
January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

Research and Practice in Technology Enhanced Learning
Vol. 5, No. 2 (2010) 97–122
c© World Scientific Publishing Company &

Asia-Pacific Society for Computers in Education
DOI: 10.1142/S1793206810000864

A CONSTRAINT-BASED FURNITURE DESIGN CRITIC

YEONJOO OH∗ and MARK D GROSS†

School of Architecture, Carnegie Mellon University
5000 Forbes Ave, CFA #211

Pittsburgh, Pennsylvania, 15213, USA
∗yeonjoo@cmu.edu
†mdgross@cmu.edu

SUGURU ISHIZAKI

Department of English, Carnegie Mellon University
5000 Forbes Ave, BPH #145D

Pittsburgh, Pennsylvania, 15213, USA
suguru@cmu.edu

ELLEN YI-LUEN DO

Colleges of Architecture and Computing
Georgia Institute of Technology, 828 W Peachtree St.

Atlanta, Georgia, 30332, USA
ellendo@gatech.edu

This paper reports on the Furniture Design Critic. We propose a computational model
of design critiquing using the program, which as a research tool helps us explain how
to select critiquing methods in the consideration of critiquing conditions. Surveying the
literature of architectural education, we have identified two dimensions from critiquing
comments: (1) delivery types (interpretation, introduction/reminder, example, demon-
stration, and evaluation) and (2) communication modalities (written comments, graph-
ical annotations, and images). This paper also presents how the Furniture Design Critic
system selects particular methods by considering specific conditions such as the user’s
knowledge level and the interaction history between the user and the system.

Keywords: Design critiquing; constraint-based tutor; delivery types; communication
modalities.

1. Introduction

Studio occupies a pedagogically important position in design education. It is the
main academic course in any architecture or industrial design program. Students in
a studio are subjected to a series of critiquing sessions, in which instructors offer
feedback on their work. Many design researchers report that this critiquing process
is an essential component in design teaching and learning (Boyer & Mitgang, 1996;
Goldschmidt, 2002; Schön, 1985), but no systematic study has been conducted to

97

http://dx.doi.org/10.1142/S1793206810000864

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

98 Y. Oh et al.

understand critiquing practice in design. Schön (1985) attempts to describe the
knowledge and skills of design teaching in his book, The Design Studio, but much
about design critiquing remains tacit and only very loosely articulated. Design stu-
dio teachers depend on experience from their own education or on intuition, which
Weaver, O’Reilly & Caddick (2000) refer to as “hit-and-miss” teaching.

We envision a computer program that could offer effective critique to help indi-
vidual students learn designing. However, our understanding of design critiquing as
yet is too spotty or incomplete to realize this vision. Therefore, as a step in this
direction we aim to develop a systematic framework to account for the decisions
that a critic makes.

We built the Furniture Design Critic system to develop a computational model
of design critiquing. The program provides a framework in which we can describe
and explain how a critic might work, specifically, how a critic might select particular
critiquing methods based on a variety of conditions.

The domain is secondary to our agenda: our main goal is not to build a learning
system for furniture design. Rather, flat-pack furniture design provides a test case
for system development to investigate design critiquing. It is an interesting domain
where students encounter many structural and spatial design issues as they make
stable furniture out of flat materials. For this reason, furniture making is often used
as an early exercise for first-year design and architecture students. Compared to
many other design domains, such as architectural design, the problem space of flat-
pack furniture design is relatively small, so we need not account for the enormous
body of domain knowledge that underlies the larger domain of architectural design.
Still, like architectural design, flat-pack furniture design is an ill-defined and open-
ended domain. Like architectural design, furniture design also entails drawing and
model-making.

2. Research Scope

The purpose of the Furniture Design Critic program is to develop a model of cri-
tiquing that can lead to better teaching and learning of design. However, we are
not — in the first place — concerned with answering the question: “What is ped-
agogically the best method of critiquing?” Nor are we concerned with constructing
a model to predict which critiquing methods will be the most effective for which
students under which conditions. That could be the topic of future research using
the computational model presented here, but at this point, the software is simply a
research tool — a framework in which to formulate alternative strategies of design
critiquing, and implement them in a computational design environment.

Thus, our goal is different from that of most intelligent tutoring system research,
and the reader who seeks here an empirical evaluation of our work will not find it.
The evaluation of this research is not whether it helps design students learn more
effectively or if we have programmed a good mechanism for selecting critiquing
methods.

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 99

Rather, we seek to develop a computational model of design critiquing in which
to articulate and describe design critiquing. The test of this research is the model’s
ability to represent and implement alternative critiquing strategies by selecting of
critiquing methods. Certainly, this computational framework can be evaluated: we
plan a three-phase evaluation to test our computational model of design critiquing.
In Phase 1, we plan to test whether the program can represent a wide range of
proposed critiquing strategies. In Phase 2, we will test if the program can represent
real critiquing sessions. In Phase 3, finally we can test if our system can support
students’ learning. Here, however, we simply present the computational model we
have developed, and argue through an example that it can be used to represent
various strategies for design critiquing.

3. Related Work

3.1. Critiquing systems

A critiquing system is a tool that analyzes a design at hand and provides feed-
back to help a designer improve the solution (Fischer, Lemke, Mastaglio & Morch,
1991; Oh, Gross & Do, 2008). Although the researchers of critiquing systems take
the concept of ‘critiquing’ from the field of design, they lack a clear understand-
ing of design critiquing. Most critiquing systems have focused on detecting errors,
or opportunities for offering corrective feedback. For example, Argo (Robbins &
Redmiles, 1998), SEDAR (Fu, Hayes & East, 1997), TraumaTIQ (Gertner & Web-
ber, 1998) all provide users with only negative evaluations. However, even a brief
look at how one-on-one critiquing sessions function in design studios shows that
current critiquing systems are quite primitive compared to what studio teachers do.
(Examples will be provided in Section 4.)

Although critiquing is the predominant component in design education only a
few critiquing systems for design have been built. Architecture critiquing systems
such as CORENET (CORENET, 2009), ICADS (Chun & Ming-Kit Lai, 1997), and
Solibri checker (Solibri.Inc., 2010) support only checking building codes (e.g. fire
safety requirements). These systems focus on error checking and are not tightly
integrated with design process; nor do they offer constructive feedback to improve
the design at hand. Although task models have been developed in several design
critiquing systems such as SEDAR (Fu et al., 1997) and Argo (Robbins & Redmiles,
1998) systems, it is hard for these systems to recognize what a user is doing using
their highly structured task models. Design, an ill-defined domain cannot be repre-
sented by well-structured models (Simon, 1969). Further, their task models are
not a good way for the programs to identify critiquing opportunities from the
designs.

In short, today’s critiquing systems are not yet able to support design and
design learning and they do not provide a framework in which to articulate design
critiquing.

