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Learning and instruction can be enhanced with the information provided from assess-
ment. Computerized adaptive testing is an effective mode of e-testing as it can be oper-
ated in a continual and dynamic mode. It can also cater for individual needs by providing
tailor-made tests. In this paper, we will examine a new item selection approach which
would allow more flexibility in balancing the two competitive goals of accuracy and item
pool utilization in computerized adaptive testing. Moreover, a new index for comparing
a weighted balance of these two goals is proposed.
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1. Introduction

Learning and instruction can be enhanced by computer technology through various
means such as computer-assisted learning (CAL) and computer-assisted instruction
(CAI). In fact, computer technology can bring in other advantages such as devel-
oping a continual and dynamic approach to educational testing. With the advances
in computer technology and statistical modeling, more and more paper and pen-
cil (P&P) tests have been transformed into the format of computerized adaptive
testing (CAT; see, e.g. Armstrong et al., 2005; Wainer et al., 1990). Nowadays, var-
ious large-scale testing programs (e.g. GRE, GMAT, TOEFL and LSAT) have been
partly or completely conducted in the form of CAT. One of the main advantages
of CAT over P&P is that it enables more efficient and precise ability estimation
(Weiss, 1982) in a continual and dynamic mode.

Currently, most of the prevalent item selection algorithms are based on the
traditional wisdom of the maximum information approach, that is, the most infor-
mative item is chosen at each step of testing. The possible efficiency of the infor-
mation approach, however, is likely at the expense of item security and the cost
effectiveness in item pool management. In this regard, many CAT practitioners are
looking for an item selection approach that can strike a balance on measurement
accuracy, item security and item pool utilization. This study aimed to investigate
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whether a new mixed item selection approach meets this practical need. Moreover,
a new statistic has been developed in the study for evaluating overall performance
of each selection method on both accuracy and item pool utilization. This statistic
would facilitate practitioners to identify appropriate selection methods for their own
e-testing programs.

2. Potential Advantages of Computerized Adaptive Testing

It must be emphasized that computerized adaptive testing is different from com-
puterized administrated testing which usually refers to a mechanism that randomly
select a test item or a subtest from a pool of items with regardless of the ability of
the examinee (see, e.g. Beevers et al., 1995). In contrast, a CAT system adaptively
selects an item according to the estimate of the ability of examinee based on his or
her responses to previous items. In other words, CAT is a dynamic system which
can provide tailor-made tests for individuals.

Straetmans and Eggen (1998) broadly describe the administration procedure of
a computerized adaptive testing as follows:

(1) The computer selects an item from a pool of items.
(2) The item is displayed to the examinee on the computer screen.
(3) The examinee responds to the question by typing or selecting an answer.
(4) The computer evaluates the response as correct or incorrect.
(5) If the answer is correct, the next item presented will be more difficult; otherwise

an easier item will be administered.
(6) The computer terminates testing when pre-specified stopping rule is satisfied.

A few web-based testing systems were built on the theoretical bases of comput-
erized adaptive testing (see, e.g. Conejo et al., 2004; Ueno, 1998). With the support
of these systems, teachers worldwide can define their tests, and their students can
take these tests online adaptively.

In addition to efficiency and accuracy in assessing student achievement, Leung
(1998) further elaborates that CAT has many other potential advantages such as:

(1) Students can have more flexibility to schedule their time in taking the test as
computers support on-demand test delivery.

(2) Students can plan better as they will be informed the result by the computer
immediately after the completion of the test.

(3) Teachers are freed from the laborious tasks of test construction and marking.
(4) Alternate item forms that involve graphics, sounds, video and text are feasible;

thus some items on 3D geometry are now feasible in CAT setting.

In fact, students, teachers, school administrators and officials of education
department will all benefit from a well-developed CAT system coordinated by the
government or central testing organization. Particularly, student learning will be
greatly enhanced. Because of the adaptive nature of CAT, students always face
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items that closely match their own individual ability. At the end of the test, no
one is likely to get all answers wrong and scores zero mark; the less competent stu-
dents would find some items that they could solve and hence retain their interest
in the learning of the subject. Neither anyone is likely to get all answers correct
and scores full mark; thus even the top students understand that there are rooms
for improvement. Furthermore, students spend less time on regular assessment as
there are fewer inappropriate items administered by CAT for each individual.

