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People implicitly negotiate use of representations during learning, even in distributed
online settings, but due to the temporally and spatially distributed nature of interaction,
special analytic tools are required to uncover the development of representational prac-
tices in such settings. In this paper, we show how logs of online activity can be analyzed
using specialized tools to recognize patterns in the participants’ use of representations
and show how negotiated representational practices affect how learners collaborate and
influence each other.
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1. Introduction

Shared representations — constructed, manipulated and interpreted by partici-
pants — both influence and are appropriated by participants in the course of their
collaborative interaction (Roschelle, 1996; Suthers & Hundhausen, 2003). Represen-
tational practices (e.g. how inscriptions are interpreted as representations, and role
specialization with respect to construction and maintenance of these representa-
tions) are implicitly negotiated through cycles of innovation, adoption and revision
(Danish & Eneydy, 2006; Dwyer & Suthers, 2006; Shipman & McCall, 1994; Stahl,
2006). Although much research on representational practices has been undertaken
in face-to-face contexts, our data as well as others’ (e.g. Overdijk & van Diggelen,
2008) shows that representational practices develop in online settings as well as face-
to-face, and can even take place over extended periods of asynchronous interactions.
The practices and roles so negotiated have implications for learning, as they can
affect the extent to and ways in which learners collaborate and influence each other’s
views. However, it can be difficult to see implicit negotiations and their consequences
when interaction is distributed over time, across workspaces, and over multiple
modalities as is common in media-rich asynchronous online learning. To begin to
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address this problem, we have developed an abstract transcript format, the contin-
gency graph, and tools for manipulating and visualizing this graph that are a step
towards a toolkit for finding negotiated patterns of interaction and other relevant
phenomena. A contingency is a way in which participants’ actions are observably
contingent upon prior actions and their artifacts, for example, through media depen-
dencies, representational similarity, and semantic overlap, as discussed in Suthers,
Dwyer, Medina & Vatrapu (2007, 2009) and later in this paper. A set of contingen-
cies identified within a sequential data set form a contingency graph data structure.

This paper reports on how we used a tool for visualizing and manipulating a con-
tingency graph in conjunction with screen videos to identify meaningful episodes of
online activity that illustrate the negotiation of representational practices and how
these practices led to specific observed outcomes in a collaborative problem solving
session. We begin with a description of our analytic approach of identifying and
interpreting contingencies. This is followed by a description of a tool we developed
to support our use of contingency graphs. Finally, we illustrate this approach with
a case study of dyadic interaction in an online asynchronous collaborative environ-
ment in which we utilized both a contingency graph generated from computer log
files and video screen capture data taken from the participant machines.

2. Background

Computer generated log files of user interaction in shared online environments are
commonly used as source data for the analysis of collaborative interaction (e.g.
Bruckman, 2006; De Wever et al., 2006; Larusson & Alterman, 2007; Martinez
et al., 2003). These machine readable histories of software events are amenable to
computational methods for aggregating, searching, filtering, or visualizing sequential
data in support of a range of analytical approaches (e.g. Aviv, 2003; Barcellini et al.,
2005; Hmelo-Silver, 2003, Landauer, Foltz & Laham 1998; Sanderson & Fisher,
1994). In our developing work on uptake analysis (Suthers, 2006; Suthers et al., 2007,
2009), we have also begun to explore computational tools for analyzing collaboration
and interaction from log files. Contingency graphs have been a useful starting point
for these endeavors as we can generate some aspects of the graph directly from the
log files. In this paper, we report on analyses in which we combined the use of such a
graph with video analysis. We will present a prototype visualization tool constructed
by the first author, the Uptake Graph Utility (UGU). The primary motivation
for developing the UGU was to allow the analyst to control the visual rendering
of a contingency graph representation in service of specific research questions or
hypotheses. The next two sections provide a brief overview of contingency graphs
followed by a description of the UGU prototype tool.

2.1. Brief overview of contingency graphs

The notion of a contingency graph has been useful in our work across a diverse
set of data sources. The contingency graph supports our theoretical orientation
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and provides a consistent notation for generating analysis-specific artifacts such as
the visualizations discussed in this paper. At one level of description, a contingency
graph is a data structure for representing relations between events, particularly acts
in which participants interact with media. At another level, a contingency graph
reflects a theoretical commitment to the importance of the sequential organization
of action and its contingency upon context, which implies that relationships between
acts should be the basic units of analysis, not the properties of isolated acts. Our
analytical methods are designed and deployed to recognize, document, and explain
these relations in the diverse technology contexts in which they are situated. As
illustrated in the case study presented later in this paper, the emphasis on the
relation as unit of analysis provides a wider interpretive lens for understanding the
range and complexity of distributed online interaction (Suthers, Dwyer, Medina, &
Vatrapu, 2007). For present purposes, we will focus on the notational features of
contingency graphs as they relate most closely to the visualization and analytic work
presented here. We outline these graph features in the following two subsections.