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

100 Y. Oh et al.

3.2. Intelligent Tutoring Systems and Constraint-based

Tutors (CBT)

An intelligent tutoring system (ITS) is a program that tracks a student’s actions
and offers feedback. Critiquing systems and intelligent tutors are similar in that
they all analyze the users’ work-in-progress and provide feedback (Robbins, 1998).
However, intelligent tutors differ from critiquing systems in that intelligent tutors
intend to support students’ learning, whereas critiquing systems help users improve
their work at hand.

We are interested in intelligent tutors, because they use Student Models to acti-
vate Pedagogical Module that customizes the feedback for individual students. We
think that we can adopt the design of intelligent tutors to articulate design cri-
tiquing, specifically, how to represent critiquing conditions (e.g. a certain designer’s
knowledge level) and how to select a certain set of critiquing methods in the con-
sideration of critiquing conditions.

Intelligent tutoring systems have been developed for a variety of domains includ-
ing mathematics (Anderson, Corbett, Koedinger & Pelletier, 1995), physics (Van-
Lehn et al., 2005), and database design (Mitrovic, Martin & Suraweera, 2007;
Zakharov, Ohlsson & Mitrovic, 2005). However, there have been only few tutor-
ing systems to support ill-defined domains such as design.

Recently there has been a great deal of attention on the development of intelli-
gent tutoring systems for ill-defined domains (Aleven, Ashley, Lynch & Pinkwart,
2007), for example, legal argumentation (Pinkwart, Aleven, Ashley & Lynch, 2007).
Design is an example, perhaps the canonical example, of an ill-defined domain
(Simon, 1969). An often-cited characteristic of design is that it lacks well-structured
domain models. A design problem seldom has a single or best solution; rather, a
set of solutions is all satisfactory. Although design problems by their nature are not
amenable to well-structured solutions as in the model-tracing approach (Koedinger
& Anderson, 1997) most widely used for ITS development, the constraint-based
approach (Mitrovic et al., 2007; Ohlsson, 1994) is an appropriate choice for rep-
resenting design solutions (Mitrovic & Weerasinghe, 2009). The constraint-based
approach does not require a complete domain model. It also models domain knowl-
edge using a set of constraints that specify what characteristics a solution should
have. On one hand, these constraints can provide only a partial description of a
solution. On the other hand, the effect of a missing constraint is highly restricted,
resulting only in the tutor program failing to detect a particular error; a proposed
solution can still be analyzed with other constraints. Thus, using the constraint-
based approach we can incrementally develop a domain model in the Furniture
Design Critic program.

These constraint-based tutors derive from Ohlsson’s theory of learning from per-
formance errors (Ohlsson, 1996). Ohlsson argues that learning occurs when students
catch mistakes by themselves or when others catch mistakes for them. The funda-
mental assumption is that certain problem states reveal diagnostic information. This

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 101

assumption stems from the fact that one cannot develop acceptable solutions that
violate domain principles. Antonija Mitrovic and her Intelligent Computer Tutoring
Group (ICTG) have explored various topics in constraint-based tutoring, for exam-
ple supporting a variety of tasks, enhancing student models and new strategies to
deliver feedback, and developing authoring systems (ICTG, 2009).

Each constraint represents a piece of domain knowledge; it consists of a relevance
condition and a satisfaction condition. The relevance condition indicates when the
constraint should apply, and the satisfaction condition represents whether a certain
piece of knowledge has been correctly applied. For every constraint that is deemed
relevant to the student’s problem, a solution must satisfy the satisfaction condition.
A violated constraint indicates an opportunity to improve the proposed design so
the constraint-based tutor then offers feedback regarding the violated constraint.

A constraint-based tutor records information about a student to make inferences
about that student’s knowledge of the domain. This Student Model consists of the
history of all constraints that the tutor has applied to the student’s design including
both satisfied and violated constraints. The violated constraints indicate domain
knowledge the student has evidently not yet mastered. Based on this diagnosis, the
constraint-based tutor then provides feedback to support the student’s learning.

3.3. Critiquing methods in Intelligent Tutoring Systems

and critiquing systems

A drawback of conventional intelligent tutoring systems and critiquing systems is
that they do not provide feedback using the rich range of methods that design
instructors employ in studio teaching. (These methods are outlined in the following
section.) Most computer-based systems focus only on pointing out errors and prob-
lems; although a number of systems support alternative delivery types in addition
to negative evaluation such as argumentation (Fischer, McCall & Morch, 1989),
examples (Nakakoji, Yamamoto, Suzuki, Takada & Gross, 1998), question-asking
(Milik, Marshall & Mitrovic, 2006), or self-explanation (Mitrovic, 2002). One inter-
esting system, Kermit (Suraweera & Mitrovic, 2002), offers six different levels of
feedback; correct, error flag, hint, detailed hint, all errors, and solutions. The first
type of feedback (correct) simply indicates whether a submitted solution is cor-
rect. Whenever the student submits a solution with errors, system advances to the
next level in the sequence of error flag — hint — detailed hint. The student can
request the other two levels: show me all errors and show me solutions. Although
this system supports multiple methods, it does not make inferences about various
characteristics of a student.

Several systems also offer feedback using multiple modalities. For example,
Reading Tutor (Mostow et al., 2003) combines speech and graphics (highlighting);
AutoTutor (Graesser, Chipman, Haynes & Olney, 2005) combines speech with 3D
simulation and facial expression; Design Evaluator (Oh, Do & Gross, 2004) com-
bines text with graphical annotation of a 3D model; and KID (Nakakoji et al., 1998)

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

102 Y. Oh et al.

employs text and images. Taken together these systems employ diverse methods to
interact with users, but we are unaware of any single system that makes decisions,
based on a student model, about when to use which method to critique. That is the
focus of the system we present here.

4. Delivery Types and Communication Modalities

Studio instructors in architectural design use a variety of critiquing methods to
convey their knowledge and professional skills (Schön, 1983). Using these methods,
they deliver images, ideas, examples and actions from their own ‘repertoires’ (Schön,
1983). They build up these repertoires from their experiences. Schön uses this reper-
toire concept to explain design critiquing: when instructors look at a student’s solu-
tion, they scan their repertoires for similar situations, for example, buildings they
have known, or problems they have previously encountered. The instructors not
only point out errors; they also describe examples or demonstrate how to solve the
problems. Feedback presented using multiple methods helps design students under-
stand their problems better, eliminate errors from their proposed solutions, and
construct their own repertoires (Schön, 1983; Uluoglu, 2000).

We have identified two dimensions of critiquing comments: delivery types and
communication modalities, because this helps us to describe a variety of critiquing
activities. For example, a studio teacher verbally introduces an idea, whereas
another teacher demonstrates a plausible design solution using verbal expressions
and graphic annotations. Examples of these delivery types and communication
modalities used in design studios will be presented in the following sections.

