Research and Practice in Technology Enhanced Learning
Vol. 4, No. 2 (2009) 169-189
(© World Scientific Publishing Company &

Asia-Pacific Society for Computers in Education

WISE TECHNOLOGY LESSONS:
MOVING FROM A LOCAL PROPRIETARY SYSTEM
TO A GLOBAL OPEN SOURCE FRAMEWORK

JAMES D. SLOTTA

Canada Research Chair in Education and Technology
Ontario Institute for Studies in Education
University of Toronto, 252 Bloor St. West #11-268
Toronto, ON, M5S 1V6, Canada
jslotta@oise.utoronto.ca

TURADG ALEAHMAD*

Doctoral Student, Human Computer Interaction Institute
Carnegie Mellon University, 5000 Forbes Avenue
Pittsburgh, PA 15213, USA
turadg@cmu. edu

WISE is a software platform that enables easy authoring and exchange of educational
materials amongst learning science researchers. This paper charts the recent evolution
of the WISE technology, sharing lessons learned and describing a new open source
framework called SAIL. We identify key challenges and design principles for technology-
enhanced learning environments, and describe how we applied these principles to help
WISE move from a single-developer codebase to an international open source codebase
shared among multiple technology projects. Finally, we discuss the new types of com-
munity this transition fosters.

Keywords: Software framework; case study; open source; online community.

1. Introduction

This paper describes the efforts of educational researchers, technology specialists
and computer scientists to produce a third-generation® technology platform for edu-
cational research and development. Our goal is to provide an open architecture for
learning scientists, enabling the development of richly interactive materials that can
be shared and co-developed between various development projects. These materials

*Author was a staff technologist in the WISE lab at the University of California, Berkeley when
working on this project.

IThe third generation refers to a sequence of technology frameworks developed by researchers
at the University of California, Berkeley. The first generation was the Knowledge Integration
Environment (http://kie.berkeley.edu) and the second was the closed source Web-based Inquiry
Science Environment (http://wise.berkeley.edu).

169



170 J. D. Slotta € T. Aleahmad

should interoperate — allowing innovations developed by one research group to be
easily integrated into the materials developed within another lab. Moreover, the
materials should be robust in terms of the platform that serves them and stores
resulting user data. In this way, we hope to sustain a dynamic open source commu-
nity of designers, developers and educational researchers as they adopt and adapt
materials for their own investigations, enabling collaborations between labs, and
promoting the evolution of our innovations.

Our search for a scalable framework is paralleled by an explosion of progress
within the areas of e-learning, digital libraries, and learning content management
that has emphasized the issues of content reusability, semantic metadata, and new
standards and specifications (e.g. SCORM, IEEE LOM, and IMS LD). These rapidly
developing areas have cut across traditional lines of industry, government and
academia, promoting dynamic communities of practice and exchange. Moreover,
information technology itself has continued its rapid evolution, with new function-
ality in the Internet itself, in networking protocols (e.g. peer-to-peer networks, cel-
lular devices, and wireless connectivity) and in personal and hand held computers.
Our technology platforms are challenged to mature in stride with these important
peer communities. This is particularly true of the e-learning community, where
much intellectual effort has focused on defining technology standards and specifica-
tions (e.g. IMS, 2003; Dodds & Thropp, 2006a; 2006b; Koper, 2000) but insufficient
energy has gone toward to understanding the vital issues of how technology can
support new modes of learning and instruction, and new paradigms for curriculum
and assessment (Friesen, 2003, 2004; Berge & Slotta, 2006).

Rather than remaining a consumer of e-learning systems, educational research
must take a front seat in driving the design of new systems, posing inter-
esting questions about the nature of learning and instruction, and inves-
tigating new forms of curriculum, new interactions between students, and
new roles for the instructor. Substantial research in the design of technol-
ogy enhanced learning has been conducted within programs such as the Web-
based Inquiry Science Environment (WISE, http://wise.berkeley.edu), Learn-
ing Technologies in Urban Schools (LeTUS, http://www.letus.org), Thinkertools
(http://thinkertools.soe.berkeley.edu/ Pages/sciwise.html), Modeling Across the
Curriculum (http: //mac.concord.org/), BioKids (http://www.biokids.umich.edu),
and other research programs. These projects have investigated the use of mod-
els and visualizations, idea maps and modeling engines, graphs and data probes,
collaboration, and inquiry learning. They have pushed the boundaries of what tech-
nology can do, providing new functionality for curriculum designs and scaffolding
students, teachers and classrooms. Such research promises to transform learning
from its traditional form of knowledge dissemination to new forms of knowledge
community and inquiry learning (Kolodner et al., 2003).

Our aim is to support education technology researchers as they continue devel-
oping such innovations, as well as to extend these innovative methods and materi-
als to the wider learning sciences community. Graduate students working in one lab
should be able to easily access the innovations from another, as well as to customize



WISE Technology Lessons: To a Global Open Source Framework 171

those resources for purposes of their own investigations. Two labs should be able to
easily connect their learning tools and materials, to allow a greater range of func-
tionality, as well as to promote the testing of ideas and claims (Roschelle & Kaput,
1996; Roschelle et al., 1999; Clarke et al., 2006). To meet this goal, a team of edu-
cational researchers, computer scientists, and technology developers from several
universities have collaboratively designed and developed the Scalable Architecture
for Interactive Learning (SAIL). This new open source technology framework will
underlie all future tools and materials developed within our own research and that
of collaborators, and will hopefully support a more global community of software
and curriculum developers as well.

SAIL is concerned with the basic technology architecture of instructional envi-
ronments. By carefully designing the “genetics” of digital content and functionality,
we can enable the development of technology enhanced learning environments that
support much more powerful kinds of learning, with more scalable, sustainable
software. From the outset, SAIL has been designed to leverage the power of open
source and open content development, offering a common, open architecture that
will support a wide array of richly interactive learning technologies. SAIL hopes
to provide a resource to an international community of designers and developers
from diverse projects, leading to interoperability of technology tools, flexibility of
interfaces, re-usability of content, and greater longevity and sustainability for our
innovations.

Below, we describe a set of challenges that confronts all technology-enhanced
learning environments. Next, we provide a case history of the WISE learning envi-
ronment, in terms of how it confronted these challenges and ultimately prompted
our development of SAIL. We then describe the different layers of SAIL, concluding
with a discussion of how SAIL can help sustain dynamic, open source communities
of developers and researchers. Finally, it should be noted that no such discussion of
technology frameworks can ever be current for long. Even at the time of going to
press, we are aware of new developments in the world of learning technologies (e.g.
the upcoming release of Moodle 2.0 — see www.moodle.org/) to which we will be
giving attention as the SAIL effort moves forward. However, we are confident that
this narrative will be relevant to anyone involved in this area of work and that the
arguments presented in favor of exchange communities will remain widely relevant
across the learning sciences.