2.1.1. Vertices: events

The events represented by vertices may include any manipulation of the medium
that is available to participants, including (for example) not only the creation of
media inscriptions (e.g. posting a message, making an object in a workspace), but
also manipulation of those inscriptions (e.g. moving objects closer to each other)
and perception of those inscriptions (e.g. opening a message to read it). The graph
also records computer-initiated events such as the display of inscriptions that come
from other participants in an asynchronous environment.

2.1.2. Arcs: contingencies

A contingency relationship holds when one or more events enable a subsequent
event. The term “contingency” is chosen to indicate a sense of enablement in
which human action draws upon but is not necessarily determined by elements of
the environment. Contingencies are represented in a graph as arcs between events
(vertices).! Each arc points backward in time from a single origin to one or more
destinations. For example, in Figure 1, event E3 is contingent on event E1, and F4
is contingent on events E1 and E2.

I More precisely, in graph theoretic terms a contingency graph is a special kind of acyclic directed
hypergraph in which contingencies are represented as hyperarcs between events represented as
vertices. A hypergraph is a graph in which edges connect sets of vertices. In a directed graph, the
edges are directed from one set of vertices to another and are called arcs. Contingency graphs are
directed to represent which event is contingent upon which, and acyclic because an event can only
be contingent upon prior events. Contingency graphs are specialized kinds of hypergraphs because
they are restricted to arcs of form (e, {e1,...,en}) where e, is contingenc upon {e1,...,en}. For
example, the graph of Figure 1 includes arcs (E3, {E1}) and (E4, {E1, E2}).
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Figure 1. Contingency relationships.

Over the past two years, we have done considerable work exploring types of
contingency relationships between events (Suthers, 2006; Suthers, Dwyer, Medina,
& Vatrapu, 2007, 2009), including media dependencies, temporal and spatial prox-
imity, representational similarity, and semantic overlap. These are discussed below.

Contingencies are identified through similarities in events. The most straight-
forward similarity between events to detect is when two events involve the same
media entity and the later event depends on the state of the media entity left by
the prior event. We call this kind of contingency a media dependency. For example,
the events of opening and replying to a message are dependent on the event of cre-
ating the replied-to message (e.g. a user previously posts a message to a discussion
forum), and the event of linking to or annotating an information node depends on
its availability (e.g. concept map diagramming). In typical sociotechnical environ-
ments artifacts are produced, perceived, and acted upon during interaction. The
sequence of these actions within and through these media entities over time form
patterns of activity that are traceable partly through analysis of how such artifacts
are appropriated during interaction.

Another indication of contingency occurs in synchronous interaction where tem-
poral proximity implies relevance, such as in the typical reply structure of conversa-
tion (Sacks, Schegloff, & Jefferson, 1974). In visio-graphic media people also exploit
spatial proximity and representational similarity to manage interaction and express
association (Dwyer & Suthers, 2006; Shipman IIT & McCall, 1994). For example, if a
representational element is given the same appearance as other elements (e.g. same
color, location, or label), we might construe the change in appearance as contingent
on previous uses of those visual attributes (e.g. adding an element to a group is
contingent on the group’s prior existence).

Tracing semantic overlap is more difficult. We can partially trace ideas by tracing
the artifacts that express them, but actors may “transcribe” ideas to other artifacts,
such as through quoting practices. (Barcellini, Détienne, Burkhardt, & Sack, 2005).
More problematically for the analyst, ideas can be taken up and re-expressed in
different ways.

In summary, a contingency graph is a data structure that maintains observed
relations between events of interest. The graph is a representation of the evidence
that has been observed for interaction between two or more actors. Contingency
graphs are inclusive of the multifaceted relations that are possible (and enabled by)
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media-rich environments, but they need to be interpreted to identify instances of
uptake (Suthers, 2006) in which one actor takes the results of prior activity as signif-
icant for ongoing interaction. Contingency graphs are mathematical representations
of relationships in the data. They are abstract transcripts, not visualizations, but
they may be visualized as diagrammatic graphs to provide notational resources for
conducting analyses. Contingency graphs offer analytic affordances for discovering
and understanding forms of interaction that may not be immediately apparent from
micro-analysis of local episodes of interaction or from global analyses of properties
of the data alone. For example, the graphs used in the study presented in this paper
helped us notice a general pattern of media usage that included nonverbal as well
as verbal actions. Based on this pattern we were able to more effectively frame sub-
sequent micro analyses that relied on video data in addition to the graph structure
itself.

