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We have developed a learning environment where students teach a computer agent
using visual representations, and can monitor the agent’s learning progress by asking
her questions and having her take quizzes. The system provides self-regulated learn-
ing and metacognitive support via dialog-embedded prompts from Betty, the teachable
agent, and Mr. Davis, the mentor agent. Our primary goals have been to support learn-
ing of complex science topics in middle school classrooms and facilitate development of
metacognitive skills to support future learning. In this paper, we discuss methods that
we have employed for detecting and characterizing students’ behavior patterns from
their activity sequences on the system. In particular, we discuss a method for learning
hidden Markov models (HMM) from the activity logs. We demonstrate that the HMM
structure corresponds to students’ aggregated behavior patterns in the learning envi-
ronment. Overall, the HMM technique allows us to go beyond simple frequency and
sequence analyses, such as individual activity and pre-defined pattern counts, instead
using exploratory methods to examine how these activities cohere in larger patterns over
time. The paper outlines a study conducted in a 5th grade science classroom, presents
the models derived from the students’ activity sequences, interprets the model structure
as aggregate patterns of their learning behaviors, and links these patterns to students’
use of self-regulated learning strategies. The results illustrate that those who teach an
agent demonstrate better learning performance and better use of metacognitive moni-
toring behaviors than students who only learn for themselves. We also observed more
advanced and focused monitoring behaviors in the students who received metacognitive
strategy feedback from the mentor agent while they taught the teachable agent.

Keywords: Learning by teaching; metacognition; measuring self-regulated learning;
sequence analysis; hidden Markov models.

∗Corresponding author.
†Rod Roscoe is now at the University of Memphis, TN.

123

http://dx.doi.org/10.1142/S1793206810000839


January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00083 fa1

124 G. Biswas et al.

1. Introduction

We have developed computer-based learning environments that use the learning-
by-teaching paradigm to help middle school students develop higher-order cognitive
skills when learning in science and math domains (Biswas et al., 2005; Blair et al.,
2007; Leelawong & Biswas, 2008). To teach, one must gain a good understanding
of the domain knowledge and then structure the knowledge in a form that can be
presented to others (Bargh & Schul, 1980). Preparing to teach is a self-directed and
open-ended activity where one explores, integrates, and structures knowledge first
for oneself, and then for others. Biswas, Schwartz & Bransford (2001) have reported
that students felt that the responsibility to teach encouraged them to gain deeper
understanding of the materials during preparation.

Beyond preparing to teach, the act of teaching taps into three critical aspects
of learning interactions — structuring, taking responsibility, and reflecting. With
respect to structuring, teaching peers gives students opportunities to organize their
knowledge and articulate it via explanations, which facilitates self-monitoring and
revision of that knowledge (Roscoe & Chi, 2007). Moreover, interactions with the
pupil can prompt additional, reflective knowledge-building for the teacher (Roscoe &
Chi, 2007). Since teaching is frequently open-ended and self-directed, teachers also
need to take the responsibility of deciding which content is most relevant (Artzt &
Armour-Thomas, 1999). Finally, effective teachers reflect by monitoring how well the
students understand ideas and apply them to answer questions or solve problems.
Studies have shown that tutors and teachers often reflect on their interactions with
students during and after the teaching process in order to better prepare for future
learning sessions (Chi et al., 2001).

To stimulate and promote these learning interactions, we have designed a teach-
able agent (TA) system called Betty’s Brain (Biswas et al., 2005). In this system,
students teach a computer agent using a causal map, which is a visual representation
of knowledge structured as a set of concepts and their relationships (Leelawong &
Biswas, 2008). Using their agent’s performance (which is a function of how well
the agent has been taught) as motivation and a guide, students study the available
resources so that they can remediate the agent’s knowledge, and, in this process,
learn the domain material themselves. For this reason, our learning-by-teaching
environment is well-suited to helping students become more knowledgeable of, and
responsible for, their own cognition and reasoning. As a result, the students are
likely to develop problem-solving and monitoring skills that go beyond the learn-
ing of specific domain content; learning-by-teaching environments provide the much
larger framework that guides students on how to learn and how to prepare for future
learning (Bransford & Schwartz, 1999; Schwartz & Martin, 2004). We have hypothe-
sized that working with Teachable Agents helps students better understand domain
knowledge and engage in a variety of productive learning strategies that promote
organizing and reasoning with this knowledge. Furthermore, the activities involved
in this teaching process and the metacognitive prompts from the agents help the
students monitor their own learning as they teach their agent.
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This paper discusses the results of a study we conducted in 5th grade science
classrooms, where students taught their agent about entities and their relationships
in a river ecosystem. One of our goals was to determine if teaching an agent pro-
duced better learning performance than students who only learned for themselves.
A second goal, and the focus of this paper, was to determine whether metacognitive
and self-regulated learning (SRL) prompts by the TA and Mentor agents helped
the student develop SRL strategies that they applied to their learning. We did this
by analyzing students’ activity sequences as they taught Betty, and then comparing
their interpreted behaviors across different conditions. Such analyses are important
because they shed light on students’ underlying learning processes and the strate-
gies they employ in achieving the task (Roscoe and Chi, 2007; Wagster et al., 2007).
To date there has been very little work on deriving students’ self-regulated learning
strategies from their activity sequences in computer-based environments. Therefore,
we adopt exploratory data analysis methods to quantify and assess student learn-
ing and metacognition. Specifically, we present and compare three complementary
methods: (1) traditional action frequency analysis, (2) a novel relevancy measure
appropriate for assessing coherence of student behavior and task focus in Betty’s
Brain, and (3) a novel methodology that derives hidden Markov models (Rabiner,
1989; Li & Biswas, 2002) from student activity sequences.

2. Learning by Teaching: The Betty’s Brain System

The Betty’s Brain system is illustrated in Figure 1, the teaching process is imple-
mented as three primary activities:

(1) teach : Students explicitly teach Betty using a concept map representation
(Novak, 1998) that includes concept names, which appear as boxes, and links
between concepts, which appear as arrows. The links can be of two types:
(a) descriptive (e.g., “algae are a type of plant”), or (b) causal (e.g., fish eat
(decrease) macroinvertebrates — therefore, an increase in fish causes a decrease
in macroinvertebrates). Students teach Betty new concepts and links using the
Teach Concept and Teach Link buttons. They can also delete and modify their
concepts and links using the Delete and Edit buttons.

(2) query: Students use a template, illustrated in Figure 1 to ask Betty questions
and find out how she answers them based on what she has been taught. Students
can also request explanations to observe how Betty reasons through chains of
causal links.

(3) quiz : Students observe Betty’s performance on a set of predefined questions
that are assigned by the Mentor agent.

Our middle school students are typically novices in the domain, as well as novices
in teaching, when they start using the Betty’s Brain system. To effectively enable
learning by novices, we provide a variety of scaffolds to help them overcome obstacles
they may face in learning and teaching the domain material. For example, the
system contains a set of indexed, hyper-text resources that the students can access
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Figure 1. Betty’s brain system with query window.

and learn from at any time while working on the system. These resources contain all
of the information (and more) that the students need to build their concept maps
to teach Betty.