2. Challenges for Technology-Enhanced Learning Environments

Technology-enhanced learning environments are general systems that enable the
development of technology-enhanced learning materials and instructional supports.
Broader than any specific learning tool or curriculum, they address a wider class of
such materials, with the aim of supporting authorship and customization of curricu-
lum, subscription by teachers and students, and implementation within classrooms,
or other educational settings. One example of such a technology environment is
the Web-based Inquiry Science Environment (WISE) which enables cognitive and



172 J. D. Slotta € T. Aleahmad

educational researchers to design and deliver inquiry science curriculum over the
Web (Slotta, 2004; Slotta & Linn, 2009). WISE offers numerous inquiry tools such
as drawing, graphing, data tables, concept mapping, online discussions and stu-
dent journals to support authors who wish to create such curriculum for purposes
of research or educational programs. Developed by researchers at the University of
California, Berkeley, WISE has grown to serve more than 3000 teachers and 200,000
students in 35 countries and 7 languages.

While there are also many examples of so-called “learning management systems”
developed for higher education (e.g. Blackboard, Moodle or Sakai), we are focused
here on systems designed to support collaborative and interactive learning experi-
ence for purposes of learning science research. Another such environment designed
by researchers at The Concord Consortium is called Pedagogica, and allows the
construction of curriculum activities where students interact with powerful physi-
cal and biological models such as Molecular Workbench and Biologica (Horwitz &
Christie, 2000). Pedagogica is not a Web-based system, and focuses on highly compu-
tational content that runs on a client-side Java platform. This fundamentally different
approach to content has emerged as a direct product of the kinds of learning that was
being investigated by Concord Consortium researchers. The Concord lab developed a
sophisticated server-side technology to coordinate the distribution of very large appli-
cation files, check versions of content via the Internet, and store and retrieve log files
of detailed student interaction data. As a result of the different forms of learning that
are supported by the two environments (WISE and Pedagogica), the core technolo-
gies of the two systems are quite distinct. For example, Pedagogica does not have stu-
dent log-ins, databases for student interactions, or assessment tools for teachers. The
authoring system is quite complex, and more of a scripting environment that requires
a sophisticated knowledge of the underlying modeling environments.

Many such systems have been designed by educational researchers over the past
several decades in order to support their own investigations of learning and instruc-
tion. However, the growth of e-learning in higher education and the spread of the
Internet throughout all educational settings has broadened the discourse about the
nature of technology infrastructures, the specification of educational content, and
management of user interaction data from students and teachers. Thus, a growing
community of educational researchers and developers is now concerned with the
design and development of more scalable technology environments (Roschelle et al.,
1999; Clarke et al., 2006; Wang & Hannafin, 2006; Slotta & Aleahmad, 2009).
Below, we describe several fundamental challenges that confront any technology-
enhanced learning environment that aims to become a sustainable technology sys-
tem for research, content development and distribution to classrooms.

2.1. Scalability

The first challenge is that of scalability, where versions of the technology envi-
ronment must be continuously and reliably extended to an increasing audience of



WISE Technology Lessons: To a Global Open Source Framework 173

users. Scalability is a mature area of research within computer science (Bondi,
2000; Michael et al., 2007) but is a relatively new concern in education technology
research (Clarke & Dede, 2009). Schools are often awkward information technology
environments with various computing platforms in varying states of repair (Becker
and Ravitz, 1999). While technical support may be available for the systems, it is
scarce and rarely allocated to experimental pedagogy (Cuban, 2001; NRC, 2002).
Drawing on more general software engineering practices, this leads to important
design requirements to support education technology research.

Scaled use of any environment is difficult or impossible if the software is awkward
to install or to use, or if it has substantive platform dependencies. If software bugs
are fixed or new features are added, a technology environment should make such
changes easy for users to update within existing software installations. Curriculum
materials that run on one version of a system should continue to run on new versions.
Software installation should be straightforward, and software upgrades (i.e. new
versions) should be automatic and fast. These, along with other elements of sound
software design (e.g. documentation, bug tracking, and support) are all essential
to scalability. Additionally, there is an architectural level to this challenge, as an
increasing number of users should not impact the performance of the technologies
themselves. While this is clearly no problem for software that is locally installed
(e.g. from a CD ROM), it may be a challenged for Web-based software, if many users
impact the bandwidth of delivery. A large number of users also presents challenges
for upgrading versions of software or of e-learning content, and raises challenges for
support.

2.2. Sustainability

A second challenge is that of sustainability, which is concerned with the ability of a
learning environment and its content to survive for long periods of time, in diverse
contexts of use (Dalziel, 2002; Wheeler, 2004). Curricular materials originally cre-
ated for purposes of research must be considered in terms of their applicability for
classroom dissemination. Once disseminated, they must be able to survive within a
constantly changing technology climate, with new hardware, software, networking
configurations, and widely varying levels of support. For example, many curricu-
lum projects written for the Knowledge Integration Environment (Slotta & Linn,
2000; Linn, Bell, & Davis, 2004) could never be run today, as the learning environ-
ment software is defunct, having been replaced by the WISE environment. What
if the WISE software is ultimately discontinued? Would its substantial library of
curricular materials be sustainable, or would they perish?

2.3. Accessibility

A third key challenge to technology-enhanced learning environments is that of acces-
sibility to a wide community of users, such as other researchers, content developers,
teachers and program specialists (Slotta & Linn, 2009). Is the technology easy to



174 J. D. Slotta € T. Aleahmad

use and install? Can it be implemented within a classroom without overhauling the
teacher’s entire curriculum? Can it work well with other technologies, sharing files
or other data? Can other users tailor the technology environment to their needs,
adding new functionality or content? These issues are not serious when the technol-
ogy environment serves mainly as a dedicated research platform. But this becomes a
crucial challenge if the environment ever hopes to become scalable and sustainable.
Other researchers or educators must feel that they can easily obtain, implement,
and even modify the technology, as well as any content created using the technology.