The challenge of realizing the notational and analytic possibilities enabled by
using contingency graphs prompted the development of the Uptake Graph Utility
(UGU will be described in the next section). Using UGU as visual controller for
example, the analyst can selectively filter elements of the graph from view, generate
subgraphs based on content queries, or isolate certain structural or temporal prop-
erties of the interaction record. Figure 2 shows an example of a contingency graph
taken from data presented later in this paper along with a portion of the UGU inter-
face. As shown in the figure, a full contingency graph based solely on media depen-
dencies and constructed from even dyadic interaction can become quite complex to
interpret. The Uptake Graph Utility was developed to address this complexity by
selecting those contingencies that evidence uptake. The utility is described next.

3. UGU: Uptake Graph Utility

UGU was designed and implemented to interface between log data records (stored
in a relational database) and a general purpose diagramming software program
(Omnigraffle™) that we used for visualizing contingency graphs (see Figure 2 above
and Figure 3 below). UGU is a collection of scripts that are fused together in a panel-
like desktop application. Most of the scripts communicate with the database through
SQL queries. In turn, the result of each query is processed within the script in order
to affect the display of the graph in the diagramming software (this requires using
application specific system calls). For example, one query might be to find all events
whose content has the word “disease.” This query could also match events that have
a contingency relationship with such “disease” events. The result of this query could
then be visualized, for example, by sending a command to the diagramming tool to
move all events indicated in the query result to a visible layer and hiding the rest.
This illustration highlights the primary role of the utility as a tool for manipulating
the visualization of a contingency graph. UGU has two general functions that we
characterize as transcript transformation and detailed content analysis, described
in the next two sections.
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Figure 3. The Uptake Graph Utility pallete.

3.1.1. Transcript transformations

Certain manipulations of the data representation should support the analyst in rea-
soning about the data in such a way as to make some aspects of the transcript
more or less salient. Transformations provide useful constraints for coping with the
multifaceted nature of sociotechnical interaction (Sanderson & Fisher, 1994). They
can include graphic manipulations of color, scale (zoom level), and visible/non-
visible layering. UGU supports representational transformations through the use of
the Graph View Control, Subgraph Query, and to a lesser extent, the Graph Editor
interface components (shown in Figure 3). These components allow the analyst to
re-present the contingency graph in correspondence with particular analytical ques-
tions. Transformations can be applied at the granularity of a subgraph or vertices.
For example, if one wishes to trace the path through the graph (a subgraph) of a
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particular media object, it should be possible to illuminate that path and distin-
guish it from the others. This can be achieved in multiple ways. Using the Graph
View Control as an option one can specify that the selected elements (vertices and
arcs) of the graph render on the active layer. The Subgraph Query component fur-
ther supports this practice by allowing the user to specify what highlight color to
use for visible elements and whether or not to include the contingency arcs in the
rendering of the contingency graph.

3.1.2. Content analysis and annotation

The second general function of the Uptake Graph Utility is to provide comprehensive
access to the content of vertices (events). This is provided by the Media Trace and
Note Taker components (see Figure 3). The Media Trace displays a listing of a
sequence of contingent events, one of which is selected by the analyst (Figure 3). A
discussion thread, for example, may be displayed using the media trace component
by selecting the parent posting. An analytic reading can be done with regard to
the thread without having to navigate or scroll through potentially wide graph
spaces. The Note Taker component displays and allows creating of new associations
between a selected vertice or arc and an analytic comment. These annotations are
written to and persist as meta information in the data record.

3.1.3. Additional analysis support

In addition to the above, UGU also provides support for identifying new contingen-
cies during the course of analysis. The Graph Editor component supports this as
well as the practice of segmenting the sequential data based on analytically deter-
mined boundaries. For example, regions of the graph can be specified to correspond
with episodes or interaction sessions.

Figure 4 illustrates an overview of our analytical process beginning with com-
puter log files. As will be shown in the case study, the contingency graph is useful
for discerning patterns of interaction and providing indications for further inves-
tigation into other data sources. The next section describes our analytic method
followed by presentation of the case study.