4.1. Delivery types

Uluoglu (2000) and Bailey (2004) both analyze critiquing sessions in architecture
studios and identify diverse ‘delivery types’. These include (1) interpreting stu-
dents’ design solutions, (2) introducing new ideas or approaches/reminders of
them, (3) description of existing examples or precedents, (4) demonstrating

potential solutions or other design actions, and (5) evaluating (positive or neg-
ative) of the students’ solutions. We examined critiquing sessions in architecture
design studio (Wampler, 2002) to see how these delivery types are used. Table 1
shows the examples of these different delivery types used in the critiquing session
of Wampler’s design studio.

Although a studio teacher intends to deliver the same content, it may be trans-
mitted using different delivery types (Uluoglu, 2000). For example, the teacher leads
his/her student to consider the path of the sun. In this case, the teacher’s intention
is same, but s/he can deliver feedback differently according to which delivery type
s/he selects. If a critique presented using the demonstration delivery type shows
how to consider the path of the sun by rearranging rooms or moving the positions
of windows. In contrast, a critique presented using introduction/reminder delivery
type provides a piece of knowledge, which is that it is a good idea for the student

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 103

to think about the path of the sun. However, the teacher does not show how to use
this knowledge.

Table 1. Feedback instances of five delivery types.

Delivery Types Feedback Instances

Interpretation “Your building only gets light into this level (pointing to the
bottom window on the physical model).”

Introduction/Reminder “Have you thought about the path of the sun over a day and over
the year?”

Example “Le Corbusier’s building has a similar concept. Look at the
windows of his chapel at Ronchamp.”

Demonstration “You need to make a form here. You need to do something here
(drawing a line that represents a wall).”

Evaluation “You take the rough form into something more precise. . . . which is
good.” “No good, horrible — it just ruins the whole idea.”

The choice of delivery types is important because it may influence a student’s
subsequent actions and hence learning. For example, when a teacher offers an exam-
ple, a student may realize that reference to the given precedent is helpful to deal
with the new design situations and attempt to adapt it to fit the work at hand.
When the teacher points out errors, the student may fix them. The use of differ-
ent delivery types in critiquing may lead to different reasoning and thereby further
promote different learning.

4.2. Communication modalities

Design studio learning embraces numerous forms of representation such as written
and graphical. Studio teachers also use these forms to communicate with their
students. These forms correspond to communication modalities. These forms of
communication are important, because drawing, not only verbal expressions, is an
important tool to develop and communicate design solutions.

Communication modalities mean the ways that the design knowledge is pre-
sented, such as through speech, text, graphical annotation, and images. The pri-
mary modality in all face-to-face critiquing sessions is speech — teachers always
talk. Studio teachers also make brief notes as they draw, or annotate their stu-
dents’ sketches. Although these notes are terse, they help students remember the
spoken feedback. Design teachers often use drawings to describe their design ideas
and demonstrate alternative solutions, ranging from abstract diagrams to represen-
tational forms. Schön (1985) and Anthony (1991) both note that critiques presented
in multiple modalities work together and help students understand the intentions
of their instructors. Figure 1(a) shows an everyday scene where a studio instructor
(Professor Jan Wampler at MIT) sketches on a student’s drawing, while offering
feedback verbally (Wampler, 2002). He places tracing paper on top of the student’s
drawing and draws over it to suggest an alternative design. Figure 1(b) presents
sketches and a brief notes that a studio instructor has made (Schön, 1985).

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

104 Y. Oh et al.

(a)

(b)

Figure 1. Communication Modalities: (a) speech + drawing (source: MIT Open Courseware
(Wampler, 2002)); (b) drawing + text (source: The Design Studio (Schön, 1985)).

4.3. Why selecting a certain critiquing method is important

Individual critiquing situations are all different. For example, individual students are
different; their knowledge levels, strengths, and weaknesses are all varying. Studio
teachers cannot deal with these different students in the same way. Let us provide
a simple example. A studio teacher and a design student with no previous design
experience are working together in a one-on-one critiquing session in an architecture
design studio. The studio teacher provides an existing building as an example to
help the student take the ideas from the building and apply them into the student’s
current design: “Do you know (architect) Steven Holl’s chapel at Seattle Univer-
sity? How the building is placed in the site? Holl controls light with various shaped
windows and the irregular shapes of the roof. Le Corbusier used a similar solution
at Ronchamps, and Holl adopted Le Corbusier’s design. They both designed the
windows to control the quality of light; color, direction, and shape.”

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 105

However, the student looks puzzled. The student cannot use the given example in
his/her design, because s/he does not know how to apply the example to the current
design and how to represent and explore the design ideas by making drawings.
Thus, providing the example without graphical annotations is not a good choice of
critiquing methods for this particular student. Instead, the teacher can demonstrate
how to design his/her windows differently by dividing the roof into several different
masses and by inclining a window to allow sunlight to enter the living room from
a particular direction. As the teacher verbally demonstrates, the teacher draws
simple perspective diagrams and section drawings. The student now understands
how to use the ideas that the teacher has offered and improves his/her design using
drawings. In this case, the demonstration with graphical annotation is the right
choice of critiquing method for this designer, because the novice designers often
cannot employ the learned knowledge to develop their own designs (Uluoglu, 2000).
Thus, the choice of appropriate critiquing methods is important to help students
improve their work at hand and further learn designing.

5. Furniture Design Critic

Motivated by the richness of critiquing in architectural design studio and the lack
of understanding of design critiquing, specifically context-sensitive critiquing, we
built a constraint-based design critic program. This Furniture Design Critic pro-
gram offers students feedback using five delivery types (interpretation, introduc-
tion/reminder, example, demonstration, and evaluation) and three communication
modalities (written comments, graphical annotations, and images). Based on the
diagnosis of the student’s solution, the model of the student, prior performance, and
the criticism that the student has previously received the Furniture Design Critic
selects a delivery type and modality with which to present a critique.

5.1. System architecture

The Furniture Design Critic is written in MCL (Macintosh Common Lisp) using
OpenGL to provide 3D models and the Lisa (Lisp-based Intelligent Software Agent)
production rule system to reason about a proposed furniture design using previously
stored constraints. The Furniture Design Critic comprises several components: a
Construction Interface, Parser, Pattern Matcher, Design Constraints, Critiquing
Rules, User Model, Pedagogical Module, and Critic Presenter. Figure 2 shows these
components, their relationships, and the information flow among them. This section
follows the process shown in Figure 2 to describe what individual components do
and how the system works.