2.4. Dynamic evolution

A related challenge is that of evolution. Most technologies tend to evolve in response
to changing platforms, new features of hardware or software platforms, or indeed
new approaches to teaching and learning. When Web browsers first emerged, for
example, they did not have frames. Once frames became commonplace, Web-based
applications regularly included them. Most researchers will improve their envi-
ronments gradually over the years. For example, WISE has regularly introduced
new features, and become more stable and responsive to users. However, when the
changes to a system are only performed by its original authors, there is a serious risk
of the status quo leading to stagnant form and function. WISE is not readily acces-
sible to any developer who would want to change its interface or add new features.
Thus, over the past 7 years, the WISE interface (designed to serve the purposes of
WISE researchers) has remained relatively unchanged, to the point where it now is
quite out-dated. As a consequence, WISE has not benefited from innovative ideas,
such as the use of graphical information systems or collaborative environments, that
other researchers have sought to add but could not, due to the lack of accessibility
of the code. Clearly these four challenges are interrelated: only an environment that
is accessible can be used by a wider community who have a greater stake in its
longevity, resulting in more scalable, sustainable and dynamically evolving systems.

3. Content and Developer Communities in the WISE Environment

When learning environment technologies are accessible and scalable as defined
above, they can do more than simply offer their existing content to a wider audi-
ence of teachers or researchers. Rather, the infrastructure of the environment can be
opened to curriculum authors who would build new content, to technology develop-
ers who would create new functionality for the environment, and to other researchers
who would adapt the environment for their own purposes (e.g. to insert their own
learning tools or content into the environment, or to customize the learning envi-
ronment altogether). The more open and accessible the learning environment, the
greater will be the opportunities for such communities to participate and the more
the learning environment will strengthen and evolve. Conversely, if a learning envi-
ronment is difficult to access or to adapt, this will greatly inhibit any exchanges or
dynamic evolution.



WISE Technology Lessons: To a Global Open Source Framework 175

WISE has illustrated a promising degree of accessibility with regard to the devel-
opment and exchange of inquiry curriculum, as content developers have employed
WISE in creating curriculum that meets their professional agenda (Slotta, 2002;
Slotta & Linn, 2009). For example, environmental educators working in the Interna-
tional Wolf Center (Ely, Minnesota) used the WISE authoring system to design and
develop an inquiry-oriented curriculum concerned with wolf management (Strauss,
Kerber & Slotta, 2000). This project has been run by dozens of teachers in several
states, and has been translated into three different languages. More importantly,
any teacher who runs the wolf project can edit the content, delete steps, add new
Web pages, or change the discussion topics. Such customizations are fairly common,
and to date there are more than twenty distinct version of the wolf curriculum —
one of which changed the entire topic to that of salmon preservation! The Mon-
terey Bay Aquarium (Monterey, California) has co-authored a WISE curriculum
concerned with habitat adaptation of marine species (Zimmerman & Stage, 2008).
The American Physiology Society has created several inquiry projects in health
related topics (e.g. physiology of fitness, organic foods). The U.S. Forestry service
has sponsored the design and development of a forest fire project that helps stu-
dents debate whether new homes should be permitted to be constructed next to
national forests.

In addition, other researcher groups have adapted WISE content for their own
purposes, or authored new materials using the existing WISE learning environment.
For example, researchers at the University of Tiibingen (Germany) adapted the
WISE Deformed Frog curriculum, translating it into German and customizing the
curriculum to add “collaboration scripts” that helped students construct formal
arguments (Fischer & Slotta, 2002; Kollar, Fischer, & Slotta, 2007). Micki Chi
(2008) has used WISE as a platform for designing and delivering research materials
for cognitive psychology research. The system allowed her to deliver this content to
students in several different experimental conditions, provide them with feedback
electronically, and collect all student data in real time.

Between the customizations made by teachers, the new content developed by
curriculum specialists, and the adaptations made by researchers, thousands of cur-
riculum projects have been developed over the past five or six years. None of this
prodigious development activity was sponsored by any research grant, nor was it any
part of the official WISE research agenda. Rather, the content development com-
munity emerged because WISE was available as an open resource to these diverse
developers — a flexible system that was free of charge and provided the powerful
functions that were needed to design, develop and deliver interactive content via the
Web to a global community of teachers and students. Thus, WISE illustrates the
promise of content development communities and indeed it has generated a great
deal of excitement about possibilities in the future.

Unfortunately, WISE has not done as well in responding to the promise of open
source software development. While several collaborators have used WISE as a
platform for their research projects, they have been constrained to use the same



176 J. D. Slotta € T. Aleahmad

version of the system as everyone else. One research group asked if they could
adapt the electronic discussion tool, in order to have students within a classroom
receive different discussion topics depending on what their responses had been to
multiple-choice problems earlier in the WISE curriculum project. “WISE discussions
can’t do that,” was the response given to this request, accompanied by substantial
explanation concerning the architectural constraints of WISE. While the existing
functionality for online discussions in WISE could have been modified with the
desired functionality, our group did not have the programming staff to perform
such new developments. Alternatively, the collaborators might have gotten their
own programmers to attempt this change, but this would have entailed learning a
great deal about the WISE software code, then modifying the existing discussion
tool, resulting in two slightly different discussion modules. Inevitably came the
request: “Couldn’t we just give them the source code to branch out and make their
own WISE?” In addition to the very real challenge of trying to develop a code base
that was not designed from the outset as a collaborative code base, there was a
concern that with multiple (and increasingly divergent) versions of WISE loose in
the world, we might well be defeating the initial goals of our collaboration. In the
end, the collaborator made do with the existing discussion tool, and hoped that
one day the WISE programmers would add new functionality. Their request was
added to a list of features that had been requested by an ever widening community
of collaborators.

The WISE technology changed very little over its 8-year lifecycle, partly because
the developers have had insufficient time and resources to implement any substantial
changes (e.g. to the user interface, or available learning tools). Aside from limited
developer time, however, this stagnation of form has also resulted from the status
quo that is inherent in any research program: As so much hard work and care-
ful development go into achieving a specific design, once it is finally stable there
are literally years’ worth of research that can be done without any major revi-
sions. In the case of WISE, the research has been concerned with design principles
for curriculum, with the nature of classroom communities using WISE, and with
teacher professional development. Thus, in order to dynamically evolve over time,
such environments would require the productive input from a wider community of
developers. While WISE is one of the most accessible, extensible learning environ-
ments ever developed by educational researchers, it is perhaps this proximity to
success that so clearly reveals its limitations. Our vision of an evolving learning
environment, dynamic communities of exchange, and a common technology archi-
tecture have led us to think deeply about the core technology that would underlie
our next-generation systems.