4. Methods
4.1. Data collection and contingency graphs

The vertices of contingency graphs should be based on actual events recorded in
raw data, including video, video transcriptions, or log files. In general, any data
that can be parsed into distinct acts that constitute evidence of actual events is
valid input. In our case, we used an XML representation of log files generated by a
peer-to-peer collaborative learning environment as our initial data source (bottom
of Figure 4). The logs represent interactions between two participants using the
software.
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Figure 4. Process overview.

Our initial step in preparing the data for analysis is to construct a contingency
graph based on media dependencies (Sec. 2.1.2), as shown in Figure 4. We call
such a graph a media trace. It is convenient to begin with this type of dependency
because our log file events contain a field that records a media object identification
string. Each media object (e.g. graph node, discussion posting, etc.) created using
the software during the interaction is assigned a unique identifier. Once a media
object is created, its assigned identifier is included in all subsequent user log events
that implicate the object. For example, if a user replies to a prior discussion posting,
the log event will record the details of the new message and will include a reference
to the prior message via its unique media identifier.

Table 1 below shows a snippet of our log file in which participant P1 creates
a graph node containing a message about aluminum. The next log event indicates
that the other participant P2 has received the information node (on their machine),
has accessed it, and changed its location on the screen. The fourth event in the
sequence indicates that P1 has edited the original node by adding additional text.
One property to note from Table 1 is the inclusion of nonverbal events in the action
sequence. “Move” events, for example, include which object was moved and where
it was moved to (screen coordinates are not shown in the example).

Table 1. An example media trace based on media dependencies.

Localtime  Creator Object id  Action Content
0:05:13 Mg8P1 7e0d modify It could be the aluminum in the drinking water.
0:13:56 M8P2 Te0d modify peerHasRead
0:13:56 Mg8P2 7e0d move
0:15:48 Mg8P1 7e0d modify It could be the aluminum or something in the

drinking water.
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Table 2. A sample result set of a media trace using the object id from one participant’s machine
log where the shaded area signifies a subsequence of update events from another participant (This
trace is also visualized in Figure 5).

Logmsgid (P1) Logmsgid (P2) Localtime Creator Object id Media type Action Content

16463 17424 0:29:48 P1 -6c24  Hypothesis modify Disease caused
by aluminum.

16589 17526 0:39:06 P1 -6c24  Hypothesis move

16606 17459 0:41:07 P2 -6¢24  Hypothesis modify peerHasRead

16618 17474 0:41:07 122 -6¢24  Hypothesis move

16658 17514 0:41:07 P2 -6c24  Hypothesis move

16678 17625 0:47:04 P1 -6¢c24  Hypothesis move

The sequence of events listed in Table 1 illustrate how media dependencies can
be identified using information stored in the log entries. In this case, the events
share a common object identifier (7e0d) that can be delineated with respect to
which user performed the act and when the action was performed. We leveraged
this property of the log files to design a program that builds an initial contingency
graph of media traces.

Media traces are stored as a table in the database containing the log (middle of
Fig. 4). A single trace is a set of event pairs where each pair indicates a source and
destination identifier. Table 2 above lists an example trace for object id -6¢24 and
user P1. The shaded area in the table indicates “received” log events from the other
user P2 (for the ensuing discussion it is important to note that any logmsgid value
uniquely identifies an event in the log database). The sequence of update events
(shaded rows in Table 2) and the local event that follows it (logmsgid 16678) form a
one to many relationship. That is, the act at 16678 is contingent on the set of prior
acts assembled as a series of updates from the partner’s machine (16606 thru 16658).

The final step in preparing the contingency graph for analysis is transcoding
the database table generated by the media trace discussed above to an XML file
format compatible with the diagramming software used for external rendering of
the graph. Figure 5 illustrates the visualization of contingencies derived from the
media trace segment detailed in Table 2.

Figure 5 shows how a careful interweaving of separate event sequences (one
from each user) into a unified sequence can capture empirical evidence for relations
between interactors. Events on P1’s workstation are above the timeline and events
on P2’s workstation are below the timeline. The arcs that intersect the timeline
connect event actions between the actors. It is important to note that our log files
contain nonverbal actions such as moving graphical objects on the screen. These
“move” events are also represented in the contingency graph. The multiple arcs
emanating from vertice 16678 is evidence that multiple actions were initiated by
participant 2 prior to participant 1’s workspace update. The multiple contingencies
demonstrates evidence that participant 1’s next act is contingent on potentially
multiple actions by participant 2.
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Figure 5. Sample segment of contingency graph based on media dependencies for object listed in
Table 2.