Once taught, Betty uses qualitative reasoning methods to answer questions by
reasoning through chains of links (Forbus, 1984; Leelawong & Biswas, 2008). If
asked, she explains her reasoning through text, speech, and animation schemes.
Students reflect on Betty’s answers and her explanations, potentially revising their
own knowledge as they make changes to the concept maps to better teach Betty.

A second agent named Mr. Davis plays the role of a mentor in the system.
At any time, students can seek help from Mr. Davis by clicking on a “Ask Mr.
Davis” button. This help includes answers to a variety of general questions, such
as, “How do I build a concept map?” “How do I search for specific information in the
resources?”, and “How does Betty answer a question using the concept map?” After
Betty takes a quiz, Mr. Davis grades it, and, if asked, provides specific knowledge
construction and monitoring feedback on how to find errors and make corrections to
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the map. Occassionally, the mentor also provides spontaneous self regulated learning
feedback using mechanisms that we discuss in the next section. Additional details
of the Betty’s Brain system and earlier experiments conducted with this system are
summarized in (Biswas et al., 2005; Leelawong & Biswas, 2008).

2.1. Self-regulation support in Betty’s brain

In addition to queries and quizzes, the two agents in the system also provide
spontaneous feedback that reflects the students’ teaching behaviors. This feedback
is designed to promote students’ use of metacognitive strategies in their learn-
ing tasks (Schwartz et al., 2007; Tan, Biswas & Schwartz, 2006; Wagster et al.,
2007). Cognitive science researchers have established that metacognition and self-
regulation are important components in developing effective learners in the class-
room and beyond (Bransford, Brown & Cocking, 2000; Zimmerman, 2001). We
believe that TA environments, when combined with adequate scaffolding and feed-
back, can provide appropriate educational opportunities for students to develop
both metacognitive knowledge and control, and, thereby, improve their subsequent
learning.

Schunk & Zimmerman (1997) point out that the self-regulation profiles of
novice learners are quite distinct from those of experienced learners. Novices are
often poor at forethought, and their self-judgment abilities are not well developed.
These processes are teachable, but students in typical classrooms are rarely pro-
vided opportunities to learn and exercise self-regulation strategies (e.g. Nicol &
Macfarlane-Dick, 2007). Our system addresses this problem by adopting a SRL
framework that promotes a set of comprehensive skills: setting goals for learning new
materials and applying them to problem-solving tasks; deliberating about strate-
gies that facilitate learning; monitoring one’s learning progress; and revising one’s
knowledge and beliefs, and strategies as new material and strategies are learned
(Azevedo, 2005; Schraw, Kauffman & Lehman, 2002; Winne & Hadwin, 2008; Zim-
merman, 2001).

Figure 2 illustrates our conceptual cognitive/metacognitive model, employed
in the design of the Betty’s Brain system. Pintrich (2002) differentiates between
two major aspects of metacognition for learners: (i) metacognitive knowledge that
includes knowledge of general strategies and when they apply, as well as awareness
of one’s own abilities, and (ii) metacognitive control and self-regulatory processes
that learners use to monitor and regulate their cognition and learning. In our model,
metacognitive control is incorporated into knowledge construction and monitoring
strategies.

For knowledge construction in the Betty’s Brain system (i.e., building causal
concept maps), we identify two key types of self-regulation strategies: (i) information
seeking, in which students study and search available resources in order to gain
missing domain information or remediate existing knowledge, and (ii) information
structuring, in which students structure the information into causal and taxonomic
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Figure 2. Metacognitive model for student actions in Betty’s brain.

relationships to represent and reason about their knowledge structured as concept
maps. The model also posits two types of monitoring strategies: (i) checking, where
students use the query or the quiz features to test the correctness of their concept
map, and (ii) probing, a stronger monitoring strategy, where students systematically
analyze their map in greater detail, by asking for explanations, and following the
causal reasoning steps generated by the agent to locate potential errors in the maps.

In conjunction with these higher-level cognitive activities, social interactions and
motivation also play an important role in the self-regulation process (Zimmerman,
2001). We believe that two interacting factors of our TA implementations are partic-
ularly supportive of self-regulation. The first is shared responsibility, which targets
the positive effects of social interactions for learning. This manifests in the form
of a joint effort where the student has the responsibility for teaching the TA (the
TA knows no more and no less than what the student teaches her), and the TA
assumes responsibility for answering questions and taking tests. The second factor
is a visual shared representation, which is implemented as the concept map that the
students use to teach their agents. This structure provides students with a concrete
representation to follow Betty’s reasoning processes, and understand how Betty
systematically combines information along a chain of links to answer questions.

Proper guidance (i.e., relevant and timely feedback) provides opportunities
to help the students develop good learning strategies, such as (1) reading the
resources again to check concept map links and attempt to correct invalid ones,
and (2) probing further by asking queries and checking explanations to find the
source of an error. We have developed a number of triggering patterns that
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are linked to strategies for goal setting, self-assessment, and monitoring learning
progress. Examples of these patterns, along with Betty’s and the Mentor’s responses
are listed in Table 1. Betty’s responses combine motivational and self-regulation
cues, whereas the Mentor, Mr. Davis’ responses focus primarily on self-regulation
strategies.

Betty’s persona incorporates metacognitive awareness that she conveys to the
students in appropriate situations (Wagster et al., 2007; Schwartz et al., 2009).
Table 1 illustrates a number of recurrent student action sequences, where metacog-
nitive feedback may be useful. When the system detects such patterns, Betty makes
suggestions to the student. For example, if her quiz scores are not improving, Betty
asks the student to check if she really understands what she has been taught. This
may be a cue to think of monitoring strategies that will help the student check on
their own learning progress. As another example, as the student teaches Betty by
adding concepts and links to the map, she will occasionally remark that the relation
implied by a link between two concepts does not make sense to her and that the
student should check to see if he or she is teaching her correctly (again this is a
suggestion to the students to monitor their own learning). At other times, Betty
spontaneously responds to student revisions of the concept map by demonstrating
reasoning with “chains of links.” Such spontaneous demonstrations may help stu-
dents become more familiar with the chain-of-links reasoning processes that Betty
uses to derive indirect effects (e.g., bacteria consume dissolved oxygen, which affects
macroinvertebrates, so an increase in bacteria will affect macroinvertebrates, even
though there is no direct link between them). This can also provide cues to students,
making them reflect on information that goes beyond what they may have read in
the resources. For example, the student may wonder if it is true that an increase in
bacteria will cause macroinvertebrates to increase. If this is not true, was there an
error in one of the direct links? This reflection may result in the student re-reading
the resources to discover the source of the error.