5.2. Construction interface and parser

A designer starts to design by sketching an axonometric diagram in the Construction
Interface using a stylus and a digitizing tablet. The program records all designer’s

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

106 Y. Oh et al.

Designer

Construction Interface
(sketched diagram + 3D model)

Parser

Pattern Matcher

Pedagogical Module

Critic Presenter

Text
Critiquer

Graphic
Critiquer

Example
Finder

User Model Design Constraints

Critiquing Rules

Figure 2. Furniture Design Critic system architecture in the iterative construction-critiquing-repair
cycle.

sketched marks, identifies the Cartesian coordinate system that is implicit in the
drawing, and then generates a 3D model.

The Parser examines the sketched diagram and the 3D model and produces
two kinds of data: a list of individual parts, their properties (e.g. x-length, plane,
3D coordinate data, joints, etc.) and the configuration of the parts (e.g. parallel,
between, top-of, jointing, distance, etc.). Based on these data, the program recog-
nizes the function of a furniture piece (e.g. table and chair) and the function of each
part (e.g. top, shelf, and side). Specifically, the program has a list of representations
for particular furniture pieces. It compares them against the symbolic representation
of designer’s furniture using the Pattern Matcher. If matched, the program recog-
nizes what the designed furniture is and what functions individual parts have. The
Parser stores this symbolic representation of the designed furniture in a text file.
This symbolic representation will be used to identify which constraint is satisfied
or violated.

5.3. Design constraints

The program uses a set of Design Constraints that represent principles that furni-
ture designers need to know. Furniture Design Critic uses two types of constraints:
43 structural constraints and 57 functional constraints. The structural constraints
specify valid configuration of furniture parts and are used to identify structural
problematic parts in designers’ solutions. They vary from simple constraints such

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 107

as “a long shelf must be supported from the middle”, to more complex constraints
such as “a table’s brace must be placed carefully to allow enough leg space.” Simple
constraints only deal with a single piece of furniture. Complex constraints are used
to identify problems in related pieces of furniture, such as a table and a chair. The
leg space constraint mentioned above checks whether a table provides enough leg
space by comparing the position of a table’s brace, with the width and the height of
the chair that a designer has previously designed and stored. Functional constraints
specify the functions of certain parts or a whole piece of furniture. For example, “a
chair may have armrest” and “a horizontal bracing part parallel to the chair seat
may be used as a shelf.”

Each constraint consists of a relevance condition, a satisfaction condition, its
importance, written comments using five different delivery types, function calls
to present feedback using other two communication modalities. The importance
of a constraint is represented as an integer value between 1 and 3 based on its
potential influence of a violation on the stability of the whole furniture piece. Level 1
constraints are important for stability. If a level 1 constraint is violated, the furniture
piece will fall down. For example, “a bookcase must have a back in order to support
lateral loads.” Level 2 constraints are influential on the furniture design but not
critical for stability. For example, “the height of the tabletop must be higher than the
height of the chair seat and the desirable difference is from 45% to 65% of the height
of the chair seat.” The constraints with low importance (level 3) refer to minor
issues, although they are still relevant to the furniture designs. For example, “having
only one armrest breaks symmetry on the chair design.” When these constraints are
violated twice, the program removes these constraints from further consideration as
these constraint violations do not critically influence stability.

The constraint satisfaction conditions require judgment of furniture design that
may not seem easily automated. However, we have implemented constraints that can
determine, for example, whether a corner of a table is unsupported by comparing the
positions of the legs relative to the corners of the table. If this distance is too large
proportionally to the dimension of the table, the corner is considered unsupported.
Although we have implemented each satisfaction condition individually, a more
general way to address this challenge is to employ a physics engine that subjects
the furniture to simulated real-world forces.

Each constraint data structure stores two items relevant to offering feedback
in multiple methods: critique-delivery-types, and critique-modalities. The critique-
delivery-types item stores pre-defined written comments for the constraint in five
different delivery types. For example, the constraint in a bookcase design checks
whether a back part is large enough to support lateral loads (see Figure 3(a)). The
critique-delivery-types item stores five different written comments:

Interpretation – “Your bookcase is composed of two sides, a shelf, a top and a
back. The two sides and the back are vertical structural
components for loads.”

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

108 Y. Oh et al.

(a)

(b)

(c)

Figure 3. (a) The program highlights the problematic part (the back) in red and draws an arrow
to indicate lateral loads. (b) The program draws arrows to indicate vertical loads placed on the
shelf. (c) The program retrieves relevant examples and presents them.

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 109

Introduction/Reminder – “Is your back part big enough to support lateral
loads?”

Example – “Look at other bookcases with backs.”
Demonstration – “Make the back part bigger as shown (drawing a bigger back

part).”
Evaluation – “The back is an important part to support lateral loads, but it’s too

small. Your bookcase is structurally unstable for lateral loads”

The critique-modalities item stores a list of calls to routines that deliver feed-
back in different communication modalities. The Furniture Design Critic delivers
feedback using the selected communication modalities by executing these routines:
graphic annotations, e.g. painting parts red that violate a constraint (Figure 3(a));
displaying graphic icons such as arrows to indicate a load placed on a furniture
part (Figure 3(b)); and retrieving and presenting images of relevant examples
(Figure 3(c)).

5.4. Pattern Matcher

The Pattern Matcher compares the symbolic representation of the design against
the Design Constraints in order to detect critiquing opportunities. For example, the
bookcase design in Table 2 violates the stored constraint that “a long shelf of a
bookcase must be supported from the middle”. The pseudo-code and diagrams
show the constraint that the design has violated.

5.5. User model

The Furniture Design Critic stores two types of User Model: a short-term and
a long-term user model. The short-term user model stores the reasoning outputs
of the Pattern Matcher, namely which constraints are satisfied or violated in the
current critiquing session.

The long-term user model is similar to the short-term user model, but it stores
the history of all violated and satisfied constraints over multiple critiquing sessions.
Using this history the Pedagogical Module makes inferences about how much a
designer knows about flat-pack furniture design; the designer’s specific weaknesses,
and which critiquing methods are effective for helping the designer (see Section 5.7).

5.6. History of states

The Furniture Design Critic keeps track of the history of states of the system. A
state represents a critiquing condition: (1) the constraint that was violated, (2) the
selected set of critiquing methods, and (3) whether the selected critiquing methods
were effective. This state is captured when the program offers feedback. This is
stored as the part of the User Model; although it does not describe characteristics
of a designer explicitly, the system employs it when selecting critiquing methods.

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

110 Y. Oh et al.

Table 2. A violated constraint example.

If the designed furniture is a bookcase
with a long shelf
Top and Shelf are parallel
Side1 and Side 2 are parallel
Shelf is between Side1 and Side2
Side1 and Shelf are jointed
Side2 and Shelf are jointed
Shelf is long (length > width∗5)

then a shelf must be supported from the middle
Shelf is on top of Support

For example, when a particular set of methods have been used repeatedly in two
previous states and the critiques have been unsuccessful both times, the program
will select alternative critiquing methods to offer feedback.

