 2010). The results can be displayed in a 
web page. 

3.4.    Modifications of the software 

Per the teachers’ suggestions, we have modified CodEx as to visual issues. Specifically, 
the default font size of the presentation tools was set larger. The margins in each element 
were reduced. Furthermore, the complicated layout for slides that include a figure, a code 
box, an execution box and explanatory text in the same slide are now available with 
converter. This modification reduces the need to scroll through the slides. 

4.    Experiment 2: Investigation of the Impact on Students 

After tackling the display issues pointed out by the teachers in the above experiment, we 
conducted another experiment to evaluate CodEx software from the point of view of 
students. 



94     H. Kaminishi and M. Murota 
 

4.1.   Purpose of the experiment 

To evaluate the impact of using this software, we conducted an experiment which 
compared the effectiveness of a lesson taught with CodEx (the proposal group) and 
without CodEx (the conventional group). We used micro teaching lessons to address this 
question. One of the authors of this paper taught a lecture, “Object on JavaScript”, to 
subjects and evaluated them with a pre-test and post-test, and a pre-questionnaire and 
post-questionnaire. 

4.2.    Procedure 

Figure 7 shows a flowchart of the procedure of this experiment. The participants were 
divided into two groups randomly. The experiment included a pre-questionnaire before 
the pre-test. So that the subjects would only be required to commit to one day of 
participation, we conducted the pre-questionnaire and the pre-test on the same day as the 
post-test and post-questionnaire. The experiment was designed to analyze the effect on 
participants who had no experience with JavaScript. Therefore, those participants who 
did have experience with JavaScript were not considered in our analysis. However, we let 
all participants complete the entire experiment in order to avoid any interruption that 
could affect the test-takers during the course of the experiment. At the end of the 
experiment, we only took into account the data of those participants who did not have 
experience in JavaScript. As a result, the number of participants per group turned out to 
be different: eleven participants in group one, and five participants in group two. 

In detail, all participants answered a pre-questionnaire, then they took a pre-test about 
C programming language (C). Next, participants attended micro teaching lectures, which 
included four sections. These lectures were taught via the proposed method (with CodEx 
software) or conventional one (with conventional presentation tools, text editor, and 
browser to show the results of JavaScript code). The theme of each lecture section and 
the teaching methods used are shown in Table 1. 

Figure 7. Procedure of Experiment 2. 



Development and Evaluation of a Presentation Software for Programming Language Lecture     95 
 

For the proposed method, as shown in Figure 8, the teacher (experimenter) showed 
sample code in the code box, its explanation, and the execution box together on one 
screen. Students could see all these features at the same time.  

For the conventional method, the teacher (experimenter) had to switch among 
different applications during the lecture. As shown in Figure 9, the teacher had to switch 
back and forth among the presentation software, the text editor, and the browser to 
present each sample code. During the lecture, students could not view these features at 
the same time. 

The lecture contents and the sample codes used were the same for both the proposal 
group and the conventional group. 

The participants took tests after each section of the lecture. These were paper-based 
tests. The contents of the tests were related to the lecture. After all of the participants 
finished the test the experimenter started teaching the next section of the lecture. 

Examinees took tests after each section. Those were paper tests. Contents of the tests 
were related to the teaching session. After all of the examinees finished to answer, the 
experimenter started teaching the next section. 

Figure 8. An example of slide in the proposed method. 

Table 1. Teaching methods for groups in each section. 

Theme of section Group 1 (n = 11) Group 2 (n = 5) 

1. Variables and Functions on JavaScript Proposal Conventional 
2. Object, Property and Method on JavaScript Conventional Proposal 
3. Copy of Variables, Call by Variable/Reference Proposal Conventional 
4.  Constructors on Javascript Conventional Proposal 



96     H. Kaminishi and M. Murota 
 

4.3.   Contents of the pre-test, lecture, post-test and post-questionnaire 

Pre-test: The pre-test asked questions on basic knowledge of C programming language. 
All participants had some experiences with C. They were asked to show the execution 
results of a portion of sample code, and also how to use printf statement, treatment of 
variables, declaration of a function and treatment of pointer variables. These questions 
were related to the JavaScript lecture. 