4. Designing a Scalable Architecture for Interactive Learning

In 2003, the U.S. National Science Foundation funded the TELS center (Technol-
ogy Enhanced Learning in Science) to study the integration of computer-based



WISE Technology Lessons: To a Global Open Source Framework 177

inquiry activities within science classrooms. Building on more than a decade of
prior research (Bell, Davis, & Linn, 1995; Slotta & Linn, 2000; Linn & Hsi, 2000;
Horwitz & Christie, 2000), TELS sought to integrate rich models, visualizations, and
probeware from the Concord Consortium (e.g. Pedagogica, Molecular Workbench
and CC-Probe) into the scaffolded inquiry environment of WISE. Such functionality
would support TELS researchers as they designed science inquiry projects, deliv-
ered them to classrooms, and captured student assessments. It would also serve to
scaffold students and teachers as they engage with such materials in the science
classroom (Linn, Husic, Slotta, & Tinker, 2008).

As described above, TELS center researchers and their collaborators had used
WISE previously to author inquiry activities that employed numerous learning tools
(e.g. for drawing, concept mapping, graphing, etc.) resulting in a wealth of content.
However, the WISE tools were embedded within a monolithic system, making it
challenging to incorporate technology innovations from other research programs
(e.g. the Pedagogica or other Concord software) — which was particularly daunting
given that this integration was a primary aim of the TELS center. Thus, we set
out upon a fundamental re-design of the basic technology paradigm underlying
WISE. Our goal was to develop a broad framework that could be used to re-create
WISE with a higher level of interoperability, allowing extensions to other learning
environments and opening the door to an open source development community.

In order to explore all possible development strategies, we organized several
formative retreats that included technology designers, educational researchers, com-
puter scientists, and user interface specialists.? Participants at these retreats deliber-
ated various technology approaches, including Web-based applications, Web browser
plug-ins, and PC-based software platforms, such as Flash and Java. These retreats
also addressed major issues such as platform independence, de-centralized or dis-
tributed platforms, interoperability of software elements, and the dynamic evolution
and distributed maintenance of the software systems (Linn et al., 2005; 2006a).

These early design discussions examined successful technologies, including oper-
ating systems (e.g. Linux, Apple OSX), Web browsers (e.g. Mozilla), and learning
management systems such as LAMS (Dalziel, 2003). We also reviewed prior efforts
in educational object economy (e.g. ESCOT — see Roschelle et al., 1999), and cur-
rent initiatives for learning content standardization (e.g. SCORM — see Dodds &
Thropp, 204a; 2004b; and IMS LD — see Dalziel, 2003; Berge & Slotta, 2006).
We sought to understand common principles, successful paradigms and emerging
philosophies of design and development. We also wanted to take seriously the recent
activity in defining e-Learning standards and specifications (IMS, 2003; Dodds &
Thropp, 2004a; 2004b), as we hoped to contribute to this dialog in the form of
much richer, interactive forms of learning than are typically treated by current
e-Learning systems (Dodds & Thropp, 2004a; 2004b; IMS, 2003). We articulated

2The retreats themselves were funded by an award from IBM to the first author, to promote the
study of open source as it pertains to e-Learning systems and digital content.



178 J. D. Slotta € T. Aleahmad

a set of guiding principles that have been used throughout the past six years of
SAIL development (2003-2009). These principles are discussed in the following
sections.

4.1. Develop technology in separate layers

An important principle was the need to develop separate layers of software, enabling
the re-use of lower layers while allowing greater flexibility in higher ones. Many of
the most successful technology frameworks are constructed from lower level tech-
nologies that are open source and widely used. For example, the success of PHP
as a programming environment for the web stands on the shoulders of the MySQL
database and the Apache web server, which themselves rely the Linux operating
system. The integration of these open source technologies forms the popular LAMP
(Linux, Apache, MySQL, PHP “stack” that is widely used to develop Web appli-
cations (Dougherty, 2001). Some other open source projects build upon LAMP
to create even higher-level frameworks such as Drupal (http://drupal.org/), a web
engine for online communities, or Moodle (http://moodle.org/), a higher education
learning environment. This approach allows the core technology to be jointly devel-
oped and improved by a distributed network of users. Moreover, such a separation of
layers leads to a consistency of practice in developing the upper layers — a practice
which lends itself to the exchange of code between software systems that have been
constructed from common lower levels. The SAIL design team thus sought to define
distinct layers, with the lowest being that of the basic functions common to a wide
array education technology applications: the definition of a learning object, the def-
inition of a user, and how users interact with objects, etc. By carefully defining this
architectural level and differentiating it from higher levels, we sought to promote a
structured, cooperative approach to the development of technology-enhanced learn-
ing environments.

We have articulated four distinct layers of technology, which are named, from the
bottom up: Architectures, Frameworks, Environments, and Applications. As even
computer scientists are not completely settled on the definitions of these terms (Bass
et al., 2003), our design group does not purport to adhere to any strict standard or
definition for these terms. While the terms are inspired by current practices within
software engineering, their fundamental purpose is to discriminate amongst several
distinct aspects of the software and to guide our own development efforts. While
SAIL is fundamentally an architecture (hence the “A” in its acronym), it must be
combined with a framework layer in order to define a useful resource for any devel-
oper community. Next, we will offer definitions and examples for each of these layers,
and describe how the SAIL architecture, when combined with a suitable framework
layer can enable a new generation of learning environments that allow greater levels
of interoperability, adaptability, and sustainability of software resources.

The architecture is the set of specifications for all technology elements within the
overall learning environment, providing the basic set of rules within which all other



WISE Technology Lessons: To a Global Open Source Framework 179

elements can be constructed (Bondi, 2000; Michael et al., 2007). It includes the
“data model” for a learning object (i.e. what format must a learning object adhere
to, and what variables or properties or meta-tags must all learning objects have), as
well as a specification of a user (i.e. what is a user, how are they represented within
the system, and how is their interaction with learning objects captured). This can
also be thought of as the basic software commitments of the learning environment.
In approaching our design of a new version of the WISE environment, we sought
to greatly refine and formalize the architecture in order to guide or constrain the
“permissible moves” that could be performed in designing higher layers.

The framework is a set of software components that extend and assemble the
architectural components to a more specific purpose. This layer provides the func-
tional affordances to the environment: Will students be able to log into it? Will
teachers be able to see their students during the curriculum implementation? Can
students interact with each other? Will data be saved during or after the cur-
riculum offering? What kinds of features, materials or pedagogical structure can a
curriculum activity include? What kinds of user interfaces are permitted? In the
earlier version of WISE, this framework consisted of the definition of a “curriculum
project” that consisted of a sequence of “steps,” each of which could be of a differ-
ent “type” (e.g. display an HTML page, collect a student reflection note or journal
entry, provide a model or a drawing tool, or an online discussion). Other features
of the WISE framework include the data structure whereby students are associated
with teachers and class periods, as well as the notion of an “offering” (i.e. class-
room run), and a teacher portal that included authoring permissions, assessment of
student work, and online communities. SAIL enables the developer to either reuse
these functional affordances or implement new ones.