5.7. Pedagogical module

The main task of the Pedagogical Module is to select particular sets of delivery
types and modalities by considering characteristics of the critiquing situation such
as the inferred data about a designer and the history of states (see Section 5.6). The
Pedagogical Module makes these decisions about the critiquing methods by applying
Critiquing Rules (see Section 5.8).

The Pedagogical Module takes as input (1) data of violated constraints from the
short-term user model, (2) data of the User Model and (3) Critiquing Rules. In other
words, it considers the violated constraints and the User Model and chooses a par-
ticular critiquing method by applying the Critiquing Rules (Figure 4). In sequence,
the Pedagogical Module (1) selects which feedback should be offered first; (2) makes
an inference about a designer using the data of User Model; and (3) selects a certain
set of critiquing methods by applying Critiquing Rules.

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 111

Figure 4. Pedagogical Module and the data involved for selecting critiquing methods.

5.7.1. Selecting which feedback should be offered first

If a design violates more than one constraint the Pedagogical Module must decide in
what order to deliver feedback. It addresses more important issues first. If several
constraints have same importance, the program prefers any constraint that has
previously been violated.

5.7.2. Making an inference about a designer using the data of User Model

The Pedagogical Module takes the history of all constraints including the violated
and satisfied (from the User Model) and infers (1) how much the designer knows
about furniture design; (2) which type of constraints that the designer has trouble
with and what types of constraints the designer handles properly; and (3) which
critiquing methods work well for that designer.

Let’s look at how the Pedagogical Module makes an inference about the designer.
RViolated in Eq. (5.1) represents how much a designer does (not) understand about
the design space represented by constraints. That is, the higher RViolated, the less
the designer knows. RViolatedCritical in Eq. (5.2) represents the designer’s igno-
rance of important constraints. The higher RViolatedCritical, the less a designer
knows about the fundamental knowledge of the design domain. Critical constraints
with high importance (level 1) should be satisfied for designers to develop stable
furniture.

RViolated = (number of constraints violated/number of all constraints
the program knows) (5.1)

RViolatedCritical = (number of critical constraints violated/number
of constraints violated) (5.2)

The program infers a designer’s knowledge level based on the history of all
design constraints that the program knows. The program represents the designer’s
knowledge level by a pair of ratios (RViolated, RViolatedCritical). When these two
ratios are zero (0, 0), then the designer has violated no constraints and therefore

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

112 Y. Oh et al.

has mastered all the domain knowledge that is stored as constraints in the system.
(As the knowledge level is unknown at first, these ratios are initially (nil, nil). The
program distinguishes this initial level from the perfect mastery level of (0, 0).)

The system computes each designer’s weaknesses with respect to structure
and function. Weakness of structural knowledge is represented by the ratio
RWeaknessStructural in Eq. (5.3). Weakness of functional knowledge is represented
by the ratio RWeaknessFunctional in Eq. (5.4). If RWeaknessStructural is high, the
program recognizes that the designer is weak in applying structural constraints to
his/her designs.

RWeaknessStructural = (number of structural constraints violated/number
of structural constraints relevant to the current
design task) (5.3)

RWeaknessFunctional = (number of functional constraints violated/number
of functional constraints relevant to the current
design task) (5.4)

The Furniture Design Critic infers which effective critiquing methods work well
for each designer based on its long-term user model. When a designer repeatedly
succeeds in response to the critiques offered using a certain method, the program
stores that method as an effective critiquing method for that designer.

We decouple the judgments about the designer from the User Model, because
of the program’s scalability. The current state of this program infers the designer’s
weaknesses in the structural and functional knowledge, overall knowledge level, and
effective critiquing methods. For example, if we add another kind of weakness in
aesthetic knowledge — aesthetic constraints, the program can takes the history of
all constraints and computes the designer’s aesthetic weakness in the Pedagogical
Module by defining a new Pedagogical Rule. We do not need to change the User
Model to judge the designer’s aesthetic weakness. Specifically, if the ratio, (e.g.
number of aesthetic constraints violated/number of aesthetic constraints relevant
to the current design task) is higher than a certain number while executing the
Critiquing Rule, it indicates that the designer is weak in that aesthetic category
of knowledge. This design of the program enables us as the system designer to
easily scale up this program for supporting a larger design domain or other design
domains.

5.7.3. Selecting a set of delivery types and communication modalities

Based on the judgments about the designer, the Pedagogical Module selects delivery
types and communication modalities. It creates a text file that stores a representa-
tion of these critiquing conditions including (1) the violated constraint; (2) data of
the User Model such as the history of the States; and (3) the data that represent

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 113

the designer’s characteristics such as knowledge levels, weaknesses and effective cri-
tiquing methods. It uses this file to make a decision about which critiquing methods
are appropriate in each situation.

To select an appropriate set of critiquing methods, the Pedagogical Module
applies Critiquing Rules into the critiquing condition representation. It executes
actions such as selecting critiquing method candidates and adding a delivery type,
if the data of the text file satisfy the condition of a Critiquing Rule.

5.8. Critiquing Rules

Currently the program has 76 Critiquing Rules that specify which delivery types and
communication modalities to use under what conditions. These rules are formulated
based on the literature of design and design education, and from informal sessions
in which design studio instructors discussed their teaching techniques. For example,
for novice designers, directive feedback such as demonstration and evaluation are
better than facilitative feedback such as examples, because novices often experience
difficulty using abstract ideas. Here is another example. When the piece of knowl-
edge is introduced, but a designer cannot apply it to his/her design, it is a good
idea to show how to use the idea by demonstrating a plausible solution (Uluoglu,
2000). Although it would be interesting and useful, we did not conduct a formal
evaluation of the critiquing rules, as this is beyond the scope of our work.

The following pseudo-code shows a Critiquing Rule that selects delivery type
candidates, (demonstration, evaluation, (demonstration, evaluation)), when the
data that the Pedagogical Module takes satisfies both conditions (RViolated ≥ 0.4)
and (RViolatedCritical ≥ 0.5). These conditions mean that the designer’s knowledge
level is quite low.

Critiquing Rule# DeliveryTypes-Designer-LowKnowledgeLevel

[conditions] if (RViolated ≥ 0.4) and (RViolatedCritical ≥ 0.5)

[actions] select delivery type candidates

(delivery-type-candidates (demonstration, evaluation, (demonstration,
evaluation))).