Contents of the lecture: The topic of the lecture was “Object on JavaScript”. The lecture 
was separated into four sections. The contents of these sections are shown in Table 2. As 
shown in Figure 10, for both groups the experimenter taught sections 3 and 4, which 
included complicated explanations of the mechanism of programming execution, while 
inputting sample code on the screen. To control the experimental conditions for each 
group, no questions were allowed from the participants. Table 3 shows lecture time (both 
the assumed time from the guidance plan and the actual time elapsed for each 
experiment), number of slides, number of sample codes and number of edited codes 
presented in each section. 

Post-section tests: The participants took post-section tests after each section of the 
lecture. Each test included a verbal test (a fill-in-the-blank test: five points 
maximum), a reading test (to point out the error in code or provide the correct result of a 
portion of fixed code: five points maximum), and a writing test (to write JavaScript code: 
five points maximum). Each test was a 15 point test. The tests were not time limited, but 
participants were asked to answer rapidly and correctly. Participants were not allowed 
to re-answer questions which they had already answered before. 

Figure 9.  Teaching method with the conventional method (with the need of switching applications). 

Presentation software Text editor 

Browser 



Development and Evaluation of a Presentation Software for Programming Language Lecture     97 
 

Figure 10. Filling uncompleted sample code. 

 

Table 2. Content of lecture and post section test. 

Section Contents of lecture Contents of post-section test  
(5 points max. each) 

1 Declaration and substitution of variables on JavaScript 
Declaration of functions in two ways on JavaScript 

Filling in blanks 
Checking and correcting given codes 
Description codes of declaration of 
functions 

2 Ways to object generation, property and method on 
JavaScript 

Filling in blanks 
Checking and correcting given codes 
Description codes of declaration of 
objects 

3 Copy of primitive type variables and object variables 
(explain with pictures) 

Filling in blanks 
Variable values after executed codes 
Description codes of copy of variables 

4 How to use Constructors on JavaScript Filling in blanks 
Variable values after executed codes 
Description codes with constructors 

Table 3. Time of lecture, number of slides and sample codes in each section. 

Time of lecture 
Section Assumption time 

in guidance plan 
Actual time in 

proposed method
Actual time in 

conventional method

Number of 
slides 

Number of 
sample codes 

Number of 
edited sample 

codes 

1 8 min 7 min 51 s 7 min 3 s 6 6 0 

2 8 min 8 min 19 s 8 min 52 s 7 4 0 

3 8 min 7 min 41 s 7 min 28 s 4 3 3 

4 8 min 7 min 55 s 7 min 31 s 4 3 3 



98     H. Kaminishi and M. Murota 
 
4.4.   Results 

4.4.1.   Experimentees 

Examinees were 21 male undergraduate students with major in computer science in a 
university in Japan. They had studied C programming language in their curriculum, 
although no JavaScript lecture had been included in their curriculum. In this experiment, 
students who on a pre-questionnaire mentioned that they have experience with JavaScript 
or had not answered the question about their experience with JavaScript were not taken 
into account in this investigation. Therefore we just considered 16 students. 

4.4.2.    Pre-questionnaire and pre-test 

In the pre-questionnaire, we asked participants about their experience with programming. 
According to their responses, we considered only participants who did not have 
experience with JavaScript. 

The numbers of participants was 11 in group 1 and five in group 2. The average years 
of programming experience was 2.41 years in group 1 (SD: 1.69) and 2.80 years in group 
2 (SD: 2.16). There are no significant differences (F(12,5) = 0.47, p = 0.70). 

In the pre-test (five points maximum), we measured each  participant’s understanding 
of C to gauge their base for understanding JavaScript, which is a common assumption of 
programming instructors. Most of the participants made mistakes on the questions related 
to pointer variables (which are considered to be related to the reference type value of the 
JavaScript concept). This problem cannot be solved without comprehensive 
understanding of pointer. The average score of group 1 was 3.90 (SD: 1.14), while that of 
group 2 was 4.00 (SD: 0.71). There was no significant difference in score between the 
groups (F(11,5) = 0.37, p = 0.87). 

4.4.3.   Section 1 

The result of the post-section test of section 1 is shown in the top level of Table 4. 
On the fill-in-the-blank test, the proposal group (using CodEx) scored higher than the 

conventional group (using conventional presentation software), however no statistical 
significance was found. The effect size (Cohen’s d) was small (0.2 ≤ d < 0.5). 

However, on the reading test, the conventional group scored higher. This is likely due 
to a “ceiling effect”, because both groups scored very high (very few participants made 
mistakes). 