Like Betty, Mr. Davis responds to activity pattern triggers as shown in Table 1.
Whereas Betty’s responses provide cues, Mr. Davis’ responses describe explicit self-
regulation strategies. For example, if a student repeatedly uses the quiz and edit
features with no intervening activities, implying a guess-and-check behavior to map
building, the Mentor agent intervenes to remind Betty and her student teacher that
a more systematic way to locate errors in the map is to ask relevant questions and
then check the explanations Betty provides for her answers.

2.2. Measuring self-regulated learning

The traditional approach to measuring students’ SRL thinking has been through
self-report questionnaires (e.g., Pintrich et al., 1993a; Weinstein, Schulte & Palmer,
1987; Zimmerman & Martinez-Pons, 1986). In these experiments, SRL is assumed
to be an aptitude that the student possesses (Azevedo & Witherspoon, 2009), and
the questions are designed to assess various facets of the student’s self-regulated
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learning strategies. For example, these questions may attempt to assess students’
inclination to elaborate and think critically as they read a passage, or to determine
their approach to managing available time and space resources (Perry & Winne,
2006; Zimmerman, 2008). Pintrich et al. (1993b) and Zimmerman & Martinez-Pons
(1986) have shown that these measures are good predictors of students’ standard
achievement test scores and that they correlate well with achievement levels. How-
ever, Hadwin and others (Hadwin et al., 2001; Perry & Winne, 2006) suggest that
while the questionnaires provide valuable information about the learners’ own per-
ceptions, they fail to capture the dynamic and adaptive nature of SRL as students
are involved in learning, knowledge-building, and problem-solving tasks. Moreover,
studies done by Winne & Jamieson-Noel (2002) and Hadwin et al. (2007) show a
lack of congruence between the self-report measures and other measures. For exam-
ple, Hadwin et al. (2007) found only 27% accordance between students’ activity
traces in learning environments and relevant items in the Motivated Strategies for
Learning Questionnaire (MSLQ).

More recently, the traditional approach of using static questionnaires or inter-
views to measure self-regulated learning is being enhanced by examination of trace
data, such as concurrent think-aloud protocols employed while students are actively
involved in their learning and problem-solving tasks (e.g. Azevedo & Witherspoon,
2009). Underlying this approach is a move away from assessing self-regulation as an
intrinsic aptitude, and instead assessing it as dynamic and adaptive event occur-
rences (Aleven et al., 2006; Azevedo & Witherspoon, 2009; Hadwin et al., 2007;
Jeong & Biswas, 2008; Zimmerman, 2008). By identifying and analyzing temporal
event sequences from trace data (e.g., student actions in a computer-based learning
environment), we hope to develop online measurement schemes for students’ SRL
strategies.

3. Experimental Results and Analysis

Our participants were 56 students in two 5th grade science classrooms with the same
teacher. Students were assigned to one of three conditions using stratified random
assignment based on standardized test scores. All students created river ecosystem
concept maps over five 45-minute sessions. The two experimental conditions (i) the
learning-by-teaching (LBT) group, and (ii) the self-regulated learning-by-teaching
(SRL) group were told to teach Betty by creating a map, so that she could pass a
test on her own later and join the school science club. Although these two conditions
differed in agent feedback, both employed the learning by teaching paradigm. As
students taught Betty, they could ask her questions, explain her answers to the
questions, and take quizzes, which were sets of questions made up by a mentor
agent, Mr. Davis. In addition to the teachable agent, Betty, both groups had access
to Mr. Davis. After Betty took a quiz, the mentor graded the quiz and displayed
the results on the screen. Both systems also provided feedback to students after a
quiz.
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In the LBT version of the system, Mr. Davis provided corrective feedback after
the quiz results were displayed. The corrective feedback linked to an incorrect
answer, provided the student with information on: (1) a concept currently miss-
ing from the concept map needed to generate the correct answer; (2) a link missing
from the concept map needed to generate the correct answer, if missing concepts
was not the problem, or (3) a link that was incorrectly represented in the map
(e.g., one of the link effects was incorrect, or the direction of a link was reversed) if
missing concepts and links were not the reason for the incorrect answer.

In contrast, the SRL version of the system provided feedback in the form of self
regulated learning strategies. After seeing Betty’s quiz results, the students could
ask the mentor for suggestions. In response, Mr. Davis suggested an information
seeking strategy: he pointed to keywords the students could use to access and read
relevant sections of the resources to learn more about concepts and relations that
were missing or were incorrect in the maps. In addition to feedback after a quiz,
Betty and Mr. Davis also generated spontaneous responses triggered by the activity
patterns, such as the ones described in Table 1.

Our control condition for the study, the intelligent coaching system (ICS) group
was told to create the map to learn for themselves. The Betty agent was removed
from this version of the system, and the students only interacted with the mentor,
Mr. Davis. Otherwise, the interface to this system was identical to the two learning
by teaching systems. The features available in the three versions of the system
are listed in Table 2. A check mark (

√
) implies the feature is available. If two

systems have check marks on the same column that the feature is identical in the
corresponding systems. On the Quiz, Query and Explanation columns, B stands
for Betty, M for mentor, and S for self. For example, students in the ICS condition
took the quiz for themselves (S), Mr. Davis graded the quiz, and provided the
same corrective feedback as in the LBT version of the system. In the other two
conditions, Betty (B) took the quiz. The students in the ICS condition could also
query their map and ask for explanations, but in this case, it was the mentor (M)
who responded to them. In the LBT and SRL conditions, Betty was asked the
queries, and she explained her answers. The content and form of the explanation
was identical for the ICS, LBT, and SRL groups.

All students took a pre-test before the intervention, and an identical post-
test after they had worked on the system for five sessions. The tests contained
multiple-choice and free-response questions (see Appendix A for selected examples

Table 2. Features available to the different conditions.

Condition Resources Concept Query Quiz Explanation Betty Mentor Feedback
Map Editor Feedback

Corrective SRL

ICS
√ √

M S M
√

LBT
√ √

B B B
√

SRL
√ √

B B B
√ √
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Table 3. Student test scores.

Measure Conditions

ICS LBT SRL

Multiple Choice
Pretest 5.2 (2.0) 3.7 (1.4) 4.1 (1.3)
Posttest 5.6 (1.8) 4.8 (2.0) 4.5 (1.9)

Free Response
Pretest 4.8 (2.5) 4.3 (1.8) 4.4 (2.9)
Posttest 6.8 (2.5) 8.6 (3.6) 9.2 (4.3)

and Leelawong & Biswas, 2008, for additional details). The test had 6 multiple
choice questions (1 point each for a maximum of 6 points) and 4 free response ques-
tions (6 points each for a maximum of 18 points). The free response questions asked
for a definition (4 points max) with supporting examples (2 points).1 Example ques-
tions appear in Appendix A. Table 3 presents the average pre- and post-test scores
by condition. We used two graders for the pre- and post-tests, and the inter-rater
reliability was over 0.9.