5.9. Critic presenter

Once thePedagogical Module selects a critiquing method, the Critic Presenter acti-
vates one or more helper components to present the critique. The Critic Presenter
has three helpers: (1) a Text Critic, (2) a Graphic Critic, and (3) an Example Finder.
The Text Critic finds the written comments associated with a violated constraint
and present them below designer’s diagram. For example, if the selected delivery
types are introduction/reminder and evaluation, the Text Critic selects and dis-
plays the second and fifth written comments from the critique-delivery-types item
of a violated constraint (see the critique-delivery-types item example presented in

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

114 Y. Oh et al.

Section 5.3). The Graphic Critic highlights relevant furniture parts, draws graphical
annotations on a designer’s diagram, and presents images by executing function calls
stored in the critique-modalities item. The Example Finder selects relevant exam-
ples from a library by comparing the symbolic representation of the current design
against those of the stored examples. Here, the library is a collection of the designs
stored previously in the form of symbolic representations, which contains furniture
parts, spatial configurations among them, and a list of constraints that are violated
or satisfied. For example, if a designer is designing a table, the program retrieves
only the designs considered as tables by analyzing the spatial configurations or the
list of violated/satisfied constraints (Figure 3(c)).

We summarize how our program works before presenting an example scenario.
A designer makes a design diagram to develop a piece of furniture. The program
generates a 3D model based on the sketched diagram. Based on this diagram and
3D model, the Furniture Design Critic recognizes his/her design and finds critiquing
opportunities by comparing this design against design constraints. The Pedagogical
Module makes decisions about critiquing methods by considering the User Model
and the history of states. The Critic Presenter then presents feedback using the
selected methods.

6. Example

An example represents a particular selection mechanism that the Pedagogical uses
to select delivery types and communication modalities. The reason we present this
example here is to present a plausible way to describe design critiquing, specifi-
cally, how to select critiquing methods in the consideration of critiquing conditions.
However, we do not claim that this selection mechanism should be followed or is
correct. Rather, through this example, we intend to show that different selection
mechanisms can be developed by changing the Critiquing Rules. It is because that
the Critiquing Rules decides the performance of the Pedagogical Module. Also these
Critiquing Rules are easily modified and added.

6.1. A selection mechanism of the Pedagogical Module

Let us now examine how the Pedagogical Module reasons about the selection of a
particular set of critiquing methods. Figure 5 shows the four-step reasoning process
by which the Pedagogical Module selects a particular set of delivery types and com-
munication modalities. By applying the Critiquing Rules in sequence, the program
selects candidate critiquing methods and then in each step boxes the candidates.

In Step 1, the Pedagogical Module looks at the User Model, which represents the
designer’s knowledge level, strengths and weaknesses, and the methods of critiquing
that have proven effective. These characteristics lead the program to select critiquing
method candidates.

If the User Model can provide information for selecting critiquing methods the
program follows Steps 2, 3, and 4. However, if the User Model does not provide

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 115

Figure 5. The reasoning process to determine a particular set of delivery types and communication
modalities.

information (for example, if the user has no history with the program), then the
program simply chooses a predetermined sequence of methods. In this case, for
delivery type, the program follows the sequence: interpretation, introduction, exam-
ple, demonstration, and evaluation. For communication modality, it follows the
sequence: written comments, graphical annotation, written comments + graphical
annotation, written comments + images, written comments + graphical annotation
+ images.

We chose these sequences to first offer critiques using facilitative delivery types
(e.g. interpretation, introduction or example), because this feedback can prompt a
designer to think about and improve the design. When the designer is unable to

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

116 Y. Oh et al.

benefit from facilitative critiques, the program changes to directive feedback (e.g.
demonstration or evaluation).

In Step 2 the program considers what critiquing methods have been used pre-
viously to address the violated constraint. The program removes the methods used
from the candidate set to avoid repeatedly offering the same form of feedback on
the same constraint violation. If all candidates have already been used for the con-
straint, then the program adds a new method to the candidates from among the
methods that have not been used.

In Step 3 the program considers what critiquing methods have been used in all
previous states regardless of the current constraint violation. For example, when a
set of critiquing methods has been used more than twice in the previous states, the
program selects a different critiquing method to avoid giving feedback in the same
way. For example, when the program believes that the most effective critiquing
method for the designer is evaluation; it will keep offering evaluative feedback. It is
reasonable to communicate with the designer using only methods that have worked.
However, this might also hinder the designer’s opportunities to reflect on the design
in different ways. In this step, therefore, the program experimentally attempts to
communicate with the designer in alternative ways by considering the previous
states. In other words, this step performs an experiment to determine whether
these alternative methods can help the designer improve the design, although the
Pedagogical Module has not selected these methods based on the critiquing situation,
such as the data of the User Model. The result of this experiment is stored in the
history of states and then will influence the next selection.

Finally, in Step 4, the program considers the combination between delivery type
and communication modality candidates to determine whether it is appropriate.
For example, if the program has selected demonstration as a delivery type, it checks
whether graphical annotation or image is also selected as a communication modality.
Graphical annotation and image can facilitate the designer’s understanding of the
demonstrated ideas. The program then returns the selected critiquing methods to
the Critic Presenter, which will present the critiques.

6.2. Scenario

The following scenario illustrates how the Furniture Design Critic works, especially,
the reasoning process of the Pedagogical Module. It demonstrates how the program
selects a particular set of delivery types and communication modalities in a given
situation.

A designer (Claire) draws a diagram while developing her furniture (Figure 6).
The program offers three written comments: “A user cannot keep upright posture
while sitting on the chair. The center of gravity can move around”; “You can add
legs to support the unsupported corners. They will improve stability”; “Your chair
is unstable when a load is placed on the unsupported corner(s).” The program also
annotates Claire’s drawing, adding missing parts of the chair (legs) to her diagram.

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 117

Figure 6. The program presents critiques using the selected critiquing methods: <[intro/reminder,
demonstration, evaluation] and [written comments, graphical annotations]>.

We now examine in detail how Furniture Design Critic selects these delivery
types and communication modalities to present the critique shown in Figure 7 (the
program follows the sequence of steps shown in Figure 2).

First, the program decides what Claire is designing by analyzing the spatial
relationships of the furniture parts. In her design, three vertical parts (the legs)
support a horizontal part (the seat) and another vertical part (the back) is placed
on the horizontal part (seat). Based on these relationships, the program recognizes
that she is designing a chair, so the program selects a set of design constraints
pertaining to chair design.

Next, comparing these spatial relationships against the design constraints, the
program identifies opportunities to critique Claire’s design. Each constraint rep-
resents a design principle defined in terms of spatial relationships. Here it detects
several critiquing opportunities: the seat needs more vertical supports, the legs need
a brace, and the chair could have armrests. Each of these is a relevant constraint
that the design violates. In this example, the program chooses the constraint that
a seat needs more vertical supports for its stability.