In summary, our initial contingency graph is based on media dependencies as
these kind of relationships can be readily mined from the log file data. Once our
graph is prepared (stored and visualized) we employ two general analytic practices,
segmentation and tracing, for working with the graph during analysis.

4.2. A general analytic approach

Segmentation (or chunking) is a way to shape the data into discrete partitions or
episodes that are the basic units of analysis (Jordan & Henderson, 1995). Seg-
mentation can operate at multiple granularities. For example, in the case study
given later in this paper, we began with individual acts of media manipulations and
contingency relationships between them as the initial units of analysis, but then
chunked subgraphs of contingencies into episodes of recognizable activity evidenced
by participant’s orientation to such activity (Garfinkel, 1967).

Tracing is the act of identifying certain elements of interest as reference points,
and then moving forward or backward along pathways in the graph to unravel
the interaction trajectory in which those elements were formed. The rationale for
following a path is analytically motivated. At any given moment in the analysis,
new entities uncovered may or may not warrant the definition of another data
chunk, may inspire subsequent traces, may induce a closer examination of the data
sources such as video, or require establishment of new contingencies previously
unidentified. The analytic strategy taken in this paper follows that of our previous
work (Suthers et al., 2007, 2009). In that work, we looked at post-interaction essays
composed individually by participants to determine what each person concluded
about the problem posed to them. We then traced back from these acts of writing
through contingency relationships to identify interactional sequences of acts that
could potentially account for the participants’ conclusions.
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In summary, the strategy taken for the current analysis was to render the graph
such that one can identify relationships between vertices and their position within
extended trajectories. To limit the amount of screen clutter, only the log id for each
act is made visible on each vertex. In order to allow ready-at-hand access to the data
portion of each act, the contents of each event are written into the “Note” facility
available in the diagramming software application. On mouseover, the application
provides a pop up window displaying the contents of that element (notes are also
visible in a floating palette). Other functions of the diagramming software were
marshaled for the purpose of trying to work with a contingency graph as an ana-
lytical artifact. These included the use of layers, zoom, color, and sophisticated
object selection mechanisms (e.g. selecting graphical elements with similar visual
properties). After experimenting with the contingency graph using these built in
tools it became clear that more control was needed with respect to how the appli-
cation rendered aspects of the graph. In particular, a coupling to the database was
desired in order to support analysis driven queries in an efficient and systematic
manner and to integrate those results with the visualization. This requirement and
the emergence of our own approach to analysis spurrred the development of the
Uptake Graph Utility as a way to support these analytical practices. We now turn
to an analysis that makes use of the contingency graph, UGU functions, and video
data to uncover and understand the negotiation of representational practices in a
collaborative learning environment.

5. Case Study

The following case study illustrates a pattern of interaction between two individ-
uals engaged in a joint-problem solving exercise while using a shared networked
workspace environment (Figure 6). The data is drawn from an experimental study
conducted for purposes reported in detail elsewhere (Suthers et al., 2008).

Dyads were recruited from introductory university natural science courses. Using
informational materials we provided in the workspace (e.g. upper left of Figure 6),
they worked to identify possible causes of a disease in Guam, ALS-PD (Amyo-
trophic Lateral Sclerosis-Parkinsonism Dementia complex). The software used by
these participants provided both threaded discussion (lower left of Figure 6) and
graphical evidence mapping tools (right side of Figure 6) derived from Belvedere
(Suthers et al., 2001). The session took place over the course of approximately
two hours. Participants were in different rooms, and each participant’s view of
the shared environment was updated using a software protocol that distributed
respective workspace changes at intermittent times during the interaction, thereby
simulating asynchronous interaction typical of online learning (see Suthers et al.,
2008 for full rationale and discussion). Participants would occasionally “take a
break” from the problem to play a game of Tetris™. When they returned to the
workspace, changes from their partner since the last break were displayed step
by step.
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Figure 6. Screen display of one participant’s view of the shared workspace.

The original study used statistical methods to test hypotheses concerning the
effects of different software designs. Follow-up analyses of interaction were under-
taken to understand how participants appropriated the media in their collaboration.
The analysis reported in this paper specifically sought to account for ways in which
one dyad both converged and diverged in their interpretations of causes of ALS-PD,
by tracing out sequential patterns of representational practices (Kozma, 2003; Roth,
2003). The analysis highlights an evolving transformation of a collaborative repre-
sentational practice. These practices and the artifacts left in their wake provide
an explanation for the conceptual convergence and divergence in the conclusions
expressed by each participant.