3.1. Student learning performance

In this experiment, we employ two measures of learning performance: (i) gain in
the multiple choice and free-response scores from pre-test to post-test (i.e., post-test
score minus pre-test score), and (ii) gain in concept map scores. The concept map
score was calculated as the sum of the number of correct concepts and number of
correct links in a student’s map in comparison to the expert map. All links in the
expert map corresponded to information in the resources on a causal relationship
between two concepts, and any deviations (e.g., shortcut links bypassing an inter-
mediate step) were considered incorrect in Betty’s quizzes (for example, when the
map had short cut links, students were told that the answers were correct, but for
the wrong reason), as well as in generating the concept map score. The expert map
had a total of 11 concepts and 19 links, so the maximum score that a student could
obtain on the map was 30. This score is both a performance measure (of progress
on the assigned task) and a learning measure because the concept map is used by
students to represent their knowledge acquired from the resources. The gain in con-
cept map scores is calculated as the difference between students’ final map score

1The free response question scores for the pre- and post-test are low. This is because the students
had trouble in stating precise definitions of terms like interdependence, chain of events and balance.
Our intervention did not directly train the students to write the definitions in precise language.
The examples students provided in the post-test were more relevant, indicating that there was
some improvement in their understanding of these concepts. More of the LBT and SRL students
had high post test scores as compared to the ICS students. However, the overall scores do not
show much improvement because a number of students from all three groups did not do well. This
can be seen in the increase in standard deviation (almost double) from pre- to post-test for the
LBT and SRL groups.
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Table 4. Mean pre- to post-test and concept map score gains.

Gain Score Conditions

ICS LBT SRL

Multiple Choice 0.4 (2.4) 1.1 (3.1) 0.4 (1.5)
Free Response 1.9 (3.0) 4.3 (3.2) 4.8 (4.7)
Map Concepts 8.1 (2.4) 7.3 (2.7) 10.4 (3.1)
Map Links 12.2 (3.8) 12.7 (5.3) 16.2 (4.4)

and the map score at the end of session 1. Table 4 presents the gains in test and
map scores by condition.

Results show that the two groups that taught Betty (LBT and SRL) outper-
formed the ICS group on gains in both test and map scores with statistically-
significant performance differences between the SRL and ICS groups. We further
analyze the differences between groups on gains in the component parts of the test
and map scores (i.e., multiple choice test scores, free response test scores, map con-
cepts scores, and map links scores) with the results presented in Table 4.2 The
gain score differences between the three groups for the multiple choice test ques-
tions are not statistically significant. However, for the free response questions, the
SRL group showed greater gains than the ICS group at the p < 0.1 confidence
level with a relatively large effect size of d̂ = 0.72. For the number of correct
concepts in the students’ final maps, the SRL group outperformed the ICS group
(p < 0.05, d̂ = 0.81), and the LBT group (p < 0.01, d̂ = 1.05). Similarly, for the
number of correct links in the students’ final maps, the SRL group again outper-
formed the ICS and LBT groups (p < 0.05, d̂ = 0.97 and p < 0.1, d̂ = 0.72, respec-
tively). The fact that the SRL group had higher free response and map score gains
than the LBT group (although not all of the differences were statistically signifi-
cant for the number of students in this study), suggests that the SRL feedback may
have helped students in their learning and monitoring tasks, over and above the act
of teaching.

Table 5 shows the Pearson correlations between the different gain scores. The
free response questions, which required students to reason about important con-
cepts (interdependence, balance, and reasoning in causal chains), show strong
(statistically-significant) correlations with the map scores. This correlation illus-
trates that the concept map is more than simply a representation of student knowl-
edge. Effective structuring and reasoning with this knowledge is strongly corre-
lated with learning gains in free response questions on interdependence and causal
chains. On the other hand, the multiple choice questions, which were based on

2Throughout this section, all statistical comparisons of means among conditions were made by
computing the ANOVA followed by post-hoc (Tukey HSD) tests. Further, rather than use a set,
arbitrary cutoff (e.g., p < 0.05) for statistical significance, we report the results for a variety of
significance values (p < 0.1, p < 0.05, and p < 0.001), allowing the reader to make their own
determinations based on the reported results.
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Table 5. Gain score correlations.

Gain Score Free Response Map Concepts Map Links

Multiple Choice 0.16 − 0.07 0.13
Free Response — 0.35a 0.41a

Map Concepts — — 0.54b

ap < 0.05. bp < 0.001.

definitions and single causal links, show little correlation with free response and
map scores. The lack of correlation with multiple choice questions is not surprising
since these questions did not require reasoning about general concepts or causal
chains. It is possible that students could more easily guess the right answer to these
questions.

3.2. Analyzing student activity patterns

All student activities in the system were captured in log files. Each activity was
assigned to one of five primary categories:

(1) Editing3

(2) Ask Query
(3) Take Quiz
(4) Read Resources4

(5) Check Explanation5

For each activity, the program captured additional information related to the
activity. For example, when the student asked a query, the query and Betty’s
response to the query were also stored in the log file. The logs also recorded a
number of off-topic activities (e.g., a student adding concepts and links that were
not related to the river ecosystem domain). Sometimes students intentionally asked
questions with nonsensical answers just to amuse themselves. These off-topic activ-
ities were not included in our analysis.

We employ three analysis methods for studying the students’ behavior patterns.
The first method analyzes the frequency of students’ activities. These results are
briefly summarized in Section 3.2.1 (more details and correlations with performance
are available in Roscoe et al., 2008). Our second analysis method calculates the
relevance between student activities over a small window. This provides a measure of
the informedness of each map editing activity and the diagnosticity of each reading,
querying, explaining, or quizzing activity, based on the relevance of other recent
activities. Sequences of more closely-related activities may imply the use of more

3Editing covered multiple actions: adding, deleting, or modifying a concept or link in the
concept map.
4Even if the student read multiple pages at one time, it was recorded as a single read event.
5Explanations were usually delivered in multiple steps.
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coherent learning strategies, as described in Section 3.2.2. The third analysis uses
machine learning methods to derive aggregate behavior models in the form of hidden
Markov models (HMMs) from students’ activity sequences. We describe the HMM
approach and the results in Section 3.2.3.

3.2.1. Analyzing frequency of student activities

To analyze student activities, we first consider differences in frequency of individ-
ual actions across the groups. Edit events imply map building or map refinement
activities, whereas query, explanation, and quiz events are related to monitoring
activities. Quiz events allow the student to check the overall correctness of the cur-
rent map, using a set of queries provided by the Mentor, while Query and Explain
events may be considered more advanced monitoring activities, since they involve
formulating one’s own queries and then checking how an answer was generated
by tracing through the map. Overall, the LBT and SRL groups were much more
active than the ICS group during their learning tasks, and had significantly fewer
Off-topic events. The LBT group had the most edit, read, and quiz events, which
are good learning behaviors, but the SRL group showed more evidence of advanced
monitoring activities (i.e., Query and Explain events).