It may happen that two test-takers get the same number of items correct, how-
ever they would have different scores as the scores depend on the calibrated item
parameters like difficulty, discrimination and guessing of the items (Lord, 1980;
Hambleton & Swaminathan, 1985). All the conversions of score into the same
continuum are done by the statistical procedures of the system. With this abil-
ity continuum, individual’s learning progress can be reported less ambiguously.
It should be noted that the common impression that a student makes improve-
ment when there is an increase in his/her scores in two successive tests is not
always correct unless the two tests are comparable or linked to the same ability
continuum.

Continual assessment is an integral part of teaching and learning. A well devel-
oped CAT system would be able to immediately issue individual report on one’s
performance. Hence, the strengths and weaknesses of the students would be identi-
fied. This timely information is very useful for making decision on instruction and
student learning. If a student has unsatisfactory result in a test, follow-up actions
can be determined promptly. The student can re-take the test at the time when
he or she feels confident after revision or remedial teaching. Once the students are
familiar with the testing procedures and environment, teachers need not accompany
the students in their second and subsequent trials. Students just need to book the
computers and get the teacher’s approval in advance. If the item bank is rich, the
test items at various attempts are very unlikely the same. With a simple indexing
mechanism, an item would be administered at most once to a frequent user. Since
the students themselves can determine the dates for subsequent attempts after fail-
ure, their motivation of learning would be stronger when their sense of ownership of
learning builds up. Self-regulated learners tend to monitor and evaluate their learn-
ing processes (Boekaerts & Corno, 2005). With CAT, each student can be fully
informed of his or her progress throughout the year. This can certainly facilitate
students to become self-regulated learners.

3. Item Selection

3.1. Maximum information approach (MI)

Most of the CAT designs are built on the Item Response Theory (IRT; Lord, 1980).
Weiss and Kingsbury (1984) described CAT as a combination of IRT, adaptive
testing, and interactive computer administration of tests. When the three-parameter
logistic (3-PL) IRT model is used, the probability that an examinee of ability θ
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answers an item with difficulty parameter b correctly (Y = 1) is

P (Y = 1|θ) = c + (1 − c)
1

1 + e−1.7a(θ−b)
, (3.1)

where a and c are discrimination and pseudo-guessing parameters respectively.
Figure 1 illustrates how the probability of giving a correct answer varies with

the ability, following Eq. (3.1), for four items with different set of parameters as
shown in Table 1.

Figure 1. Variation of probability of giving correct answer against ability#.

#L1 is for Item 1; L2 for Item 2; L3 for Item 3; L4 for Item 4.

Table 1. Item parameters for
the four items in Fig. 1.

Item i ai bi ci

1 1.2 −1.5 0.2
2 0.8 −1.5 0.1
3 1.6 1.0 0.1
4 1.6 1.0 0.0
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The common features of the curves are: (a) the probability of giving correct
answers lies between 0 and 1, and (b) the higher the ability, the larger the possibility
of giving correct answers. Comparing to Items 3 and 4 for which the item difficulty
is 1.0, Items 1 and 2 are easier as they have smaller item difficulty of −1.5. The
curves for L1 and L2 are mainly above those of L3 and L4, showing that examinees
of low ability have higher chance of giving correct answers to Items 1 and 2.

Item 1 can better discrimate high abilities from the low ones than Item 2 as
it has larger discrimination value. The curve for L2, compared to L1, rises sharply
when the ability exceeds the item difficulty (−1.5). Items 3 and 4 differ in having
different pseudo-guessing values. The pseudo-guessing value for Item 4 is 0, meaning
that apparently there is no chance of giving a correct answer to this item simply
by guessing. As shown by L4, the probability of giving correct answer approaches
0 when ability decreases. In contrast, the pseudo-guessing value for Item 3 is 0.1.
It means that even an examinee has no ideas on answering the item, he or she
could correctly answer it by guessing. This pattern is reflected by L3 in which the
probability of giving correct answers goes to 0.1 for examinees of low ability.