The environment is the software system constructed according to the frame-
work: the system of complementary applications that cooperate with each other
to provide a coherent set of functions including authoring of content, storage of
content, distribution of content to students and teachers, administration of content
to students working in classrooms or at home, collection of data, assessment tools
for teachers, and so on. If the architecture and framework are like blueprint and
building materials, respectively, the environment is the building itself — albeit with
no furniture or decor.

The final layer of a technology-enhanced learning environment is that of the
applications. In the building analogy, this is the building in use: what it looks like
with paint, furniture and people. The applications are what the end users (students
and teachers) actually interact with: a curriculum, an authoring tool, a grading
tool, etc. If the separation of layers were done carefully, the major elements of this
layer would be restricted primarily to the user interface.

These four layers are not independent of one another. That is, the possible struc-
ture or implementation of one layer will be constrained by the design of underlying
layers. For example, the design of the environment layer will always rely on features
in the lower level framework layer, just as the framework layer has substantial



180 J. D. Slotta € T. Aleahmad

requirements or constraints derived from the architectural layer. However, the lay-
ers are still clearly defined and separable from one another: It would be possible to
implement several distinct frameworks based on a given architecture, or several dif-
ferent environments using the same framework. Indeed, as we discuss below, our own
research group has created two distinct frameworks that use the SAIL architecture,
in order to support a Java client-based and Web-based learning environment. Each
of these layers can be created and sustained by overlapping or disjoint groups of
developers, with different goals, sharing practices and software licenses (Linn et al.,
2006a). In essence, the different layers of technology-enhanced learning environ-
ments correspond roughly to different communities that might share and exchange
source code or content within those layers (as in the developer communities of the
LAMP framework). We describe the communities of SAIL and their change over
time in Section 5, Experience with SAIL.

In the earlier version of the WISE software, the lower layers were not designed
in such a way that they were separable from the higher ones, making it very dif-
ficult to add new applications to the environment, or to change the environment
within the existing framework. In designing SAIL, we sought to separate these layers
so that a new generation of learning environments could easily accommodate new
features, exchange elements and interoperate with one another. After substantial
design efforts, we have recognized the framework layer as best suited to foster col-
laborations amongst technology developers. The architecture (SAIL) may specify
the structure of data and the definitions of users and groups, but the framework
layer will establish the kinds of software that can be developed, the core services,
data structures, and data mining capabilities. The key question is: what technolo-
gies are the most important ones for researchers to be able to share, such that
they can still build the widest range of possible end-user applications? Certain
features, like user registration systems and data repositories, are best if shared,
since they are difficult to develop and not highly sensitive to the end user environ-
ments. We have created a powerful new Web-based framework to complement the
SAIL architecture, and have employed it in developing new open source versions
of WISE, although this framework is well suited to the development of many other
environments.

4.2. Allow for centralized or distributed technology frameworks

One important characteristic of a technology-enhanced learning environment is
whether it is centralized or distributed. Like most Web-based environments, WISE
is centralized, meaning that the software is developed and released by a central
authority, and the functionality and content is typically delivered via a central Web
server. Like other centralized Web-based applications, WISE offers all users a sin-
gle source (URL) where they log in, manage their accounts, and receive relevant
services depending on their role (i.e. teachers, students and researchers all receive
somewhat different functions from WISE). The WISE server collects all data that



WISE Technology Lessons: To a Global Open Source Framework 181

results from user interactions, such as students’ work in the WISE curriculum,
teachers’ assessments, or authors’ new versions of the curriculum.

In distributed technology environments, which are a relatively recent arrival in
the learning sciences, users log into their own computer, and data may be saved
locally or remotely at various locations. There is not necessarily even the need for
a central server or authority that administers user authentications and accounts, or
manages data storage.® Such systems include peer-to-peer networks where various
kinds of files are shared within a wide network of users who connect with one another
by means of mutual; negotiation (e.g. sharing their addresses) or discovery (finding
other users who share membership). While no central server is required, servers can
play a variety of roles in such systems.

Distributed technology frameworks emerged as a result of network capabilities
to support peer-to-peer exchanges of information and software (Antoniadis & Le
Grand, 2007). Napster was one of the first prominent examples of an exchange
community where there was little involvement of a centralized authority (http://
en.wikipedia.org/wiki/Napster). Rather, each individual “peer” who logs on is con-
nected to all other peers in a network, which allows them to view and exchange
files with any other peer. While Napster relied on a central server to establish this
interconnected network of users, subsequent environments (e.g. Fastrack, Gnutella,
eMule) solved this problem through discovery where any local peer who is using a
specific kind of software is able to discover all other peers who are connected to the
network and running the same peer software. This arrangement of interconnected
users allows for powerful new kinds of functionality that do not require a central
authority to broker transactions or store data (Schoder & Fishback, 2005; Buford,
Yu, & Lua, 2008). Other examples of peer-to-peer, distributed systems are Bon-
jour chat in iChat (for communications) and Geo gateway (for sharing of graphical
information data).

The strengths of centralized systems in general and Web-based applications in
particular are undeniable. WISE has benefited greatly from the simplicity and power
of this approach, and would only abandon it in the face of serious weaknesses or
tremendous opportunities from a distributed paradigm. The weaknesses of a central-
ized approach are few, but indomitable. One important weakness is that of the single
point source of failure: When the Internet service goes down, or the server crashes,
all applications and content are disabled. Web-based applications also suffer from
the liability of the Internet connectivity of their users. This is a particularly big prob-
lem in schools, where Internet connections and networking service is often faulty.
But perhaps the greatest limitation of centralized frameworks results from the very
source of their greatest strength: their single instantiation. When two or more
stakeholders disagree about a change to that single instance, only one can prevail.

3This would be true for pure “peer-to-peer” systems, but necessarily for all distributed systems.
The architecture of distributed systems should be of great importance to future research in the
learning sciences.



182 J. D. Slotta € T. Aleahmad

A distributed framework can facilitate multiple autonomous technology-enhanced
learning environments that cooperate, diverge and recombine as necessary.