The average number of edit, query, quiz, read, and explain events by condition
are listed in Table 6. On the whole, the LBT group performed many more actions
than the ICS group (F2,45 = 8.41, p < 0.001, d̂ = 1.44). The other differences in
total actions are not statistically significant. The LBT group performed more edit
actions than the ICS and SRL groups (LBT > ICS, p < 0.1, d̂ = 0.77; LBT >

SRL, p < 0.1, d̂ = 0.74). The LBT group also requested more quizzes than the SRL
group (p < 0.05, d̂ = 0.82), but when it came to query and explanation actions,
the SRL group had many more of these than the ICS and LBT groups (queries:
SRL > ICS, p < 0.001, d̂ = 3.35, and SRL > LBT, p < 0.001, d̂ = 1.28; explanations:
SRL > ICS, p < 0.001, d̂ = 1.70, and SRL > LBT, p < 0.1, d̂ = 0.66). The LBT
group, on the other hand, had many more Read events (LBT > SRL, p < 0.002,

d̂ = 1.20; LBT > ICS, p < 0.05, d̂ = 0.74).

Table 6. Frequency of activities by condition.

Activity Frequencies by Condition

ICS LBT SRL

Edit Events 92.6 (26.6) 118.3 (38.9) 92.7 (29.9)
Query Events 12.2 (9.3) 40.4 (20.6) 67.2 (21.3)
Explain Events 2.4 (2.6) 7.1 (8.4) 12.5 (8.0)
Quiz Events 17.5 (8.1) 25.9 (15.5) 15.8 (7.5)
Read Events 33.8 (18.7) 51.9 (29.3) 25.1 (11.9)
Off-Topic Events 21.1 (35.5) 15.2 (28.3) 4.5 (7.3)
Total Events 179.6 (44.2) 258.7 (64.2) 217.8 (51.8)
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3.2.2. Analyzing the relevance and coherence of student activities

Although students had access to the same features (e.g., queries and explanations),
not all of them used these features effectively. For example, some students used
queries to check whether recent revisions to the map were correct. In other cases,
students probed Betty with specific questions in an attempt to locate errors in their
concept maps. These examples describe effective use of queries in support of the
learning task. On the other hand, some students asked questions simply to make
Betty speak, so they could make fun of her mechanical, computer-generated voice.
This is clearly an ineffective use of queries for the learning task. Some students asked
queries that were not related to parts of the map that they had worked on recently.
In such instances, it is difficult to determine whether these querying activities can
be associated with effective learning. In this section, we develop a measure based
on the relevance of recent actions to estimate the effectiveness of individual student
activities in their learning tasks.

We assume students’ learning activities can be categorized as: (1) map building
activities, which include addition, removal, and revision of concepts and links in the
map; or (2) map monitoring activities, which include reading, querying, explanation,
and quizzing tasks. This implies a simplified student activity model illustrated in
Figure 3.

Each student action is assigned a relevance score that depends on the number
of relevant previous actions within a pre-specified window. This score provides a
measure of informedness for map building actions and, similarly, a measure of diag-
nosticity for map monitoring activities. Overall, the relevance score may provide a
rough measure of strategy consistency or coherence over a sequence of actions.

In this analysis, a prior action is considered relevant to the current action if it is
related to, or operates on, one of the same map concepts or links. For example, if a
student edits a link that is part of a causal chain used to answer a recent query, the
query action is counted in the edit’s relevance score. The increased relevance score
suggests a more informed edit because it was related to a recent query. Similarly, if
a student asks a query that includes a recently edited link, the edit action is counted
toward the relevance score of the query, implying the student’s use of the query was
diagnostic of the edited link. Because it was not clear from the trace data whether
read actions were relevant, we give the student the benefit of the doubt and assume
all reads are relevant. All other actions were only counted if they were related to the
same portion of the concept map as the current action. For example, if a recent edit

Map 
Building

Map 
Monitoring

Figure 3. Student activity model.
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action is not part of the causal chain in a requested explanation, it is not counted
toward the explain activity’s relevance score, suggesting that the student is now
considering a different portion of the concept map. Frequent unrelated actions, and
consequently lower relevance scores, suggest that a student may not be systemati-
cally employing map building and monitoring activities in a coherent strategy, but
rather editing and testing the concept map inconsistently or at random.

We employed a variety of “recent” action window sizes in analyzing the relevance
of actions in this analysis. The data was analyzed for each window size from 3
to 10 actions, and all analyses showed the same statistically-significant differences
between groups. Here we present the specific relevance scores for the smallest tested
window size of three (i.e., the relevance score for an action is the number of relevant
actions out of the previous three actions performed), which corresponds to a median
time of 146 seconds between the current action and the earliest “recent” action in
the window.

Table 7 lists the average relevance scores for each type of action across the three
groups of students. This analysis shows a number of statistically-significant differ-
ences between the groups of students. In particular, the SRL and LBT groups both
had higher scores for query events than the ICS group (both, p < 0.001, d̂ = 0.36).
Further, the SRL group had a higher score for explain events than the LBT group
(p < 0.01, d̂ = 0.38). The action frequency counts in Section 3.2.1 illustrated that
the groups that taught (LBT, SRL) used more probing and checking activities
(primarily query actions) than the group that learned for themselves (ICS). The
relevance score results in Table 7 further indicate that the LBT and SRL groups
more consistently applied relevant query actions, suggesting more systematic and
coherent strategies in map probing and checking than displayed by the ICS group.
Moreover, the SRL group was also more focused in their use of the explanation fea-
ture than the LBT group. On the other hand, the SRL group had a lower relevance
score for edit actions than the LBT group (p < 0.001, d̂ = 0.15) and the ICS group
(p < 0.05, d̂ = 0.09), although the effect sizes are low. Given the SRL group’s higher
map scores and more relevant probing/checking activities, it is not clear why their
edit actions would be less relevant than the other two groups. Possibly the SRL
group did not have to correct inconsistencies in their concept maps as frequently,
resulting in more moves to a new area of the concept map when making an edit,
thereby slightly lowering their relevance score.

Table 7. Action relevance scores by group.

Relevance Score Group

ICS LBT SRL

Edit Actions 1.55 (1.15) 1.62 (1.15) 1.45 (1.15)
Query Actions 0.96 (1.22) 1.40 (1.20) 1.40 (1.21)
Explain Actions 2.08 (0.92) 1.77 (1.12) 2.15 (0.88)
Quiz Actions 1.76 (1.27) 1.48 (1.31) 1.93 (1.26)
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3.2.3. Analyzing aggregated behaviors as strategies using
hidden Markov models

Although frequency and relevance of activities are useful measures for exploring
student learning and interaction with the system, they can only capture limited,
indirect information about learning strategies and internal state. We believe that
employing a direct representation of internal states and relating them to learning
strategies can provide additional information useful in analyzing student learning
behaviors and performance. One way of representing internal states and their inter-
actions is a hidden Markov model (HMM) (Rabiner, 1989). An HMM is a proba-
bilistic automaton, which is made up of a set of states and probabilistic transitions
(i.e., more likely transitions are assigned higher probabilities) between those states.
In an HMM, the states of the model are hidden, meaning that they cannot be
directly observed in the environment. Instead, they produce output (e.g., actions
in the Betty’s Brain environment) that can be observed. Another important aspect
of a probabilistic automaton like an HMM is the likelihood of starting in a given
state. Together, three sets of probabilities form a complete model: (1) transition
probabilities, which determine the likelihood of going from one state to another at
each step; (2) state output probabilities, which define the likelihood of observing
different outputs from each state; and (3) state initial probabilities, which define
the likelihood that a state will be the starting state for an output sequence.