On the writing test, the proposal group scored higher than the conventional group, at 
a 0.05 < p < 0.10 level. The effect size was large (0.8 ≤ d). The standard of effect sizes 
applied in this paper is based on Cohen (1988). 

In total, the proposal group scored higher at a 0.05 < p < 0.10 level. The effect size 
was large (0.8 ≤ d). 

 
 



Development and Evaluation of a Presentation Software for Programming Language Lecture     99 
 

Table 4. The results of the post-section test. 

Section  1 

 Fill-in-blanks Reading Writing Total 

 P C P C P C P C 

Average 4.73 4.60 4.91 5.00 1.73 0.60 11.36 10.20 

S.D. 0.65 0.55 0.30 0.00 1.42 0.89 1.29 0.84 
p-value by t-
test 0.709 0.519 0.128 0.088+ 

Effect size 0.21 -0.43 0.95 1.07 

Section 2 

  Fill-in-blanks Reading Writing Total 

  P C P C P C P C 

Average 4.20 4.55 4.80 4.36 2.60 4.27 11.60 13.18 

S.D. 1.30 0.69 0.45 0.81 1.95 1.19 1.82 1.47 
p-value by t-
test 0.492 0.283 0.050+ 0.084+ 

Effect size -0.33 0.67 -1.04 -0.96 
Section 3 

  Fill-in-blanks Reading Writing Total 

  P C P C P C P C 

Average 3.36 4.20 4.45 4.20 3.09 4.20 10.91 12.60 

S.D. 1.80 0.84 0.69 0.84 1.58 0.45 2.63 1.14 
p-value by t-
test 0.346 0.530 0.151 0.195 

Effect size -0.59 0.33 -0.96 -0.84 

Section 4 

  Fill-in-blanks Reading Writing Total 

  P C P C P C P C 

Average 3.20 4.09 3.80 3.36 4.20 3.73 11.18 11.20 

S.D. 1.79 1.04 0.84 0.92 1.30 1.27 2.64 3.03 
p-value by t-
test 0.225 0.450 0.357 0.901 

Effect size -0.61 0.49 0.25 -0.01 

Total 

  Fill-in-blanks Reading Writing Total 

  P C P C P C P C 

Average 3.94 4.34 4.56 4.13 2.72 3.41 11.22 11.88 

S.D. 1.50 0.83 0.67 0.91 1.71 1.72 2.11 2.25 
p-value by t-
test 0.186 0.032* 0.114 0.233 

Effect size -0.34 0.55 -0.40 -0.30 
Notes: a P: proposal group; C: conventional group 

b Effect size are Cohen’s d 
c *: p < 0.05; +: 0.05 < p < 0.10) 



100     H. Kaminishi and M. Murota 
 
4.4.4.   Section 2 

The result of the post-section test of section 2 is shown in the second level of Table 4. 
On the fill-in-the-blank test, the conventional group scored higher than the proposal 

group, however no statistical significance was found. The effect size was small (0.2 
≤ d < 0.5). 

On the reading test, the proposal group scored higher although there was no statistical 
significance. The effect size was medium (0.5 ≤ d < 0.8). 

On the writing test, the conventional group scored higher than the proposal group, at 
a 0.05 < p < 0.10 level. The effect size was large (0.8 ≤ d). 

In total, the conventional group scored higher at 0.05 < p < 0.10 level, and the effect 
size was large (0.8 ≤ d). 

4.4.5.   Section 3 

Table 4 shows the results of the post-section test for section 3.  
On the fill-in-the-blank test, the conventional group scored higher than the proposal 

group, however, no statistical significance was found. The effect size was medium 
(0.2 ≤ d <0.5). 

On the reading test, proposal group scored higher although there was no statistical 
significance. The effect size was small (0.2 ≤ d <0.5). 

On the writing test, the scores of the conventional group were higher than the scores 
of the proposal group, however no statistical significance was found. The effect size was 
large (0.8 ≤  d). 

In total, the proposal group scored higher although there was no statistical 
significance. The effect size was large (0.8 ≤ d). 

4.4.6.   Section 4 

The results of the post-section test of section 4 are shown in the fourth level of Table 4. 
On the fill-in-the-blank test, the conventional group scored higher than the proposal 

group, although no statistical significance was found. The effect size was medium 
(0.2 ≤ d < 0.5). 