By design, SAIL can support both centralized and distributed systems, depend-
ing on the commitments made at the framework layer. For instance, the TELS
center will continue to develop a centralized system in order to maintain continuity
with previous generations of software (i.e. WISE). However, other SAIL developers
are working on a more distributed framework, with the aim of enabling new forms
of interactive technology and supporting new technology configurations. We offer
the term “distributed framework” to differentiate from peer-to-peer systems, which
often benefit from all users adhering to a common software application (e.g. the
most recent version of a certain gaming software). There have been developments
in distributed frameworks (e.g. Brusilovsky & Nijhavan, 2002) and the communi-
ties for research and practice with educational technology will benefit by advancing
these further. In our view, distributed frameworks must support a wide range of
educational form and function, including diverse software applications, real time
data acquisition, varied media formats (e.g. Flash, MPEG, HTML) and numerous
specialized learning tools. Further, distributed frameworks should support different
kinds of devices, such as laptop computers, cell phones, or other kinds of hand-
held computers. Finally, for much of the curricular content that occurs within a
learning environment that is implemented on a distributed framework, we would
expect a layer of user interaction data that will need to be stored and manipulated
flexibly. SAIL provides for all this and thus facilitates these types of designs in the
applications layer.

The potential benefits of distributed frameworks in the development of educa-
tion technology are profound. By providing a clear specification of learning content,
we can enable many different applications to share resources. For example, HTML
is well enough specified that many different Web browsers can display any given
HTML document. Moreover, by specifying different layers for the user interface
and the actual content within the resource, (e.g. specific to some environment), the
same resource could appear quite differently and even function differently within
different learning environments (e.g. if a particular learning object is accessed via a
Web browser, a cell phone, or a hand held computer — see Lee, Ko, & Fox, 2003;
Eap, Gasevic, & Lin, 2009). A distributed framework can allow for much greater
innovation, as end users are freed from limitations on their content, the components
used within their content, and even the tools used to create it. An extensible dis-
tributed framework allows for easy integration of new and existing technologies. By
distributing the naming, acquisition and authority of content and functionality, we
break open the single point of innovation bottleneck and let all the ideas flow.

5. Experience with SAIL

The SAIL design team sought to carefully design and implement the four layers
described above to support interactive learning content in varied forms (e.g. to be



WISE Technology Lessons: To a Global Open Source Framework 183

flexible to different device constraints). Rich physics and chemistry models and sim-
ulations developed by the Concord Consortium (http://www.concord.org) require
a full desktop computer with the latest versions of Java. Other researchers have
wanted to explore learning interactions on low-powered hand-held computers and
cell phones, or even ubiquitous computing technologies that are not recognizable
as computers at all (e.g. smart rooms that speak fluidly with individual comput-
ers). Our challenge was to create a software model that accommodated the diverse
needs of education technology researchers, supporting with common functionality
and also giving freedom in exploring uncommon designs.

The first full application of the SAIL architecture was WISE version 3.0: a reim-
plementation of the Web-based WISE to a Java application on the client machine
that interacted with distributed web services. Several SAIL software components
and services made up the framework level. These included the SAIL Core content
framework for portable and re-mixable content, the SAIL Launching Service for
delivering content and Java software components to the client, and the SAIL Data
Service for decoupling data storage from content delivery and client interaction. On
this, we constructed several different environment layers. One was Pas (for Project-
activity-step), a generic version of the traditional WISE environment. Another was
OTrunk, which the Concord Consortium developed as it aligned more closely with
its other software components. With Pas, the TELS Center was able to create
WISE application instances. The Pas portal component became the WISE portal,
and learner activities created with Pas were WISE applications. With OTrunk, a
more flexible and raw environment, Concord Consortium was able to create highly
varied learner activities at the application layer.

As SAIL earned the confidence of developers and researchers, it was brought into
new application contexts. Critically, it had to evolve from a technology research sys-
tem to a robust technology for education research per se. The WISE 3.0 system was
difficult to run in some classrooms, due to old versions of Java and some persis-
tent challenges with platform conflicts. In addition, the WISE group was funded to
develop an interactive curriculum platform for a California state-wide initiative in
which the software had to run on even more impoverished computers and network.
TELS researchers decided that they needed an environment where students could
run content simply by clicking on a link in a web page. SAIL developers worked hard
to improve the Java Web Start system by which the Java client side could be loaded
with a click, but old and locked-down school computer networks proved formidable.
Thus, it was decided to experiment with adapting SAIL to Web-based content. In
one experiment, a researcher needed his SAIL OTrunk activity to be accessible on a
Google Android G1 phone, and this was accomplished by linking the OTrunk parser
with a new framework level component that transformed OTrunk into Web-based
activities (Zimmerman & Stage, 2008). The flexibility of the SAIL architecture and
the community of exchange among its developers made this possible.

Because it was assembled on a SAIL-based framework (i.e. a framework com-
patible with the SAIL architecture), many of the software components that were



184 J. D. Slotta € T. Aleahmad

developed for the WISE 3 environment could be applied within a new framework,
known as “WISE 4.0,” that was developed for a Web-based environment. Parts
of the environment and framework layers were replaced to provide for new appli-
cations, and the learning environment was moved from Java back into the web
browser. Remarkably, this was done in fairly short order, as developers were able to
retain the portal and user model, and many of the framework components. Chang-
ing from a Java client to Web browser environment necessitated the development of
a new framework layer (e.g. the launching service was no longer necessary as Java
client applications had to be converted back into Javascript applications). However,
because of this layered approach to development, curricular content from WISE 3
could be easily adapted to the WISE 4 environment by software that automated
the conversion.

The move from WISE 3 to WISE 4 was a major one, and served to define two
distinct frameworks, and hence collaborative communities. The first is committed
to a Java-based end user environment, OTrunk, with important framework compo-
nents like the SAIL Data Service, Launching Service, and the OTrunk markup lan-
guage. This Java framework is currently under active development by the Concord
Consortium, and available for adoption by other researchers for their own Java-
based environments and applications (Linn et al., 2006b). The second is focused on
defining a framework for Web-based environments that are well suited for running
in technology-challenged settings using lighter weight components (e.g. written in
Flash, or as Applets). The research group at University of California, Berkeley will
continue to develop WISE 4, together with the wider community of researchers that
has embraced WISE as an infrastructure. Other groups will share and co-develop
the Web-based framework but develop new environment and application layers.
The first author of this paper is employing the SAIL architecture and Web-based
framework, but his team is developing a new environment layer that implements a
flexible smart classroom environment (Slotta, in press).

In the years of software development with the SAIL architecture and layer sep-
aration, there have been two distinct frameworks developed and three distinct pro-
duction applications. That the components within the model have maintained some
level of interoperability serves to validate the model of layer separation for educa-
tion technology research (Slotta & Aleahmad, 2009). Whereas often a technology
project is born, lives and dies alone, the applications built in the SAIL model have
shared parts with each other so that each lives on in new ways.