Now the Pedagogical Module considers this chosen violated constraint in the
context of Claire’s User Model and all previous states to select an appropriate set
of critiquing methods. It follows the four-step reasoning process in Figure 5, which
presents what the Pedagogical Module considers to determine a particular set of
delivery types and communication modalities. Figure 7 shows how the Pedagogical
Module reasons about the selection of critiquing methods with concrete data in
Claire’s case. Each box in Figure 7 represents a step of the reasoning process.
Figure 7 summarizes what critiquing methods are selected as candidates and why

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

118 Y. Oh et al.

Figure 7. The reasoning process of the Pedagogical Module in Claire’s case (DT: delivery type, CM:
communication modality). DTs and CMs in strikethrough indicate candidates that the program
has eliminated. DTs and CMs in red indicate candidates the program has added.

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 119

they are selected with relevant data, such as Claire’s knowledge level and history
of states.

In Step 1, it analyzes Claire’s User Model, knowledge level, weaknesses, and
effective critiquing methods. Her knowledge level is quite low (RViolated = 0.4 and
RViolatedCritical = 0.65), so the program selects three delivery type candidates:
demonstration, evaluation, and [demonstration + evaluation]. The program starts
with written comment as a communication modality candidate, because the pro-
gram always uses written comments as a fundamental modality, which means that a
delivery type – written comment – is always selected. The program looks at the cri-
tiquing method that has been effective with Claire, which is demonstration. It selects
only delivery type candidates that include demonstration, so the current candidates
are <demonstration, [demonstration + evaluation]> and <written comments>.

In Step 2, the program looks at what critiquing methods have been used on the
previous violations of the constraint in question. Delivery types demonstration and
evaluation and communication modalities written comments and images were used.
The program eliminates demonstration from the candidates to avoid offering feed-
back in the same way. However it does not delete written comments, because written
comments is the fundamental modality to communicate with a designer. Instead,
it adds graphical annotations to the set of communication modality candidates.
At this point, the candidates are <[demonstration + evaluation]> and <written
comments + graphical annotations>.

In Step 3 the program analyzes what critiquing methods were previously used
in the stored states. Furniture Design Critic has selected the same delivery types
[demonstration + evaluation] twice. A Critiquing Rule says that the same methods
may not be repeated more than twice, when the critiques offered in previous two
states have both been unsuccessful. Therefore, the program adds another delivery
type, intro/reminder, because the feedback presented using intro/reminder can sup-
plement a demonstrated solution (demonstration) and the problematic part iden-
tified with evaluation. This combination intends to help Claire to understand the
idea that lies behind the demonstrated course of action and evaluation. At this step,
the candidates are <[intro/reminder + demonstration + evaluation]> and <written
comments + graphical annotations>.

Finally in Step 4 the program considers whether the combination among deliv-
ery type and communication modality candidates is appropriate. It checks whether
the selected communication modality candidate includes graphical Annotations or
images, because the selected delivery types include demonstration following a Cri-
tiquing Rule. Graphical annotations or images facilitate Claire’s understanding of
the demonstrated information, because it provides Claire with a concrete idea about
how to resolve the raised issue. The program thinks that the selected method can-
didates make appropriate combination among delivery type and communication
modality candidate, because the candidates include graphical annotations already.

The final selected critiquing methods are [intro/reminder + demonstration +
evaluation] and [written comments + graphical annotations]. Figure 6 shows the

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

120 Y. Oh et al.

critique presented with these methods. In this case, the Critic Presenter activates
two components: the Text Critic and the Graphic Critic. The Text Critic presents
the stored intro/reminder, demonstration, and evaluation messages from the vio-
lated constraint. The Graphic Critic executes function calls using the relevant fur-
niture parts as parameters to annotate the designer’s diagram.

7. Conclusion

Unfortunately, the field of design lacks a clear understanding of design critiquing,
specifically, how to make a decision about which critiquing methods are appro-
priate in a certain critiquing situation. To advance knowledge in design critiquing
as well as computer-based systems, we have developed a computational model of
design critiquing using the Furniture Design Critic program. As a research tool this
program provides a way to investigate design critiquing, specifically, the selection
mechanisms. The example selection mechanism presented here is a plausible way to
select delivery types and communication modalities.

The program makes an inference about a designer such as knowledge, weak-
nesses, and effective critiquing methods. It also records the history of States
including what critiquing methods have been selected and if the feedback has been
successful. It then selects a particular set of delivery types and critiquing methods
by considering the inference results and the history of States.

Furniture Design Critic applies the constraint-based approach (Mitrovic et al.,
2007; Ohlsson, 1994) to a design domain. The User Model and the Pedagogical
Module of constraint-based tutors are suitable to represent critiquing conditions
and methods, and to articulate and explore the selection mechanisms of critiquing
methods.

Our work contributes to the fields of design, design education, and computer-
based design systems. The computational model presented here can be a foundation
for us to describe a variety of critiquing strategies using the same factors, critiquing
conditions and methods. For example, studio teachers can systemically explain and
articulate their own critiquing strategies. Further, we as critiquing researchers now
can perform empirical studies about appropriate applications of critiquing meth-
ods under specific conditions, because we have a systematic framework to describe
critiquing strategies. In other words, this computational model can help us gen-
erate a set of variables that could be used to describe critiquing strategies and
hypotheses that could be proved and tested. Our program, Furniture Design Critic
also has closed a gap between what existing computer-based systems offer to design
students and what studio teachers do.

We chose flat-pack furniture designing as an example domain. We plan to apply
our model to other design domains such as architecture, product design, or engi-
neering. The system mechanism that selects particular critiquing methods would be
the same, because the system determines critiquing methods by considering domain
independent information such as how many constraints are violated and satisfied
and delivery types and modalities previously used. Also, it is not hard to add and

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

A Constraint-Based Furniture Design Critic 121

revise Design Constraints that represent domain knowledge and are used to identify
critiquing opportunities and Critiquing Rules that determine the selection mecha-
nism of the program.

References

Aleven, V., Ashley, K., Lynch, C., & Pinkwart, N. (2007). Proc. workshop on AIED appli-
cations for ill-defined domains. The 13th International Conference on Artificial Intel-
ligence in Education, Los Angeles, CA.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors:
lessons learned. The Journal of the Learning Sciences, 4(2), 167–207.

Anthony, K. H. (1991). Design juries on trial: The renaissance of the design studio. New
York: Van Nostrand Reinhold.

Bailey, R. O. N. (2004). The digital design coach: Enhancing design conversations in archi-
tecture education. PhD Dissertation, Victoria University of Wellington.

Boyer, E. L., & Mitgang, L. D. (1996). Building community: A new future for architecture
education and practice: The Carnegie Foundation for the Advancement of Teaching.

Chun, H. W., & Ming-Kit Lai, E. (1997). Intelligent critic system for architectural design.
IEEE transactions on knowledge and data engineering, 9(4), 625–639.

CORENET. (2009). CORENET e-Plan Check System. 2010, from http://
www.corenet.gov.sg/corenet/

Fischer, G., Lemke, A. C., Mastaglio, T., & Morch, A. I. (1991). The role of critiquing
in cooperative problem solving. ACM Transactions on Information Systems, 9(2),
123–151.