5.1. Episode: concluding work

The analysis begins with an important reference point in the interaction, a sequence
of activity in which both participants, labeled P1 and P2, express conclusions con-
cerning the possible causes of ALS-PD. This episode takes place in a time span
of approximately 10 minutes towards the end of the session. The beginning of this
episode is indicated by P1’s prompting for a conclusion ([17028] in contingency
graph of Figure 7 below). P1 makes this request using a discussion posting. Despite
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the fact that P2 does not read the message (P2 did not initiate further requests
for workspace updates), it indicates P1’s plans to initiate a negotiated conclusion.
This is evidenced by a subsequent act that proposes a “final” conclusion [17085]
incorporating formative elements of P2’s concluding work, [17897], which coinci-
dentally begins and is concurrently developed by P2 [17905], at approximately the
same time as P1’s (unread) request. The episode ending is negotiated when P2
asks whether P1 is done [17919]. P1 reads and responds by stating; “Done” [17135]
then immediately makes a final “For” link between P1’s and P2’s hypothesis node
[17136].

Each person integrated information shared during their prior work into their
respective fully developed conclusions. We are able to trace information sharing
because we used a “hidden profile design” (Stasser, 1992) in which information was
originally distributed across participants such that it must be shared to reach an
optimal conclusion. “Cycad usage” is cited in each person’s final conclusion. This is
significant because both participants consider multiple specific hypotheses but only
converge on one.

Given that very little linguistically explicit negotiation concerning hypotheses
took place during the interaction, an analytic trace was initiated to provide an inter-
actional account of this convergence on “Cycad usage”. Also, within this segment
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P1 makes “drinking water” a salient factor in her hypothesis, [17028 & 17085], while
P2 does not cite drinking water at all, although information referencing “drinking
water” was previously shared during interaction. Another analytic trace was gener-
ated to account for this divergence. The challenge presented by this pair’s interaction
is that it involved numerous evidence map manipulations. Video screen capture of
the session was used to assist in interpreting their actions. The contingency graph
served as an index into the video data as needed.

Details of our analysis are presented in the following sections to show how our
analytic practices were supported by the Uptake Graph Utility. We present the
trace concerning “drinking water” first because it uncovered a larger scale phe-
nomenon that led to our understanding of the significance of inscriptional manipu-
lations with regard to the agreement on cycad convergence. Thus, this sequence of
examples illustrates how analysis changes granularities, from tracing out relations
between individual acts of media manipulations to relations between episodes of
such manipulations and back to fine-grained analysis of appropriation of graphical
resources.

5.2. Trace of conceptual divergence uncovers representational
practices

One of the consistent concepts indicated in P1’s argument during their concluding
work is that “drinking water” is one possible cause for the disease. An attempt to
build an account of this concept through the interaction history began by forming
a query (input into UGU) in order to highlight acts that reference that text string
and the contingencies between those acts. The highlighted vertices in the resulting
contingency graph revealed references to “drinking water” that were included in
the information provided to P1 in relation to aluminum as a potential cause of the
disease. A second query was invoked to capture acts that also referenced aluminum,
extending the trace. The resulting contingency graph is summarized schematically
in Figure 8. We have annotated the contingency graph to summarize some of the
content expressed or actions taken. In two particular instances P1 shares informa-
tion with P2 related to the contamination of drinking water by aluminum. P2 acts
upon this information by performing a series of moves evidenced by clumps of move
events in the graph. These acts by P2 do not contain linguistic responses; only
a series of moves (drag and drop acts) performed within the evidence map. This
pattern is consistent throughout the remaining portions of the session. The trace
shown in Figure 8 could indicate that P2 is moving nodes around in order to see
them, or to get them out of the way: dragging and dropping of graphical objects
for these reasons is frequent. In this case however, the periodic-like pattern of P2’s
series of movements induced us to explore the video record for these episodes.

The video shows that P2 is not randomly moving nodes around, but performing
a series of evidence map reconfigurations to organize information previously shared
during the session. After P1 contributes new information, P2 moves nodes to create
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spatially distinct groups that provide conceptual delineation. In addition to this
spatial organization, both participants create links between nodes within groups
that further clarify their inclusion in the group. (Their work will be illustrated in
detail in the next section.)