On the reading test, the proposal group scored higher although there was no statistical 
significance. The effect size was small (0.2 ≤ d < 0.5). 

On the writing test, the scores of the proposal group were higher than those of the 
conventional group, although there was no statistical significance. The effect size was 
medium (0.5 ≤ d < 0.8). 

In total, the conventional group scored higher although there was no statistical 
significance. The effect size was very small (d ≤ 0.2). 

4.4.7.   Total 

The results of all four of the post-section tests are shown in the bottom level of Table 4. 



Development and Evaluation of a Presentation Software for Programming Language Lecture     101 
 

On the fill-in-the-blank test, the conventional group scored higher than the proposal 
group, although no statistical significance was found. The effect size was medium 
(0.2 ≤ d < 0.5). 

However, on the reading test, the proposal group scored significantly higher in p < 
0.05 level. The effect size was medium (0.2 ≤ d < 0.5). 

On the writing test, the proposal group scored higher than the conventional group, 
although there was no statistical significance. The effect size was small (0.2 ≤ d < 0.5). 

In total, the conventional group scored higher although there was no statistical 
significance. The effect size was small (0.2 ≤ d < 0.5). 

4.4.8.   Post-questionnaire 

In the post-questionnaire, we asked the participants to indicate which teaching method, 
the proposed or the conventional one is preferable for lectures on web programming. The 
results of the questionnaire are shown in Table 5. In questions 1, 2, and 4, most 
participants chose our proposed method. However, for question 3, the number of 
participants who chose the proposed method and the number who chose the conventional 
method were the same. By the binomial test, only question 1 was significant. Question 1 
addressed the ease of listening to the lecture. This shows that CodEx software did help 
students to more easily listen to the lecture. However, our results show that CodEx 
software is not likely to help students to memorize the contents of the lecture. 

4.5.   Considerations 

The split-attention effect was developed from the theory of cognitive load as related to 
learning (Ayres & Sweller, 2005). Studies have shown that integrated software reduces 
the split-attention effect (Cerpa et al., 1996), which suggests that split-attention may be 
caused by the instructor’s need to switch back and forth among different applications. 

Although the split-attention effect may also be caused by the use of a dual screen 
environment, some findings suggest that the use of dual screen does not always cause 
split-attention effect (Chang et al., 2009). It is worth remarking that, as shown by 
Chang’s study and Kuo’s work, the split-attention effect can occur even with the use of a 
single screen (Chang et al., 2009; Kuo et al., 2009). Chang and Kuo studied the use of a 
single screen for presenting with two different applications; in our study we proposed the 
use of a single screen using only one application that is capable of fulfilling multiple 
instructional functions. 

On the reading test, our proposal group scored higher than the conventional 

Table 5. The results of the post-questionnaire. 

Questions P C  p value by binomial test 
1.Easy to listen explanation 12 4 0.011   (p < 0.05) 
2.Understandable 10 6 0.105 
3.Remember contents of lecture 8 8 0.402 
4.Prefered for programming lecture 9 7 0.227 

 



102     H. Kaminishi and M. Murota 
 
method group, except in section 1, which seems to be due to the “ceiling effect”. This 
means that the test perhaps was too easy to show the actual difference in performance 
results between the two groups of learners. Although the results for some sections were 
not statistically significant, the total of the combined results was significant. These tests 
were on the grammar of JavaScript and the mechanisms of execution. Focusing on each 
question, the questions that asked participants to produce the correct execution results 
tended to show a greater effect on test scores between the participant groups. This 
indicates that CodEx software was useful for teaching the mechanisms of computer 
programming. Our results support the theory of split-attention effect as described by 
Ayres and Sweller (2005). As a direct implication to take into account for future 
developments, we should mention that understanding the mechanisms of computer 
programming, which involve concentrating on several sources of information 
simultaneously seems to require high cognitive load, which tends to increase the impact 
of the split-attention effect (Cerpa et al., 1996). 

On the fill-in-the-blank test, although the results were not statistically significant, the 
conventional method group tended to score higher. This may be because of the cognitive 
overload caused by viewing a lot of information on one slide at the same time. To take 
into account for future development, we should mention that it may be preferable to 
avoid the display of too much information in one single slide. Additionally, the proposed 
method may not be effective for memorizing the simple elements such as reserved words 
in respective programming languages or technical terms. Our results match the findings 
of Cerpa et al. (1996) who stated that no differences were found on low element 
interactivity tasks. They define low element interactivity tasks as tasks related to the 
elements that can easily be held in working memory; the effort of learning (or the 
cognitive load associated with learning) these elements is low. 