Figure 4 shows a hypothetical student’s learning behaviors represented as a
three-state HMM. While the three states cannot be directly observed, they can be
inferred from the students’ activity sequences. We can then examine the probabil-
ities of producing each action in a state in order to interpret the meaning of that
state. For example, the information gathering state derives its name and meaning
from the activities produced in that state (i.e., the state’s output), such as reading

Map Building
[Initial state: 20%]

•Edit Link (85%) 
•Edit Concept (15%) 

20%

40%

70% 40%

Info Gathering
[Initial state: 80%]

•Read (80%) 
•Take Notes (20%) 

Monitoring
[Initial state: 0%]

•Query (75%) 
•Quiz (25%) 

10%

60%

20%

10%

30%

Figure 4. Example student HMM.
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resources and taking notes. Similarly, the map building state is associated with
activities that include editing concepts and links in the concept map. The mon-
itoring state is defined by actions like making queries and taking the quiz. The
transitions in the example model indicate likely sequences of actions. For example,
a student will likely perform a map building action after an information gathering
action with a probability of 0.6. On the other hand, the student might next perform
another information gathering action (with a probability of 0.3), or, even less likely,
a monitoring action (with a probability of 0.1).

By providing a concise representation of student learning strategies and behav-
iors, HMMs have the potential of providing a higher-level view (e.g., strategies and
their relationships, as opposed to simple action or sequence frequencies) of how stu-
dents approach their learning tasks (Jeong & Biswas, 2008). Algorithms for learning
an HMM from output sequences are well-known but require appropriate configura-
tion/initialization parameters for effective use (Rabiner, 1989). Specifically, HMM
learning algorithms require an initial HMM whose parameters are then modified
to maximize the likelihood of producing observed output sequences. In particular,
the number of states in the HMM and their initial output probabilities can have a
profound effect on the resulting, learned HMM.

We have developed an algorithm that addresses these concerns in the construc-
tion of HMMs from a set of student activity sequences (Li & Biswas, 2000, 2002;
Jeong & Biswas, 2008). To determine the appropriate number of states for the
HMM, our algorithm employs the Bayesian information criterion (BIC) (Hecker-
man, Geiger & Chickering, 1995). Using more states allows the HMM to better fit
the observed activity sequences, but this can also result in over-fitting the data,
producing a model that does not robustly capture the student strategies and can-
not generalize to future activity sequences. Moreover, larger, more complex models
are more difficult to interpret in terms of the limited number of learning strategies
likely to be employed by K-12 students. Therefore, the BIC balances a preference
for concise models (i.e., fewer states) with a preference for better-fitting models (i.e.
a greater likelihood of the model producing the observed activity sequences). This
criterion may be compared to the Occam’s razor principle (simpler explanations are
preferable) and allows our algorithm to strike a reasonable balance between high
likelihood and low complexity of the derived HMMs (Li & Biswas, 2000, 2002). We
extend the processes described in our previous work to analyze student activity
trace data with HMMs in 3 steps:

(1) Model Initialization: We employ a clustering algorithm to provide a set of state
outputs for the initial HMM model (Li & Biswas, 2002). The model deriva-
tion algorithms are expectation-maximization algorithms, which have a ten-
dency to converge to local maxima. Therefore, starting from a good initial
model increases the chance that the algorithm will converge to the best model
description. This problem is often resolved by repeatedly randomizing the ini-
tial model and then choosing the best-fitting model in an attempt to find a
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global maximum. However, finding the best-fitting model from the entire pos-
sible model space also runs the risk of over-fitting the data and reducing the
robustness of the resulting model. Rather than repeatedly randomizing initial
state outputs and choosing the best-fit model generated, the clustering for initial
state productions allows the model generation algorithm to explore a targeted
portion of the possible model space. In particular we cluster vectors of student
activities (from each step in the student activity sequences), to find similar
sets of activities at different points in the sequences. The resulting clusters of
activities form the initial output probabilities for each state.

(2) Model Generation: This is the core step in generating an HMM, where the
parameter optimization algorithms and the Baum-Welch criterion (Baum et al.,
1970) are applied to the initial model to derive the optimal HMM, using the
sequence data.

(3) Model Interpretation: The most difficult and subjective step in the process of
analyzing student activity data is interpreting the resulting HMM. In this step,
we assign meaning to the derived states of the model, and generate behavior
descriptions in terms of the interpreted states.

We employ this method to analyze student activity sequences with HMMs for
each group of students in the study. An activity sequence is generated for each
student by extracting all of their activities for the five sessions from the log files.
Each element of the activity sequence is labeled as one of the five primary activity
types: READ (read the resources), QUER (query Betty on a portion of the map),
EXPL (ask Betty to explain her answer to a query), QUIZ (ask Betty to take a
quiz), and EDIT (perform an edit action). Additionally, the differences in action
relevance and consistency between groups, presented in Section 3.2.2, suggest a
further refinement in action labeling based on relevance score. Each of the actions is
assigned a label, H (high) or L (low), from their relevance score, in order to maintain
the context of the actions in sequence. For example, a QUER-H activity implies
that the query the student asked is related to other activities recently performed,
while a QUER-L implies that the query activity is unrelated to the students’ recent
activities.

The HMM models derived for the ICS, LBT, and SRL groups are shown in
Figures 5 and 6. The possible transitions between states are shown by arrows,
and the transition probabilities are expressed as percentages. For example, the ICS
behavior model indicates that there is an 84% likelihood that a student who just
performed an applied reading action will next perform another applied reading
action, but there is a 13% chance that the student will perform an informed editing
action next. States in the models are named based on an interpretation of their
outputs (activities) illustrated in Figures 7 and 8. The models for the ICS and LBT
groups each have three states, but the activities associated with some of those states
differ significantly. The states are interpreted based on the activities associated with
the state, and, therefore, named differently for those groups. The derived model for
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Figure 5. HMMs Derived for ICS and LBT groups.

the SRL group has five states instead of three, and the actions associated with some
of the states are quite different from the ICS and LBT states. These differences
provide an interesting framework for comparing the learning behaviors between the
different conditions.

To interpret the HMM states in each model, and differentiate among the behav-
iors of the three groups, we categorize states into seven different groups based on
their associated activities. This categorization combines information from the basic
metacognitive model in Figure 2 with the observed frequencies of actions illustrated
in Figures 7 and 8. The seven groups are:

(1) Applied reading — students are primarily engaged in reading the resources
and applying the knowledge gained from reading to editing their maps. This
state combines the information-seeking behavior of reading with some informed
editing of the maps.