In terms of the 3-PL model, the Fisher information (also known as item infor-
mation) of the item is a function of examinee’s ability and is expressed as

I =
[P ′(θ)]2

P (θ)[1 − P (θ)]
. (3.2)

By substitution of P (θ) using Eq. (3.1) and then using differentiation, item infor-
mation can be written as

I =
1.72a2(1 − c)

(1 + e−1.7a(θ−b))2(c + e1.7a(θ−b))
. (3.3)

Figure 2 shows the variation of information with item discrimination for a
fixed value of c. The five information curves, following Eq. (3.3), correspond to
cases having the same typical c of 0.2 but five different values of (θ − b) equal to
−2,−1, 0, 1, and 2 respectively. These curves help us understand the role of a on
item information.

In theory and practice, the maximum information method attempts to select an
item with the largest value of a and with b closest to the examinee’s ability θ. The
benefit of this approach can be easily visualized in Figure 2. When item difficulty
is exactly the same as the examinee’s ability, i.e. (θ − b) = 0, the information rises
sharply as discrimination increases, following the trend of the line L1. Thus, if the
true ability θo is known, the maximum information approach leads to a substantial
efficiency gain by choosing an item with b close to θo and with largest possible
a. Nevertheless, θo can never be known in reality. So instead of θo, the estimated
ability, θ̂, is used in the information calculation. During the initial stages of testing,
the discrepancy between θ̂ and θo is usually large, which will gradually diminish as
the testing continues. As a result, the b of the chosen item which seems to be closest
to θ̂ may be actually far away from the true θo and hence the expected efficiency
gain of maximum information approach cannot be realized. For example, the line
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Figure 2. Information curves for five scenarios of (θ − b)#.

#c = 0.2; L1: θ − b = 0, L2: θ − b = 1, L3: θ − b = −1, L4: θ − b = 2, L5: θ − b = −2

L3 indicates that an item with a larger a of 3.0 actually provides less information
than the one with a smaller a of 1.0 does when (θo − b) is beyond −1.0. In fact, the
information goes to zero as a goes to infinity. The implication is that the maximum
information approach sometimes misuses and thus over-exposes the high a items
which may not be so informative as originally expected, particularly at early stages
of testing when θ estimation is still quite inaccurate.

One of the major shortcomings of MI is poor item pool utilization caused by
uneven usage of individual items (Stocking & Lewis, 1998; van der Linden, 1998).
Under MI, many high a items are over-exposed to a high proportion of examinees,
while a substantial part of the item pool is hardly used. On the one hand, over-
exposed items can cause a security problem. If an item has a high exposure rate,
then it has a greater risk of being known to prospective examinees, which in turn
would cause item security and test validity problems. On the other hand, under-
utilized items mean a waste of money as the development of these items is very
costly. Therefore, MI has undesirable consequences of poor item pool utilization
and item security.

3.2. b-matching approach (BM)

Another traditional item selection approach is to select items with difficulty param-
eters (bs) as closely matching the estimated ability as possible. Though the simple
minimization of the difference between the estimated ability and b is not identi-
cal to the maximization of item information, the BM approach has been used by
many researchers because of its short computational time and its simple implemen-
tation algorithm. Moreover, the BM approach does not take into consideration of a

parameter and thus would not place reliance on high a items (Chang & Ying, 1999).
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Consequently, uneven item exposure distribution is not a problem in BM. Referring
to Figure 2, for items with the same value of a, the item with (θ − b) equal to
zero offers the largest information. Therefore, items from b-matching approach also
provide a large amount of information on examinee’s ability.