On the writing test, our results varied for each section of the lecture. For sections 1 
and 4, participants scored higher with the proposed method than they did with the 
conventional method, while sections 2 and 3 resulted in the reverse. This may be because 
the writing test demanded an integrated understanding of coding, therefore individuals’ 
scores varied greatly, which increased the effect size or p value. Therefore, we cannot 
conclude from the results of the writing test which method is preferable. The writing test 
demands knowledge of both simple content such as grammatical words and complex 
content such as the mechanisms of programming code. This suggests that, after all, it may 
not be necessarily effective to teach how to write programming code with presentation 
software. Really, to acquire the ability to write code, direct practice is believed to be the 
best method. 

Per the participants’ responses to the post-questionnaire, our proposed software is 
beneficial when listening to an instructor explain the programming process. However, no 
difference was reported between the proposed software and the conventional software as 
to which method is more effective for memorizing necessary information. This 
participant feedback roughly matches our test results. 



Development and Evaluation of a Presentation Software for Programming Language Lecture     103 
 

We need to point out that the small number of participants in Experiment 2 does not 
allow us to generalize our results. Therefore, we deem it necessary to verify our initial 
findings with future studies. However, although the number of participants in Experiment 
2 was not large enough for generalization, our initial results are nonetheless noteworthy 
for the academic world. 

To summarize, our proposed software is useful when teachers explain the 
mechanisms of programming code. However, it is not effective for rote memorization. 

5.   Conclusion and Future Study 

5.1.   Conclusion 

5.1.1.   Development 

We have developed a presentation software program which reduces the split-attention 
effect on students by displaying both a source code and its execution results without the 
need to switch between applications. 

5.1.2.   Teachers and CodEx 

We conducted an experiment to test the efficiency and usability of CodEx for teachers. 
Nine teachers evaluated CodEx by using the software program to give a lecture and then 
providing feedback on the program. 

5.1.3.   Students and this software 

To test the efficiency of our software for students, we conducted another experiment. We 
compared our proposed teaching method with a conventional teaching method that used 
normal presentation software, a text editor, and a browser to display the execution results 
of portions of sample code. 

On the post-section tests, the proposal group scored higher on the questions which 
measured understanding of the mechanisms of programming code. On the writing tests 
for code, we could not definitively determine which method is preferable because the 
results varied for each section. 

In a post-questionnaire, we asked participants to indicate which teaching method was 
more appropriate for them in several learning situations. The results of the post-
questionnaire corroborated the results of the post-section tests. For the question that 
asked which teaching method is preferable for following the instructor’s explanations, 
participants chose our proposed program. This result may be related to the examinees’ 
understanding of mechanisms of programming. However, participants did not prefer our 
proposed software for memorizing related information. This result is not contradicted to 
the result of the test of pure programming knowledge. 

Some problems in teaching with this software were found. First, the sample codes 
used had to be short. This was due to the limitations in screen size. A long portion of 



104     H. Kaminishi and M. Murota 
 
code cannot be shown without a scrolling function. Second, participants did, at times, 
experience cognitive overload caused by viewing multiple functions at the same time on 
a single slide. Although CodEx was useful for students in understanding the mechanisms 
of programming code, the test scores indicate that this software was not effective for 
memorizing information. This is presumably due to cognitive overload, but we do not yet 
have evidence to confirm this hypothesis. More research is needed on this issue. 

From our results, we can conclude that CodEx is useful for students in understanding 
the mechanisms of computer programming codes. 

5.1.4.   Advantages and disadvantages of our proposed method 

Although our proposed software offers some advantages we must also point out some 
disadvantages, as follows: 

Among the advantages, our proposed software allows teachers to display 
simultaneously on just one slide both sample code and the execution results of that code. 
Moreover, teachers not only can show the execution results of the code, but they can also 
include appropriate explanation content on the same slide at the same time. Further, our 
findings show that this proposed software is useful for teaching the mechanisms of 
computer programming. 