All of software code in the SAIL architecture (e.g. the portal and user registra-
tion service) as well as the two frameworks described above (the Java client and
Web client) is available under the GPL open source license on public project sites
(e.g. http://sail.sourceforge.net), with the goal of supporting an open community
of developers. The existing collaborators who are using SAIL technologies for their
research can now download their pick of SAIL-based learning environments and
begin developing new features, offering those back to the community, and adopting
new features or tools that are developed and offered by others. By sharing clearly



WISE Technology Lessons: To a Global Open Source Framework 185

defined architectural and framework layers, it is easier for tools and materials devel-
oped at the environment layer to be shared and exchanged within the community.
In this way, SAIL supports the kind of functionality developed as a centralized
system in WISE, but allows it to be opened to wide community of developers, to
be distributed to numerous servers, to evolve as new features and user interfaces
are created by the community, and thus to be sustained. Thus, SAIL offers a model
that allows developers to create new learning technologies or transform existing ones
with confidence that their creations will integrate smoothly and support exchanges
within a community.

6. Conclusion

Because of its separation of code layers and maintenance of an open source frame-
work, we are hopeful that a wide community of researchers from the learning
sciences will capitalize on SAIL for their design of technology-enhanced learning
environments. One important advantage offered by SAIL is that of stability. Not
every research program has the human resources required to develop and main-
tain a flexible framework for the design, development and delivery of interactive
curriculum materials. Because it will be used (and developed) for years to come
as the central resource of the TELS Center, of WISE, and several other research
groups internationally, SAIL should mature as a stable, well-supported open source
code base. We are optimistic that SAIL-based learning environments will be easily
adoptable and adaptable within the research community, leading to strong commu-
nities of developers that cut across the normal divisions between labs and research
programs.

Another major strength of SAIL is the interoperability of SAIL-based learning
objects. Any developer who builds a learning environment using the SAIL architec-
ture will be able to adopt tools and materials from any other developer. This would
allow researchers from one lab to embed innovations from another lab into their
own new materials, for purposes of research collaboration, to abstract design prin-
ciples, or to extend the findings to new domains or populations. Researchers could
also investigate classroom settings where students use multiple SAIL-based learn-
ing environments (e.g. one for real-time data collection, a different one for online
collaborative design, and a third for the use of models and visualizations). The
common “DNA” of the learning objects within such environments should promote
fruitful research collaborations, and ensure the efficient maintenance and devel-
opment of frameworks, environments and applications that adhere to the SAIL
architecture.

SAIL-based learning environments will enable more diverse curriculum designs
with adaptive flow of activities and greater capabilities for student collaboration.
However, in responding to limitations of past systems and embracing important
movements of open source and standardization, SAIL offers a more dynamic, sus-
tainable framework, ensuring that our innovations evolve and survive even as the



186 J. D. Slotta € T. Aleahmad

technology itself continues to do the same. Adopting a more scalable, sustainable
architecture will increase our own capabilities to share our innovations within the
community of our peers. Ideally, other researchers will then do the same, resulting
in an expansion of the overall functionality available for our innovations, and sup-
porting the growth of a dynamic community of designers, developers, researchers
and teachers.

While SAIL is a software framework, it is also a community of developers who
make and employ the framework. The community itself may the primary contribu-
tion of SAIL to research in technology-enhanced learning. These shared software
artifacts have brought developers from different research groups together working
across and between continents to build their software together and quicken the flow
of ideas and technologies within the larger education technology community. To
expand the benefits of this developer community beyond the SAIL architecture,
the authors have recently been making progress towards a new online community
system, Educoder.org. Educoder aims to help all education technology researchers
and developers learn and share for the benefit of their own projects and the field of
technology-enhanced learning. There are many more lessons to be learned.

Acknowledgments

This research was supported in part by the National Science Foundation (NSF)
grant number CLT 03-34199 as well as by an IBM Faculty Award to the first
author. Any opinions, findings, conclusions, or recommendations expressed in this
paper are those of the authors, and do not necessarily reflect the views of the NSF
or IBM. Reprints may be requested by e-mail from either author.

References

Antoniadis, P., & Le Grand, B. (2007). Incentives for resource sharing in self-organized
communities: From economics to social psychology. Digital Information Manage-
ment, 2007.

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice (2nd ed.).
Addison-Wesley.

Becker, H. J., & Ravitz, J. L. (1999). The influence of computer and internet use on
teachers’ pedagogical practices and perceptions. Journal of Research on Computing
in Education 31(4) (Summer), 356-384.

Berge, O., & Slotta, J. (2006). Learning technology standards and inquiry-based learning.
In A. Koohang (Ed.), Principles and practices of the effective use of learning objects.
Informing Science Press.

Bondi, A. B. (2000). Characteristics of scalability and their impact on performance. In
Proc. the 2nd international workshop on Software and performance (pp. 195-203).
Ottawa.

Brusilovsky, P., & Nijhavan, H. (2002). A framework for adaptive e-learning based on
distributed re-usable learning activities. Association for the Advancement of Com-
puting in Education (AACE).

Buford, J., Yu, H., & Lua, E. K. (2008). P2P Networking and Applications. ISBN 30-
12374-214-5, Morgan Kaufmann.



WISE Technology Lessons: To a Global Open Source Framework 187

Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model
transformation, and categorical shift. In S. Vosniadou (Ed.), International handbook
of research on conceptual change (pp. 61-82). New York: Erlbaum.

Clarke, J., Dede, C., Ketelhut, D. J., & Nelson, B. (2006). A design-based research strategy
to promote scalability for educational innovations. Educational Technology 46(3),
27-36.

Clarke, J., & Dede, C. (2009). Design for scalability: A case study of the River City
curriculum. Journal of Science Education and Technology.

Cuban, L. (2001). Oversold and underused: Computers in the classroom. Cambridge, MA:
Harvard University Press.

Dalziel, J. (2002). Enhancing web-based learning with computer assisted assessment: Ped-
agogical and technical considerations. In Proc. 5th int. computer assisted assessment
conference. Loughborough.

Dalziel, J. (2003). Implementing learning design: The learning activity management system
(LAMS), ASCILITE 2003, Adelaide.

Dodds, P., & Thropp, S. E. (2004a). SCORM content aggregation model, version 1.3.1.
Report of the Advanced Distributed Learning Initiative, July, 2004.

Dodds, P., & Thropp, S. E. (2004b). SCORM run-time environment, version 1.3.1. Report
of the Advanced Distributed Learning Initiative, July, 2004.

Dougherty, D. (2001). LAMP: The open source web platform (www.onlamp.com/pub/a/
onlamp/2001/01/25/lamp.html).