Fischer, G., McCall, R., & Morch, A. I. (1989). Design environments for constructive and
argumentative design. The Human Factors in Computing Systems (CHI ‘89), Austin,
Texas (p. 269–275).

Fu, M. C., Hayes, C. C., & East, E. W. (1997). SEDAR: expert critiquing system for flat
and low-slope roof design and review. Journal of Computing in Civil Engineering,
11(1), 60–68.

Gertner, A. S., & Webber, B. L. (1998). TraumaTIQ: online decision support for trauma
management. IEEE Intelligent Systems, 13(1), 32–39.

Goldschmidt, G. (2002). One-on-one: A pedagogic base for design instruction in the stu-
dio. The Common Ground Design Research Society International Conference Brunel
University (p. 430–437).

Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). AutoTutor: An intelligent
tutoring system with mixed-initiative dialogue. IEEE Transactions in Education, 48,
612–618.

ICTG (2009). The Intelligent Computer Tutoring Group (ICTG). Retrieved Aug, 20, 2009,
from http://ictg.canterbury.ac.nz/

Koedinger, K. R., & Anderson, J. R. (1997). Intelligent tutoring goes to the big city.
International Journal of Artificial Intelligence in Education, 8, 30–43.

Milik, N., Marshall, M., & Mitrovic, A. (2006). Responding to free-form student questions
in ERM-tutor. Lecture Notes in Computer Science, 4053, 707–709.

Mitrovic, A. (2002). Normit: A web-enabled tutor for database normalization. The Inter-
national Conference on Computers in Education (ICCE) (p. 1276–1280).

Mitrovic, A., Martin, B., & Suraweera, P. (2007). Intelligent tutors for all: The constraint-
based approach. IEEE Intelligent Systems, 22(4), 38–45.

Mitrovic, A., & Weerasinghe, A. (2009). Revisiting ill-definedness and the consequences
for ITSs. The 14th Conference on Artificial Intelligence in Education, Brighton
(p. 375–382).

January 4, 2011 10:54 WSPC/S1793-2068/RPTEL 00086 fa1

122 Y. Oh et al.

Mostow, J., Aist, G., Burkhead, P., Corbett, A., Cuneo, A., Eitelman, S., et al. (2003).
Evaluation of an automated reading tutor that listens: Comparison to human tutor-
ing and classroom instruction. Journal of Educational Computing Research, 29(1),
61–117.

Nakakoji, K., Yamamoto, Y., Suzuki, T., Takada, S., & Gross, M. D. (1998). From cri-
tiquing to representational talkback: computer support for revealing features in
design. Knowledge-Based Systems, 11(7–8), 457–468.

Oh, Y., Do, E. Y.-L., & Gross, M. D. (2004). Intelligent critiquing of design sketches. The
AAAI (American Association for Artificial Intelligence) Fall Symposium — Making
Pen-based Interaction Intelligent and Natural (p. 127–133), Washington DC.

Oh, Y., Gross, M. D., & Do, E. Y.-L. (2008). Computer-aided Critiquing Systems: Lessons
Learned and New Research Directions. Paper presented at the Computer Aided Archi-
tectural Design and Research in Asia (CAADRIA) (p. 161–167).

Ohlsson, S. (1994). Constraint-based Student Modeling. In J. E. Greer & G. I. McCalla
(Eds.), Student modelling: The key to individualized knowledge-bases instruction
(pp. 167–189), Berlin: Springer-Verlag.

Ohlsson, S. (1996). Learning from Performance Errors. Psychological Review, 3(2),
241–262.

Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. (2007). Evaluating legal argument
instruction with graphical representations using LARGO. The 13th International
Conference on Artificial Intelligence in Education (p. 100–108), Amsterdam, The
Netherlands.

Robbins, J. E. (1998). Design critiquing systems (No. UCI-98-41): Department of Infor-
mation and Computer Science, University of California, Irvine.

Robbins, J. E., & Redmiles, D. F. (1998). Software architecture critics in the argo design
environment. Knowledge-Based Systems, 11(1), 47–60.

Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action. Basic
Books Inc.

Schön, D. A. (1985). The Design Studio. London: RIBA.
Simon, H. (1969). The Science of the Artificial. Cambridge: MIT Press.
Solibri.Inc. (2010, 09/13/2007). Solibri Inc. The World Leader in Design Spell Checking.

Retrieved 07/12/2010, 2010, from http://www.solibri.com/
Suraweera, P., & Mitrovic, A. (2002). Kermit: A constraint-based tutor for database mod-

eling. Intelligent Tutoring Systems, 2363, 377–387.
Uluoglu, B. (2000). Design knowledge communicated in studio critiques Design Studies,

21(1), 33–58.
VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., et al. (2005).

The Andes physics tutoring system: Five years of evaluations. The 12th International
Conference of Artificial Intelligence in Education (p. 678–685).

Wampler, J. (2002). Architecture Studio: Building in Landscapes. Retrieved Jan.
2009, from MIT Open Courseware: http://ocw.mit.edu/OcwWeb/Architecture/4-
125Architecture-Studio–Building-in-LandscapesFall2002/CourseHome/index.htm

Weaver, N., O’Reilly, D., & Caddick, M. (2000). Preparation and support of part-time
teachers: Designing a tutor training programme fit for architects. In D. Nicol &
S. Pilling (Eds.), Changing architectural education: Towards a new professionalism
(pp. 265–273), New York: Taylor & Francis Spon Press.

Zakharov, K., Ohlsson, S., & Mitrovic, A. (2005). A feedback micro-engineering in EER-
tutor. The Artificial Intelligence in Education (AIED) (p. 718–725), Amsterdam,
The Netherlands.

	1 Introduction
	2 Research Scope
	3 Related Work
	3.1 Critiquing systems
	3.2 Intelligent Tutoring Systems and Constraint-based Tutors (CBT)
	3.3 Critiquing methods in Intelligent Tutoring Systems and critiquing systems

	4 Delivery Types and Communication Modalities
	4.1 Delivery types
	4.2 Communication modalities
	4.3 Why selecting a certain critiquing method is important

	5 Furniture Design Critic
	5.1 System architecture
	5.2 Construction interface and parser
	5.3 Design constraints
	5.4 Pattern Matcher
	5.5 User model
	5.6 History of states
	5.7 Pedagogical module
	5.7.1 Selecting which feedback should be offered first
	5.7.2 Making an inference about a designer using the data of User Model
	5.7.3 Selecting a set of delivery types and communication modalities

	5.8 Critiquing Rules
	5.9 Critic presenter

	6 Example
	6.1 A selection mechanism of the Pedagogical Module
	6.2 Scenario

	7 Conclusion