As for the program’s disadvantages, this software is aimed for teaching computer 
programming language courses to beginners, not intermediate/advanced learners. Another 
issue is the added workload for teachers in preparing the slides before their lecture. 
Additionally, as teachers have to prepare the necessary files before preparing the slides, 
their teaching workload truly does increase. However, this can been seen as advantageous 
in that this additional preparation time up front pays off later with greater efficiency 
during the lecture itself. 

This issue is open to future studies, including how much required time for preparing 
slides would be considered efficient for teachers. Further, while it is true that teachers’ 
workload would increase with this software, it is also true that the goal of our research 
here is not to reduce the workload of the teacher, but to improve the usability of the 
software for the teacher, and perhaps more importantly, to facilitate efficient and 
effective learning for the student. 

The teachers’ workload was a variable that was not measured in this study as our 
focus was specifically on the split-attention effect on students. This does not mean that 
we are unaware of the issue of increasing teachers’ workload, rather, we consider this 
issue as a topic requiring further study. 

5.1.5.   Summary 

Our findings show that CodEx is useful for teaching the mechanisms of computer 
programming. 

Although the number of participants in Experiment 2 was not large enough for 
generalization, our initial results are nonetheless noteworthy contributions to the 
academic world. 



Development and Evaluation of a Presentation Software for Programming Language Lecture     105 
 
5.2.   For future study 

Development of a teaching method which accelerates the acquisition of simple 
information: This study revealed that our proposed software may not be useful for 
students in tasks involving memorization of information. This seems to be due to the 
increase in cognitive load when viewing multiple functions at the same time. To approach 
the acquisition of simple knowledge, we have to develop another teaching method or 
software program. 

Development of a teaching method which accelerates  the coding skills: In this 
experiment, the teachers taught “one way” lectures (without interaction or questions 
between teacher and students) to simplify the experiment conditions. However, in a real-
world lecture, the teacher or the students can ask questions and the teacher might ask 
students to write sections of code as practice. It is important for students to practice 
writing code to acquire programming skills. 

Though we have not mentioned as such in this paper, our proposed software can be 
used by students for their own learning, in addition to a teacher’s lecture. If a teacher 
divides the presentation files through a network, students can execute and edit sample 
code on the slides. In a future study, we plan to develop, evaluate, and propose an 
integrated software program for teaching the language of computer programming which 
is more useful for the acquisition of programming skills. 

Acknowledgments 

The authors express their gratitude to Ms. Kathy Rice, Mrs. Elena Seleznova and Mr. 
Luis Inostroza for their priceless suggestions and comments, as well as their expertise and 
assistance while working together in checking this work and proofreading. 

References 

Anderson, R., Anderson, R., Simon, B., Wolfman, S. A., VanDeGrift, T., & Yasuhara, K. (2004). 
Experiences with a tablet PC based lecture presentation system in computer science courses. 
In Proc. the 35th SIGCSE technical symposium on computer science education (SIGCSE’04) 
(pp. 56–60). Norfolk, Virginia. 

Ayres, P., & Sweller, J. (2005). The split-attention principle in multimedia learning. In R. E. Mayer 
(Ed.), The Cambridge Handbook of Multimedia Learning (pp. 135–158). New York: 
Cambridge University Press. 

Buck, D., & Stucki, D. J. (2001). JKarelRobot: A case study in supporting levels of cognitive 
development in the computer science curriculum. In proc. the thirty-second SIGCSE 
technical symposium on computer science education (SIGCSE’01) (pp. 16–20). Charlotte, 
North Carolina. 

Cerpa, N., Chandler, P., & Sweller, J. (1996). Some conditions under which integrated computer-
based training software can facilitate learning. Journal of Educational Computing Research, 
15(4), 345–367. 

Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program. 
Applied Cognitive Psychology, 10(2), 151–170. 



106     H. Kaminishi and M. Murota 
 
Chang, Y., Chang, T., Hsu, T., & Yu, P. (2009). The impact of split-attention effect on dual-screen 

learning environment for programming language instruction. In Proc. world conference on 
educational multimedia, hypermedia & telecommunications (Ed-Media’09) (pp. 2110–2115). 
Honolulu, Hawaii. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: 
Lawrence Erlbaum. 

Endo, S., & Murota, M. (2010). Development of dual-screen presentation support tool with 
zooming user interface. In Proc. world conference on educational multimedia, hypermedia & 
telecommunications (Ed-Media’10) (pp. 871–876). Toronto, Ontario. 