(2) Uninformed editing — students are primarily making uninformed changes to
their map, indicating the use of trial-and-error or guessing strategies. Students
may spend some time asking queries, but these activities generally do not relate
directly to their editing activities.

(3) Informed editing — students are primarily making informed changes to their
map based on relevant queries or quizzes. As opposed to uninformed editing,
the students are using queries and quizzes to guide their edits.
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Figure 6. HMMs Derived for SRL group.

(4) Uninformed and informed editing — students are primarily making changes to
their map, some of which are based on relevant queries or quizzes. This state is
primarily a combination of the uninformed editing and informed editing states,
including situations where students are making edits relevant to recent queries
and quizzes, as well as situations in which students are making edits without
focusing on a single area of the map. It does not necessarily imply different ratios
or patterns of informed and uninformed edits than the two separate states.

(5) Checking — students are querying and quizzing Betty to check the correctness
of their concept maps. However, the queries and quizzes are unfocused, rather
than relating directly to recently edited areas of the map. Therefore, this state
corresponds to a weak monitoring strategy.

(6) Probing — students combine querying and quizzing with the explanation fea-
ture, which provides a trace or the chain of links that were followed to generate
an answer to a question. Further, the queries, explanations, and quizzes are
focused on a particular area of the map, such that their results inform map
editing. This combination implies a stronger, more focused monitoring strategy
than the checking state and may be evidence of metacognitive reflection on the
quality of the student’s map/knowledge.
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Figure 7. Activities in reading and editing states.

Figure 8. Activities in checking and probing states.



January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00083 fa1

Measuring SRL Skills Through Social Interactions in a Teachable Agent Environment 145

(7) Transitional probing — students perform activities similar to the probing state,
but generally with lower relevance scores, suggesting that they may be transi-
tioning to probing a different area of the concept map.

In order to determine the prevalence of individual states suggested by a gen-
erated HMM, we calculate the proportion of expected state occurrences for the
three groups of students. This metric employs the generated HMMs to calculate
an expected value for the proportion of individual state occurrences. To simplify
the calculation and maintain its relevance to the trace data, the expected value
calculation is based on the length of the student activity traces. We calculate the
number of state occurrences for a given HMM and activity sequence length, n, by
starting with the initial state probability matrix, π, and repeatedly applying the
state transition probability matrix, Λ, as shown in Equation (1). For example, for
a sequence of length 1, the expected number of state occurrences are equal to the
initial probabilities for the individual states. Applying the transition probability
matrix once gives the expected number of state occurrences for the second step
in a sequence. Applying the transition probability matrix a second time gives the
expected number of state occurrences for the third step in a sequence, and so on.

n∑

i=1

Λi−1π (1)

The proportion of expected state occurrences is then calculated by computing
this value for each sequence length observed in the student activity traces, summing
the resulting values, and normalizing across the expected number of occurrences for
all states, as presented in Equation (2). Note that α is the normalizing constant, T

is the total number of activity traces, and lengtht is the length of activity trace t.

α

T∑

t=1

lengtht∑

i=1

Λi−1π (2)

Table 8 presents the proportion of expected state occurrences for the three con-
ditions, which was produced by applying Equation (2) to the generated HMMs in
Figures 5 and 6. Although states corresponding to editing behaviors account for
a significant percentage of behaviors in all groups, the HMMs for LBT and SRL
groups also show significant use of monitoring strategies. Further, the initial state
probabilities of the derived HMMs indicate that only the ICS group was most likely
to start their learning activities in an editing state, while the LBT and SRL groups
generally started their learning activities in the applied reading state. Another dif-
ference between groups is that the SRL HMM includes more states (based on the
BIC), suggesting a greater number (and possibly greater complexity) in the set of
strategies employed. Further, the activities involved in these additional states sug-
gest use of the more advanced monitoring behavior of probing that is absent from
the ICS and LBT HMMs.
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Table 8. Proportion of expected state occurrences by condition.

Behaviors ICS LBT SRL

Proportion (%) Proportion (%) Proportion (%)

Applied Reading 33 30 17
Uninformed Editing 36 — —
Informed Editing 31 — —
Uninformed and Informed Editing — 60 34
Checking — 10 13
Probing — — 29
Transitional Probing — — 7

Section 3.2.1 noted that another clear difference between the SRL group and
the others is in the greater number of explanations requested. These explanations
are evident in the probing states, which likely helped the students with the SRL
feedback to perform better in their learning tasks. The lack of even weak mon-
itoring strategies apparent in the ICS HMM may explain their smaller learning
gains, as evidenced by their pre- and post-test scores. Moreover, while 60% of SRL
students completed their concept maps during the five sessions, only 44% of LBT
students and 31% of ICS students were able to complete their concept maps. These
results suggest that learning by teaching, especially with self-regulated learning and
metacognitive strategy feedback, helped students learn their science content better.
However, the effects of prior knowledge and determination of the most effective
strategy feedback will have to be studied further.

4. Discussion and Conclusions

The Betty’s Brain system is designed to leverage the benefits of learning by teach-
ing and causal reasoning to facilitate students’ science learning. We have hypothe-
sized that working with Betty is helpful because it supports students’ engagement
and promotes educationally-productive cognitive and metacognitive processes. The
results reported here, along with prior research (e.g. Biswas et al., 2005; Leelawong &
Biswas, 2008; Schwartz et al., 2007), support this hypothesis. The combination of
analyses provided a more complete understanding of student performance, learning,
and metacognition. Overall, the ICS group showed the lowest level of concept map
performance and learning gains for complex themes like interdependence and causal
reasoning. They showed little evidence of metacognitive monitoring techniques or
coherent focus on one topic at a time. The LBT group had higher performance
and learning gains, but only employed limited metacognitive monitoring in the
form of checking activities that relied heavily on quizzes. Finally, students’ learn-
ing and performance were strongest when the system explicitly supported their use
of self-regulated learning strategies. The SRL group had the highest performance
on their concept maps and the greatest learning gains on complex themes. Analy-
sis of their behavior indicated more advanced monitoring, with probing activities
including queries and explanations focused on concepts and links relevant to their
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recent reading and editing activities. Although assessments of learning outcomes
were in agreement with our hypotheses, we used additional analyses to explore
students’ actual behaviors during the teaching and learning process. In particular,
patterns of student actions can elucidate the reasons that one group performed bet-
ter than another and may suggest future system refinements or provide the basis
for adaptive metacognitive support. Therefore, we employed three different forms
of student behavior analysis using activity trace data: (1) comparing the frequency
of individual activities as students worked with the system, (2) assessing the focus
and coherence of student behaviors using action diagnosticity and informedness
measures based on the relevance of other recent actions, and (3) a novel method for
examining students’ aggregated behaviors and strategies using HMMs.