3.3. Mixed approach

In practice, CAT practitioners strive to balance the need for measurement accuracy,
item security and item pool utilization. Leung et al. (2005) proposed a mixed item
selection approach by capitalizing on the strengths of the traditional approaches,
aimed at making good use of item bank without sacrifice of accuracy. The original
mixed selection approach suggested to select items by BM for the first half (50%) of
a test and then to switch to MI in the second half. The rationale for mixed approach
is that at early stages, MI should not be used as the ability estimate is still far from
the true value, or otherwise high a items would be selected and wasted. Instead,
BM should be used at the early stages as it does not rely on high a items. High a

items would be selected in the final stage by MI when ability estimate is close to
the true value. In their study, the mixed approach was found to be as efficient as
MI for CAT under a large set of non-statistical constraints.

This study addresses the need of developing effective continual and dynamic test-
ing system for generating timely and reliable information on student achievement.
In this study, the mixed approach is further examined. We attempt to investigate
how this mixed approach would perform when there is no non-statistical constraint.
Moreover, we vary the percentage of BM-selected items in order to explore any pos-
sible optimal trade-off between accuracy and item pool utilization. To facilitate the
identification of a good design, we propose a new statistic for evaluating overall
performance of each method on accuracy and item pool utilization.

4. Method

4.1. Simulation study

Three parameter logistic IRT model (3PLM) was used in this study. Under 3PLM,
the probability for an examinee with ability parameter θ to correctly respond to an
item with difficulty parameter b would follow Eq. (3.1). The Fisher information of
this item for this examinee would follow Eq. (3.3). The MI approach selected the
item with maximum Fisher information with respect to current ability estimate,
while the b-matching approach selected the one with minimum absolute difference
between item difficulty and current ability estimate. The value of the ability param-
eter was estimated using the Maximum Likelihood criterion (Lord, 1980). In this
study, the abilities were assumed to follow normal distribution. So, maximum like-
lihood picks the value from the distribution that makes the data “more likely” than
any other values of ability would make them. This picked value is then taken as the
maximum likelihood estimate of examinee’s ability.
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Table 2. Descriptive statistics of different parameters
used in the simulation study.

Parameter Mean s.d. Max Min

Ability (θ) 0.017 1.004 3.388 −3.135
Difficulty (b) 0.323 1.039 3.398 −3.444
Discrimination (a) 1.123 0.354 2.630 0.294
Pseudo guessing (c) 0.173 0.084 0.500 0.033

In this simulation study, tests were created by selecting items at the earlier stage
using BM and selecting the remaining items using MI. Five different percentages of
items in a test selected by MI were investigated: 0% (i.e. purely BM), 25%, 50%,
75% and 100% (purely MI). Two test lengths, 20-item and 40-item were simulated
in order to see how test length interacts with performance. These ten combinations
in the simulation design are by no means exhaustive. However, the results would
provide a general picture on how the performance of the mixed approach varies with
different proportion of MI-selected items across short test (20-item) and long test
(40-item).

Under each of the 10 combinations of testing condition, 5,000 simulees with
ability parameters randomly generated from a standard normal distribution, were
tested using a retired pool of 700 calibrated mathematics items. The description
statistics of these parameters are given in Table 2.

4.2. Evaluation statistics

Both general statistics and a newly proposed overall performance statistic were used
to compare the performance of various CAT designs.

4.2.1. General statistics

Eight general statistics were used to reflect the performance of CAT algorithms in
different aspects. These include:

(1) Average bias: 1
n

∑n
i=1 (θ̂i − θi), where θi and θ̂i denote the true and estimated

ability of examinee i respectively, and n denotes the total number of examinees.
(2) Mean Squared Error (MSE): 1

n

∑n
i=1 (θ̂i − θi)2. A smaller MSE estimate would

indicate a more efficient item selection method.

(3) Correlation: n
P

i θiθ̂i−
P

i θi

P
i θ̂i√

n
P

i θ2
i −(

P
i θi)2

√
n

P
i θ̂2

i −(
P

i θ̂i)2
, the Pearson Correlation Coeffi-

cient between true and estimated abilities. The higher the correlation coefficient,
the more reliable the test result is for decision making.