Hewitt, J. (2011). Firebug. Retrieved January 15, 2011, from http://getfirebug.com/ 
Holman, D., Stojadinović, P., Karrer, T., & Borchers, J. (2006). Fly: An organic presentation tool. 

In Extended abstract of conference on human factors in computing systems (CHI’06) (pp. 56–
60). Montreal, Quebec. 

Kaminishi, H., & Murota, M. (2009). Development of multi-screen presentation software. In Proc. 
world conference on educational multimedia, hypermedia & telecommunications (Ed-Media 
2010) (pp. 3934–3939). Honolulu, Hawaii. 

Kölling, M., & Rosenberg, J. (2001). Guidelines for teaching object orientation with Java. In Proc. 
the 6th annual conference on innovation and technology in computer science education 
(ITiCSE’01) (pp. 33–36). 

Kuo, F., Chang, T., Hsu, J., & Yu, P. (2009). The learning effects of simultaneous dual-screen 
instructional presentation in programming language instruction. In Proc. the 17th 
International conference on computers in education (ICCE2010) (pp. 856–863). Hong Kong. 

Lanir, J., Booth, K. S., & Tang, A. (2008). Multipresenter: A presentation system for (very) large 
display spaces. In Proc. the 16th ACM international conference on multimedia (MM ‘08) (pp. 
519–528). Vancouver, British Columbia. 

Levasseur, D. G., & Sawyer, K. J. (2006). Pedagogy meets PowerPoint: A research review of the 
effects of computer-generated slides in the classroom. The Review of Communication, 6(1-2), 
101–123. 

Mayer, R. E. (2001). Multimedia learning. New York, NY: Cambridge University Press. 
Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of 

a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389–
401. 

Nelson, L., Ichimura, S., Pedersen, E. R., & Adams, L. (1999). Palette: A paper interface for giving 
presentations. In Proc. the conference on human factors in computing systems (CHI’99) (pp. 
354–361). 

Raggett, D. (2005). HTML Slidy: Slide shows in HTML and XHTML. Retrieved January 31, 2011, 
from http://www.w3.org/Talks/Tools/Slidy2/ 

Savoy, A. (2009). Information retention from PowerPoint and traditional lectures. Computers and 
Education, 52(4), 858–867. 

Sphere Research Labs. (2010). ideone.com. Retrieved January 15, 2011, from http://ideone.com/ 
Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and 

Instruction, 12(3), 185–233. 
Tarmizi, R. A., & Sweller, J. (1988). Guidance during mathematical problem solving. Journal of 

Educational Psychology, 80(4), 424–436. 
Tufte, E. (2003). The cognitive style of PowerPoint. Cheshire, CT: Graphic Press. 
 


	1. Introduction
	1.1. Background
	1.1.1. Education and presentation software
	1.1.2. Teaching computer programming and the split-attention effect
	1.1.3. Computer programming lectures with multi screen

	1.2. Purpose of this study

	2. Feature and Function of the Software CodEx
	2.1. Features of CodEx
	2.2. Components and functions of CodEx
	2.2.1. Components on a slide
	2.2.2. Execution according to each language


	3. Experiment 1: Teachers Review of CodEx Software
	3.1. Procedure of the experiment
	3.2. Results of questionnaire
	3.3. Considerations
	3.3.1. Displaying slides
	3.3.2. Usability of displaying and editing code without application switching
	3.3.3. “Comments” section of the questionnaire

	3.4. Modifications of the software

	4. Experiment 2: Investigation of the Impact on Students
	4.1. Purpose of the experiment
	4.2. Procedure
	4.3. Contents of the pre-test, lecture, post-test and post-questionnaire
	4.4. Results
	4.4.1. Experimentees
	4.4.2. Pre-questionnaire and pre-test
	4.4.3. Section 1
	4.4.4. Section 2
	4.4.5. Section 3
	4.4.6. Section 4
	4.4.7. Total
	4.4.8. Post-questionnaire

	4.5. Considerations

	5. Conclusion and Future Study
	5.1. Conclusion
	5.1.1. Development
	5.1.2. Teachers and CodEx
	5.1.3. Students and this software
	5.1.4. Advantages and disadvantages of our proposed method
	5.1.5. Summary

	5.2. For future study

	Acknowledgments
	References