Eap, T. M., Gasevic, D., & Lin, F. (2009). A2, Fuhua (Oscar) Lin. Personalised mobile
learning content delivery: A learner centric approach. Int. Journal of Mobile Learning
and Organisation 3(1), 84-101.

Fischer, F., & Slotta, J. D. (2002). Online-Controversen in WISE. Wie das Internet genutzt
werden kann, um naturwissenschaftliches Denken zugénglich zu machen. Computer
und Unterricht 11, 27-29.

Friesen, N. (2004). Three objections to learning objects. In R. McGreal (Ed.), Online
education using learning objects (pp. 59-70). London: Routledge.

Friesen, N. (2003). The curriculum of the body in the age of electronic mediation [Elec-
tronic Version]. Language and Literacy: A Canadian Educational E-journal 4(2).

Horwitz, P., & Christie, M. A. (2000). Computer-based manipulatives for teaching scientific
reasoning: An example. In M. J. Jacobson & R. B. Kozma (Eds.), Innovations in
science and mathematics education: Advanced designs for technologies of learning
(pp. 163-191). Mahwah, NJ: Lawrence Erlbaum Associates.

IMS (2003). IMS Learning Design Information Model: Version 1.0 Final Specification.
From http://www.imsproject.org/learningdesign /1dv1p0/imsld-infov1p0.html.
Koedinger, K., Suthers, D., & Forbus, K. (1999). Component-based construction of a
science learning space. Int. Journal of Artificial Intelligence in Education 10, 292—

313. (Also published at http://cbl.leeds.ac.uk/ijaied /home.html).

Kollar, I., Fischer, F., & Slotta, J. D. (2005). Internal and external collaboration scripts
in web-based science learning at schools. Paper submitted to the Proc. Computer
Supported Collaborative Learning (CSCL) 2005.

Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., Puntam-
bekar, S., & Ryan, M. (2003). Problem-based learning meets case-based reasoning in
the middle-school science classroom: Putting learning by design into practice. The
Journal of the Learning Sciences 12(4), 495-547.

Koper, R. (2000). From change to renewal: Educational technology foundations of elec-
tronic learning environments. Report from the Open University of the Netherlands.



188 J. D. Slotta € T. Aleahmad

Lee, S., Ko, S., & Fox, G. (2003). Adapting content for mobile devices in heterogeneous col-
laboration environments. In Proc. int. conference on wireless networks. Jun. 23-26.
Las Vegas (pp. 211-217). CSREA Press.

Linn, M. C., Slotta, J. D., Tinker, R., & Horwitz, P. (2005). Technology Enhanced Learning
in Science (TELS) Annual Report submitted to the National Science Foundation
for NSF funded project CLT 03-34199 (Centers for Learning and Teaching): The
Educational Accelerator Center: Technology-Enhanced Learning in Science (TELS).

Linn, M. C., Husic, F., Slotta, J., & Tinker, R. (2006a). Technology enhanced learning in
science (TELS): Research programs. Educational Technology 46(3), 54—68.

Linn, M. C., Lee, H. S., Tinker, R., Husic, F., & Chiu, J. L. (2006b). Inquiry learning.
Teaching and assessing knowledge integration in science. Science (New York, N.Y.)
313(5790), 1049-1050.

Michael, M. M., Moreira, J. E., Shiloach, D., & Wisniewski, R. W. (2007). Scale-up x scale-
out: A case study using Nutch/Lucene. In Int. parallel and distributed processing
symposium. IEEFE international, IEEE, pp. 1-8.

National Research Council (2002). Improving learning with information technology. In
G. E. Pritchard (Ed.) National Academy Press, Washington D.C.

Roschelle, J., & Kaput, J. (1996). Educational software architecture and systemic impact:
The promise of component software. Journal of Educational Computing Research
14(3), 217-228.

Roschelle, J., DiGiano, C., Koutlis, M., Repenning, A., Phillips, J., Jackiw, N., & Suthers,
D. (1999). Developing educational software components. Computer 32(9), 50-58.
Piscataway, NJ: IEEE Computer Society.

Schoder, D., & Fischbach, K. (2005). Core concepts in Peer-to-Peer (P2P) networking.
In R. Subramanian & B. Goodman (Eds.), P2P Computing: The evolution of a
disruptive technology, Idea Group Inc., Hershey.

Slotta, J. D., & Linn, M. C. (2000). The knowledge integration environment: Helping
students use the internet effectively. In M. J. Jacobson & R. Kozma (Eds.), Learn-
ing the Sciences of the 21st Century, 193-226. Hilldale, NJ: Lawrence Erlbaum &
Associates.

Slotta, J. D., & Jorde, D. (2002). How American and Norwegian Teachers Customized the
WISE Learning Environment to Improve its Value and Validity. Paper presented to
the Annual Meeting of the American Educational Research Association. April 1-6,
2002. New Orleans, LA.

Slotta, J. D. (2002). Partnerships in the Web-based Inquiry Science Environment (WISE).
Cognitive Studies 9(3), 351-361.

Slotta, J. D. (2004). The Web-based Inquiry Science Environment (WISE): Scaffolding
Knowledge Integration in the Science Classroom. In M. C. Linn, P. Bell & E. Davis
(Eds.), Internet environments for science education (pp. 203-232). LEA.

Slotta, J. D. (in press). Evolving the classrooms of the future: The interplay of
pedagogy, technology and community. To appear in K. Makitalo-Siegl, F. Kaplan,
J. Zottmann & F. Fischer (Eds.), Classroom of the Future. Orchestrating collabora-
tive spaces. Rotterdam: Sense.

Slotta, J. D., & Linn, M. C. (2009). WISE Science: Inquiry and the internet in the science
classroom. Teachers College Press.

Slotta, J. D., & Aleahmad, T. (2009). Toward a technology community for the learning
sciences. Panel presentation at the biennial meeting of the Computer Supported
Collaborative Learning (CSCL) conference. June 6-11. Rhodes, Greece.

Strauss, A. L., Kerber, A. K., & Slotta, J. D. (2000). Wolves in Your Backyard. WISE
Interactive science activity included in the International Wolf Center’s Gray Wolves,
Gray Matter. From http://www.wolf.org/wolves/learn/educator/gwgm/gwgm.asp.



WISE Technology Lessons: To a Global Open Source Framework 189

Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learn-
ing environments. ETR&D 53(4), 5-23.

Wheeler, B. 2004. Open source 2007. EduCause Review. July/August 2004.

Zimmerman, T. D., & Stage, E. K. (2008). Teaching science for understanding. In L.
Darling-Hammond (Ed.), Powerful learning: Teaching for understanding in the class-
room (pp. 151-191). San Francisco, CA: Jossey-Bass.