(4) Number of over-exposed items: number of items with exposure rate larger than
0.2, a commonly used cut-off value (see, e.g. Hau & Chang, 2001; Schaeffer
et al., 1995). Exposure rate of an item is the ratio of the number of times
it is administered to the total number of tests. Too many over-exposed items
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may cause security problem. Item selection methods with smaller numbers of
over-exposed items are considered more desirable as regards to item security.

(5) Number of under-utilized items: number of items with exposure rate less than
0.02. If there are too many items with low exposure rates, then the item pool is
not fully utilized. This phenomenon challenges the cost effectiveness of devel-
oping the items and hence the appropriateness of the item selection method.

(6) Scaled χ2-statistics (χ2):
∑N

j=1
(erj−L/N)2

L/N , where L and N represent test length
and item pool size respectively, and erj denotes the exposure rate of item j. It
is an indicator for the efficiency of overall item pool usage. The smaller the χ2,
the more balanced is the pool utilization.

(7) Test overlap rate: the item-overlap rate was computed in the present study by
(a) first counting the number of common items for each of the n(n− 1)/2 pairs
of examinees, (b) adding up all the counts in the total of n(n− 1)/2 pairs, and
(c) dividing the total count by Ln(n − 1)/2. The higher the item overlap rate,
the greater the damage to the test validity due to information sharing among
examinees who take the test at different occasions (Leung et al., 2005).

(8) Maximum item exposure rate: the overall maximum exposure rate of individ-
ual items across all tests. If an item has a high exposure rate, then it has an
increased risk of being known by prospective examinees, which in turn threatens
test security.

The first three statistics reflect performance in recovering the unknown ability
parameters, while the rest indicate item security and item pool utilization.

4.2.2. Overall performance

The ideal value of MSE is 0, meaning that the ability estimate is exactly the same
as the true value. Similarly, the ideal value of χ2 is also 0, meaning that each
item has the same exposure rate and the pool is fully utilized. Therefore, the ideal
situation for accuracy and item pool utilization is that both MSE and χ2 are zero.
On a plot of MSE against χ2, the farther away a point of the two statistics from
the origin, the worse the overall performance of the item selection method is. Based
on this argument, we propose an index for indicating overall performance which
is measured by the scaled distance from (0, 0). Let the maximum observed value
of χ2 be x* while that of MSE be y∗. We propose a new statistic d, the weighted
scaled distance of (x, y) from (0, 0) for comparing overall performance. And d can
be expressed as

d =
√

w1(x/x∗)2 + w2(y/y∗)2, (4.1)

where w1 and w2 are the weights that testing organizations can place on χ2 (item
pool utilization) and MSE (accuracy) respectively based on their needs. The smaller
this value, the better is the overall performance of the corresponding CAT design.

It is true that other factors such as overlap rate, number of over-exposed items
and number of under-utilized items are important for comparing performance of
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item selection method. Nevertheless, better item pool utilization (smaller χ2) means
that more items are evenly administered to examinees. Consequently, the average
number of overlap items, the number of under-utilized items and the number of
over-exposed items would drop down. Therefore, putting the two key factors, MSE
and χ2, in the computation of weighted scaled distance provides an appropriate and
parsimonious statistic for comparing overall performance.

Testing organizations may place their own weights on accuracy and item pool
utilization. To one extreme, when accuracy is the utmost concern, w2 can be put
to 1 and w1 be put to 0. In such case, Eq. (4.1) would become

d = y/y∗. (4.2)

In Eq. (4.2), the best overall performance occurs when y (MSE) is minimized, as
which in turn minimizes d (scaled distance).

To other extreme, some e-testing programs may like to use their caliabrated
items as many as possible. For them, item pool utilization may be a major concern.
They may set w2 as 0 and w1 as 1. In such case, Eq. (4.1) would become

d = x/x∗. (4.3)

The best overall performance comes with the smallest scaled distrance d, which
can be attained when x (χ2 value) is minimized. This study imitates the scenario
that testing programs set both weights to 1, putting both accuracy and item pool
utilization criteria in equally important priorty.