Figure 9 illustrates this same trace at a higher level of abstraction, as a series of
related episodic segments. Beginning at the left, P1 shares information containing a
reference to aluminum in water as a contaminant in the first two segments [B1, B3].
The third information-sharing event by P1 contains two references that correlate
aluminum and neurological symptoms of ALS-PD [B6]. The reaction to the three
sharing acts by P2 is shown as series of evidence map manipulations [B2, B4, B5
& BT7-10]. Intersubjective uptake is indicated by P2’s visual transformation of the
shared information nodes and is followed by a series of intrasubjective transforma-
tive acts on the part of P2, who continually appropriates the relation-indicating
power of the evidence map. The fact that there is very little related action on the
part of P1 during these episodes indicates that P2 is accountable for subsequent
transformations. As shown on the far right of the diagram, intersubjective acts again
occur as the concluding work segment discussed above, is initiated (the right side
of Figure 9 corresponds to Figure 7).

Participants’ grouping acts form a representational configuration that foreshad-
ows each participant’s concluding work. P2’s creates two separate groupings, among
others, for the information containing aluminum: as an agent in metal intoxication
and as water contaminant. One explanation for the divergence on this concept is
that the resulting visual organization provides a selection context from which each
participant performs his or her concluding work. The emergent representational
artifact, the evidence map, facilitated multiple meanings for each participant to
appropriate in conceptually convergent and divergent ways. P1 apparently appro-
priates this representational scheme initially enacted by P2 with a slightly divergent
interpretation.

5.3. Episode: appropriation of representational practice

We turn now to a closer look at P2’s organization of the graph, and P1’s appro-
priation of this practice in the handling of data about cycads as a potential disease
agent. The contingency graph enabled us to provide a representational practices
account of their conceptual convergence. When visualized, the contingency graph
exposed patterns of interaction; provided direct pointers, via timestamps, to relevant
locations in the video record; and provided frames of reference for interpreting the
video. This framing made the interrelation between the two separate video streams
salient for determining the emergence of a shared representational practice.

At the beginning of the session, P2 creates and organizes data nodes into con-
ceptual groups. These groupings are specified through spatial proximity and the
use of links between nodes. Figure 10 is a screenshot of P2’s screen after having
constructed such an initial graph configuration. An important dimension of these
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Figure 10. P2’s screen, initial configuration.

grouping configurations is that topic-based nodes are positioned as hubs to concep-
tually related information nodes.

At the bottom left of the graph workspace in Figure 10 are four nodes that were
rendered on P2’s screen as a result of a recent update from P1. At this point we
see two distinct representational practices. P2 has made conceptual organization a
dominant method for representation. P1’s groupings show a less defined represen-
tational practice. Later, having received a series of updates of P2’s organizational
work, P1 demonstrates appropriation of P2’s practice. Figure 11 shows the state of
P1’s screen after she has created additional nodes and grouped them into a visual
configuration that resembles P2’s scheme. In addition to visual organization, P2’s
conceptual structure is adopted, as P1 orients the nodes towards a central concep-
tually labeled node. This node also represents an explicit expression of a hypothesis,
“Disease caused by aluminum” which reveals P1’s practice of articulating hypothe-
ses through language (not adopted by P2).

A concurrent activity during the episode depicted in Figure 11 occurs on P2’s
machine. Figure 12 shows the introduction of cycad information into the evidence
map. Following his own representational convention, P2 positions the label, “cycad
info”, and three related data nodes into an identical configuration as the others.
Figure 13 shows a subsequent act on P1’s machine where she introduces a data node
containing information about “cycad”. (Time has elapsed, so P1’s screen reflects
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Figure 13. P1 creates a “cycad” data node.

the ongoing work of the two participants.) In this context, a “cycad” related node is
created and positioned in a somewhat arbitrary location with regard to the ongoing
visual grouping. On receiving an update from P1 containing the cycad data, P2
reads the contents of the node, then drags the node to an inclusive position of the
cycad conceptual grouping (circled in Figure 14). P2 then follows this repositioning
with the creation of a link between the node and the “CYCAD INFO” hub, further
expressing its group membership.