Each form of analysis provides different information about students’ learning
strategies and requires a different level of interpretation. Frequency analysis pro-
vides a very broad view of differences between groups (e.g., students in the ICS group
performed more editing and less reading than those in the LBT and SRL groups).
Further, in cases where individual activities can be exclusively, or at least predom-
inately, associated with a given learning strategy, this analysis can also illustrate
differences in the prevalence of those strategies. For example, monitoring strategies
may involve quizzes and queries, but querying may imply more sophisticated mon-
itoring because the student has to formulate a query, whereas a quiz is made up
of a set of pre-generated queries. Similarly, guessing strategies relied on excessive
quiz taking with a combination of informed and uninformed editing (Tan, Biswas &
Schwartz, 2006; Wagster et al., 2007). More advanced monitoring strategies (prob-
ing) required the use of explanations in combination with queries. The implication
here is that the students who employed more explanation actions made attempts
to trace through their map using the explanations to discover sources of error.

Relevance analysis can extend the results of frequency analysis by providing an
indicator of coherence or focus in student strategies. For example, students in the
LBT and SRL groups not only showed higher frequency of queries than those in the
ICS group, their relevance scores indicated that their queries were more relevant
to previous actions, likely indicating a more focused, diagnostic use of queries.
However, relevance analysis does not elucidate specific sequences or groupings of
actions that could imply particular learning strategies employed under the different
experimental conditions.

To provide a more detailed level of information about specific learning strategies
involving sets of actions, as well as the relationships between those strategies, we
used a novel method of HMM generation and analysis. Further, this analysis employs
action relevance scoring as a pre-processing step to gain better insight into the man-
ner in which actions were used in sequence. We were able to characterize states of the
generated HMMs in terms of learning strategies, including self-regulated learning
strategies. In particular, this analysis indicated greater use of advanced strategies
by the SRL group, as compared to the LBT and ICS groups. The interpretation of
the additional HMM states in the SRL group as probing behaviors also provided
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tentative confirmation of our hypothesis that the metacognitive feedback provided
to the SRL group resulted in the use of effective self-regulated learning strategies.
Further, using a measure of relative time spent in each state allowed us to analyze
the extent to which a group of students relied on each strategy.

It is also important to note that there is some overlap in the information provided
by these three forms of analysis. For example, both the relevance analysis and HMM
analysis suggested students in the SRL group employed more advanced (e.g., greater
diagnosticity) monitoring strategies than the LBT group. Moreover, this overlap can
provide some confirmation of the interpretations in two different analyses (e.g., both
the frequency analysis and the HMM analysis indicated that students in the LBT
and SRL groups relied more on monitoring strategies than the ICS group). Both
the overlap and the differences among these forms of analysis suggest that applying
them in concert will provide a more comprehensive and fruitful analysis of student
learning behaviors than relying on any single form of analysis.

In future work, we plan to refine our analyses further in order to gain a better
understanding of the different strategies that middle school students employ when
learning complex science topics. For example, in analyzing the generated HMMs we
employed state transitions to generate an expected state occurrence measure but
leave investigation of common patterns involving multiple states as future work.
Further, while differences in learning and metacognition between groups are illus-
trated by these analyses, we leave correlation of select metacognitive measures with
individual student performance and learning for future work. One of the most impor-
tant next steps in this research is exploration of the generality and applicability of
the presented analyses to metacognitive analysis in other learning environments.
While the relevance measure can be applied to any system where a determination
of inter-action relevance (e.g., by acting on the same concept or topic) is possi-
ble, and the HMM generation methodology can be applied to any set of student
action sequences, the effectiveness of interpretation for other learning environments
remains to be seen. Further, in future work we intend to employ clustering of individ-
ual student HMMs to improve the accuracy of our HMM analysis and use sequence
mining to pre-process the trace data in the HMM analysis to maintain more of the
temporal information in the aggregated behaviors of HMM states. We will also con-
tinue to enhance and analyze the effects of using behavior feedback and guidance
to promote metacognitive strategies and prepare students for future learning.
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Appendix A. Selected Excerpts from the Assessment Test

As part of the study, students took an assessment test before and after using the
Betty’s Brain system (pre- and post-test) that included multiple choice and free
response questions. The questions on the test were the same for both the pre-
and post-test and were either related to the river ecosystem subject material or to
causal reasoning with a concept map. Selected questions that are illustrative of the
assessment test are presented below.

The first page of the test provided the following introduction:

Betty is a seventh grade girl who is concerned about a river near her home.
Betty wants to join a science club and test the river for pollution, but first
she needs to learn some important information about rivers. We would like
to find out what you know about some of the things Betty is about to learn.

Please answer the following questions about rivers in the space below each
question.

Questions 1 and 2 are examples of free response questions. There were four free
response questions, and students were allowed to answer in any format by writing
in the 3–4 blank lines after each question.

(1) Betty’s science teacher told her that interdependence among the things in the
river is very important for river ecosystems. What is interdependence in a river?
Please give examples.

(2) The science teacher said that things are always happening in a river and this is
called a chain of events. What does he mean by the phrase “chain of events?”
Please give examples to show chain of events among things in a river.
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Questions 3 and 4 are examples of multiple-choice questions. For all of these
questions, students were provided with four choices, and they were asked to circle
what they thought was the correct choice.

(3) Betty’s science teacher said that there are bacteria in a river, because bacteria
often live in water. Betty wonders if this is a problem for the living things in the
river. Please circle the answer you think is the best idea to teach Betty about
bacteria in a river.

(a) The bacteria in the river are there, and there is no way to get rid of them.
Since algae eat bacteria during photosynthesis, when they make food, it
isn’t a problem for the living things in the river.

(b) The bacteria in the river are there and there is no way to get rid of them.
Some bacteria break down waste products and dead organisms and turn
these into nutrients that algae use during photosynthesis to make food. So
bacteria help living things in the river.

(c) The bacteria in the river are there and there is no way to get rid them.
Bacteria are food for macroinvertebrates (aquatic insects that live in a river)
that live in the river. When macroinvertebrates eat bacteria, this causes
the bacteria to release carbon dioxide that algae use during photosynthesis
when they make food. So bacteria help the living things in the river.

(d) Bacteria are a big problem for river ecosystems. There are many different
kinds of bacteria that can get in a river and they can spread disease among
the living things in the river. Therefore, it is important to remove as much
of the bacteria in the river so it can be clean and healthy and the living
things can survive.

(4) Betty’s science teacher says that macroinvertebrates (aquatic insects that live
in a river) are important in the food chain of a river ecosystem. Which of the
following is true about macroinvertebrates?

(a) They are the top predator in the food chain, so macroinvertebrates keep
fish from getting too crowded in the river.

(b) They eat bacteria, so macroinvertebrates keep the river clean and free from
bacteria.

(c) They eat algae, so macroinvertebrates keep algae from growing too crowded
in the river.

(d) They eat the same food that fish eat. By doing this, they make sure that
there is not too much food for fish, so the number of fish does not become
too many.
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