5. Results

5.1. Effect of ratio of items selected by MI on performance

Table 3 lists the summary of the evaluation statistics of different CAT settings
after tests were simulated. In all the settings, the estimated biases were all close
to zero, showing that there were no systematic errors in ability estimation. As the
correlation coefficient was significant and high (ranging from 0.913 to 0.983), the
ability estimates from all item selection methods are reliable for making decisions.

In general, regardless of test length, statistics concerning item usage such as the
number of over-exposed and under-utilized items, χ2, test overlap rate and maxi-
mum exposure rate increase with the percentage of item selected by MI, showing
that item pool utilization and item security are worsened.

In both 20-item and 40-item tests, the 100% MI item selection method hit the
maximum exposure rate up to over 0.745 and 0.765 respectively. This will definitely
cause security alarm as those highly over-exposed items were administered to 3 out
of 4 examinees. The content of these over-exposed items would soon be known to
the subsequent cohorts of examinees. Also, the overlap rates in this method are the
highest (0.299 for 20-item and 0.309 for 40-item). It means that on average there
were about 6 common items in any two 20-item tests and 12 common items in any
two 40-item tests. The χ2 values in this method are also the highest, indicating very
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Table 3. Performance of the 10 CAT designs.

n∗ %MI Bias MSE corr nOv† nUn† χ2 OvL‡ maE∧ Dist§

20 100 −0.001 0.072 0.966 38 590 196.6 0.299 0.745 1.063
20 75 0.002 0.085 0.961 32 583 140.5 0.229 0.571 0.831
20 50 0.003 0.101 0.954 24 502 95.6 0.165 0.587 0.701
20 25 0.012 0.124 0.945 11 394 54.3 0.106 0.590 0.678
20 0 0.010 0.200 0.913 2 307 28.3 0.069 0.576 1.010
40 100 0.002 0.037 0.983 82 495 169.7 0.309 0.765 0.883
40 75 0.001 0.038 0.982 71 413 121.5 0.231 0.586 0.647
40 50 −0.001 0.042 0.980 48 249 82.0 0.174 0.579 0.468
40 25 −0.002 0.052 0.976 28 149 46.5 0.123 0.585 0.350
40 0 −0.001 0.069 0.968 2 84 19.1 0.084 0.573 0.358

Note: ∗n: test length.
†nOv/ nUn: number of overexposed and underutilized items.
‡OvL: overlap rate.
∧maE: maximum exposure rate.
§Dist: scaled distance.

poor item utilization. In fact, there were 590 (495) under-utilized items and 38 (82)
over-exposed items after five-thousand 20-item (40-item) tests were finished.

When compared with the 100% MI method, the mixed item selection method
employing 75% MI and 25% BM has better performance in item pool utilization
and item security. It has lower χ2 value, lower test overlap rate, and fewer numbers
of under-utilized and over-exposed items. This trend continues when the percentage
of MI selected items decreases.

In terms of accuracy, MSE decreases as the percentage of MI-selected items
increases, indicating an improvement in accuracy. For both 20-item and 40-item
tests, 100% MI CAT design yielded the smallest MSE, meaning that it was the best
in accuracy. The 100% BM had the highest MSE while the results for mixed item
selection methods varied between these two ends.

5.2. Overall performance

Figure 3 is the plot of MSE against scaled χ2 statistics for the 10 settings in Table 3.
The plot indicates that there was tradeoff between measurement accuracy and item
pool utilization. As mentioned earlier, the closer a point to the origin (0, 0), the
better is the overall performance. The tradeoff of MSE was slight when test became
longer; in that case a great reduction in χ2 only resulted in a small increase in MSE.
This means that there would be a great improvement in item pool utilization with
a slight sacrifice in measurement efficiency.

It was discovered that, regardless of test length, the setting “first 75% of the
items selected by BM” was the setting resulted in minimal scaled distance from
the origin. For 75% BM mixed item selection method, the scaled distance reached
the minimum of 0.350 for 20-item test and 0.678 for 40-item test. In this method,
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Figure 3. A plot of Mean Squared Error against scaled χ2-statistics for ten different settings.

the correlation coefficients for the true abilities and their estimates were 0.945 (20-
item test) and 0.976 (40-item test). The high correlation indicates that this method
is able to provide reliable estimates of the abilities.