Subsequently, each participant brings “cycad usage” forward in distinct ways. P1
articulates cycad salience through a statement placed in a hypothesis node, “Disease
caused by cycad seed usage” (Figure 15, left side), while P2 posts a short “themed”
node expressing “USES OF CYCAD” (Figure 15, right side). Each participant
without knowledge of the other performs these respective acts. They coincidentally
indicate cycad usage at approximately the same time. In addition to posting her
hypothesis node, P1 integrates it into the “CYCAD INFO” group configuration
by creating four links to supporting data. P2 also groups and links data nodes to
their expression (“USES OF CYCAD?”). It is a mutual appropriation of a grouping
practice. P1 and P2 both begin wrapping up their work within five minutes after this
episode and thus initiate the concluding work episode presented above (Figure 7).

6. Discussion

The above analysis provides an explanation of one aspect of how the two partic-
ipants converged and did not converge on conclusions in a joint problem-solving
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task. The goal was to explore an application of the uptake analysis framework, its
representation and praxis, by way of taking a detailed look at how interactions
through shared representations might account for particular instances of concep-
tual convergence and divergence. We uncovered a case of interactional negotiation
of representational practices, implicitly proposed by one participant (P2) through
demonstration, and taken up by the other participant. This shared representational
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practice was particularly apparent in their handling of the question of cycad seeds
as a potential cause of the disease in question, a finding that is consistent with
the fact that this was the one cause on which both participants agreed. In con-
trast, information about the role of drinking water in relation to aluminum was
distributed in the graph in a manner that seems consistent with the lack of agree-
ment on the importance of this element and the fact that P2 received the bulk of
evidence against the associated aluminum hypothesis.

The primary significance of this analysis is that negotiated representational
practices can be found in asynchronous interactional settings, and can influence
outcomes of a collaborative session. Such phenomena merit further study to under-
stand how learning is accomplished (Koschmann et al., 2005). However, due to the
fact that interaction is not immediately salient in asynchronous online settings, rep-
resentations and tools that make interaction patterns visible are needed. We have
prototyped one such tool, and propose to develop further tools based on the con-
tingency graph, transcending differences in log file formats and the distribution of
interaction across media.

7. Conclusion

Following Reimann (2009), we believe that “time is precious”: the practices of par-
ticipants interacting in technology mediated environments are best understood by
tracing how they unfold as processes over time, rather than by analytic methods that
abstract completely away from time. The historical trajectory of joint action cap-
tured in discrete software events underscores sequential structures and patterns that
are difficult if not impossible to grasp through traditional transcriptional “readings”
of the data. Many researchers, for example, study online interaction by focusing on
reply structure (e.g. Hewitt, 2003; Sack, 2001). Although reply structure is a good
place to start, offering clear evidence of uptake, our method acknowledges the many
other ways in which one person’s action may build on those of others. This picture
is further complicated by the distribution and contingency of these actions across
people and media.

One approach taken by us and others is to recognize a more general relation
between units of action as the starting point for uncovering more elaborate rela-
tional structures or graphs. Lonchamp (2009), for example, proposes a method for
identifiying “generalized conversations” for tracing dialogic interaction that sup-
ports subsequent analyses such as knowledge building. This bottom up approach is
also seen in other work that attempts to situate analysis of learning environments
and learning upon grounded accounts of joint action. Barab, Hay & Yamagata-
Lynch’s (2001) Construction of Networks of Action Relevant Episodes perhaps has
the greatest affinity to our approach. Their method of selecting “tracers” is akin to
our tracing of media object IDs or of concepts back through the contingency graphs.
We share, with these researchers, a view that a representation of the contingent
nature of interaction is a foundational requirement for analysis of phenomena at
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larger granularities. Barab et al. (2001) refer to this as a process of unification in
which multiple time scales and contexts are captured in one analysis. In our case,
the use of contingency graph visualizations shows how analysis can be scaleable,
relying on micro and episodic sequences in the accounting of computer-supported
collaborative learning.

The contingency graph is an abstraction of what is traditionally thought of as
a transcript. Enabling its representation and its relational structure in a computa-
tionally accessible format promises to support sophisticated and scaleable analytical
practices. Segmentation and tracing are two such practices that are fundamental
in working with relationally represented sequential data. It is through cycles of
segmentation and tracing that one is able to isolate aspects of interaction under
investigation. One danger in isolating data elements in this way is the potential for
decontextualization — losing sight of the full breadth of contingencies at play in a
given context. To counter this tendency, we employed video analysis to complement
our approach. In practice, the visual distinction between selected and non-selected
acts can be leveraged within cycles of selective transformation. The Uptake Graph
Utility was developed around these two ideas and provides a prototype for planned
further development of related tools based on the contingency graph representation.
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