6. Conclusions and Discussion

With the advancement of computer technology and increasing availability of high-
speed computers, computerized adaptive testing will take an important role in
enhancing student learning. One attrative advantage of computerized adaptive test-
ing that the conventional paper-and-pencil tests do not have is its potential of incor-
porating alternate item formats that may involve interactive graphics, sounds and
video capture for realistic situations. These new item formats and testing environ-
ments can stimulate student thinking and arouse student motivation in learning.

Moreover, it is generally agreed that a standard set of items for all examinees is
against a very fundamental principle of education: catering for individual needs. As
computerized adaptive testing administers items to individuals according to their
abilities, it can deliver tailor-made tests. The items for each individual are neither
too difficult nor too simple for any particular examinee. As such, computerized
adaptive testing can support educational systems to meet individual needs.

To date, teachers spend a lot of time on test preparation, marking, giving
responses, and reporting. Therefore, it is a very meaningful challenge and important
task to develop a more efficient and dynamic testing system for enhancing learn-
ing by providing timely quality information on student achievement. When each
student can conveniently evaluate individual progress, he or she would have higher
motivation to regulate his or her learning pace.
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With the increasing availability of powerful computers and the advancement of
statistical theories, tailoring tests to individual’s ability has become more easily
realized. The major issue is on developing a good item selection method which can
make good use of item pool and provide reliable estimation.

In the mixed item selection approach, the increase in percentage of items selected
by MI results in higher measurement accuracy but poorer item pool utilization. This
pattern of trade-off is a consequence of the item selection strategies of MI and BM.
As a test proceeds, the fluctuation of the value of intermediate ability estimate
decreases and the estimated value converges to the true value. An item provides
larger Fisher information if its difficulty is close to the ability and its discrimination
is high. Therefore MI tends to select from a small number of high a items, resulting
in a skewed item usage pattern. In BM, (b − θ) constitutes the sole criterion in
selecting and thus is less selective compared to MI. However, less informative items
may be selected by BM.

The trading off for measurement accuracy by sacrificing item pool utilization is
less acute for long test, as accuracy is too high to be further increased by increasing
information.

A plot of MSE against scaled χ2 statistics can provide us knowledge about the
overall performance of a CAT algorithm. Under the same test length, the algorithm
with corresponding dot on the plot closest to the origin (0, 0) would have the best
balance between accuracy and item pool utilization. In the current study, the best
overall performance of mixed item selection approach was obtained when the ratio
of the number of items selected by BM to that by MI is close to 3:1.

In this study, different designs of mixed item selection approaches are com-
pared in terms of measurement accuracy and item utilization efficiency. Mixed item
selection approach has demonstrated its strengths in allowing testing organizations
more flexibility in optimizing the competitive goals of accuracy and item pool uti-
lization, simply by changing the ratio of items selected with each item selection
approach (maximum information/b-matching). It can result in satisfactory measure-
ment accuracy and efficiency in item utilization according to the needs of individual
testing programs.

The results of the current study by no means represent the relative performance
of different types of mixed selection methods under all situations. The performance
of a mixed item selection may depend on the distribution of item and ability param-
eters. For example, if the average discrimination level of the item pool is low, a
higher proportion of items selected by MI may be preferred. Nevertheless, mixed
item selection approach is shown to have great potential to introduce flexibility into
many existing CAT algorithms. CAT practitioners are advised to do prior simula-
tion studies to obtain an optimal mixed item selection method with their own set
of items and anticipated distribution of examinee abilities, before deciding which
one should be used in the real e-testing.

This study is significant in at least two aspects. First, the empirical data of
the study have shown that there always exists some good mixed item selection
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methods in between the pure b-matching method and the pure maximum infor-
mation method. Second, this study formulates a new statistic to help practitioners
identify a good selection method according to their needs. Future research may pur-
sue on this line to further investigate other possible combined statistics to evaluate
the overall performance of e-testing designs.
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